Recent advancements with deep generative models have proven significant potential in the task of image synthesis, detection, segmentation, and classification. Segmenting the medical images is considered a primary challenge in the biomedical imaging field. There have been various GANs-based models proposed in the literature to resolve medical segmentation challenges. Our research outcome has identified 151 papers; after the twofold screening, 138 papers are selected for the final survey. A comprehensive survey is conducted on GANs network application to medical image segmentation, primarily focused on various GANs-based models, performance metrics, loss function, datasets, augmentation methods, paper implementation, and source codes. Secondly, this paper provides a detailed overview of GANs network application in different human diseases segmentation. We conclude our research with critical discussion, limitations of GANs, and suggestions for future directions. We hope this survey is beneficial and increases awareness of GANs network implementations for biomedical image segmentation tasks.
Ongoing improvements in AI, particularly concerning deep learning techniques, are assisting to identify, classify, and quantify patterns in clinical images. Deep learning is the quickest developing field in artificial intelligence and is effectively utilized lately in numerous areas, including medication. A brief outline is given on studies carried out on the region of application: neuro, brain, retinal, pneumonic, computerized pathology, bosom, heart, breast, bone, stomach, and musculoskeletal. For information exploration, knowledge deployment, and knowledge-based prediction, deep learning networks can be successfully applied to big data. In the field of medical image processing methods and analysis, fundamental information and state-of-the-art approaches with deep learning are presented in this paper. The primary goals of this paper are to present research on medical image processing as well as to define and implement the key guidelines that are identified and addressed.
The verification of multimedia content over social media is one of the challenging and crucial issues in the current scenario and gaining prominence in an age where user-generated content and online social web-platforms are the leading sources in shaping and propagating news stories. As these sources allow users to share their opinions without restriction, opportunistic users often post misleading/unreliable content on social media such as Twitter, Facebook, etc. At present, to lure users toward the news story, the text is often attached with some multimedia content (images/videos/audios). Verifying these contents to maintain the credibility and reliability of social media information is of paramount importance. Motivated by this, we proposed a generalized system that supports the automatic classification of images into credible or misleading. In this paper, we investigated machine learning-based as well as deep learning-based approaches utilized to verify misleading multimedia content, where the available image traces are used to identify the credibility of the content. The experiment is performed on the real-world dataset (Media-eval-2015 dataset) collected from Twitter. It also demonstrates the efficiency of our proposed approach and features using both Machine and Deep Learning Model (Bi-directional LSTM). The experiment result reveals that the Microsoft BING image search engine is quite effective in retrieving titles and performs better than our study's Google image search engine. It also shows that gathering clues from attached multimedia content (image) is more effective than detecting only posted content-based features.
The Video Browser Showdown addresses difficult video search challenges through an annual interactive evaluation campaign attracting research teams focusing on interactive video retrieval. The campaign aims to provide insights into the performance of participating interactive video retrieval systems, tested by selected search tasks on large video collections. For the first time in its ten year history, the Video Browser Showdown 2021 was organized in a fully remote setting and hosted a record number of sixteen scoring systems. In this paper, we describe the competition setting, tasks and results and give an overview of state-of-the-art methods used by the competing systems. By looking at query result logs provided by ten systems, we analyze differences in retrieval model performances and browsing times before a correct submission. Through advances in data gathering methodology and tools, we provide a comprehensive analysis of ad-hoc video search tasks, discuss results, task design and methodological challenges. We highlight that almost all top performing systems utilize some sort of joint embedding for text-image retrieval and enable specification of temporal context in queries for known-item search. Whereas a combination of these techniques drive the currently top performing systems, we identify several future challenges for interactive video search engines and the Video Browser Showdown competition itself.

