Recent advancements with deep generative models have proven significant potential in the task of image synthesis, detection, segmentation, and classification. Segmenting the medical images is considered a primary challenge in the biomedical imaging field. There have been various GANs-based models proposed in the literature to resolve medical segmentation challenges. Our research outcome has identified 151 papers; after the twofold screening, 138 papers are selected for the final survey. A comprehensive survey is conducted on GANs network application to medical image segmentation, primarily focused on various GANs-based models, performance metrics, loss function, datasets, augmentation methods, paper implementation, and source codes. Secondly, this paper provides a detailed overview of GANs network application in different human diseases segmentation. We conclude our research with critical discussion, limitations of GANs, and suggestions for future directions. We hope this survey is beneficial and increases awareness of GANs network implementations for biomedical image segmentation tasks.
Ongoing improvements in AI, particularly concerning deep learning techniques, are assisting to identify, classify, and quantify patterns in clinical images. Deep learning is the quickest developing field in artificial intelligence and is effectively utilized lately in numerous areas, including medication. A brief outline is given on studies carried out on the region of application: neuro, brain, retinal, pneumonic, computerized pathology, bosom, heart, breast, bone, stomach, and musculoskeletal. For information exploration, knowledge deployment, and knowledge-based prediction, deep learning networks can be successfully applied to big data. In the field of medical image processing methods and analysis, fundamental information and state-of-the-art approaches with deep learning are presented in this paper. The primary goals of this paper are to present research on medical image processing as well as to define and implement the key guidelines that are identified and addressed.
The Video Browser Showdown addresses difficult video search challenges through an annual interactive evaluation campaign attracting research teams focusing on interactive video retrieval. The campaign aims to provide insights into the performance of participating interactive video retrieval systems, tested by selected search tasks on large video collections. For the first time in its ten year history, the Video Browser Showdown 2021 was organized in a fully remote setting and hosted a record number of sixteen scoring systems. In this paper, we describe the competition setting, tasks and results and give an overview of state-of-the-art methods used by the competing systems. By looking at query result logs provided by ten systems, we analyze differences in retrieval model performances and browsing times before a correct submission. Through advances in data gathering methodology and tools, we provide a comprehensive analysis of ad-hoc video search tasks, discuss results, task design and methodological challenges. We highlight that almost all top performing systems utilize some sort of joint embedding for text-image retrieval and enable specification of temporal context in queries for known-item search. Whereas a combination of these techniques drive the currently top performing systems, we identify several future challenges for interactive video search engines and the Video Browser Showdown competition itself.