Pub Date : 2021-01-01Epub Date: 2021-02-20DOI: 10.1007/s13735-021-00204-7
Khalid El Asnaoui
With the recent spread of the SARS-CoV-2 virus, computer-aided diagnosis (CAD) has received more attention. The most important CAD application is to detect and classify pneumonia diseases using X-ray images, especially, in a critical period as pandemic of covid-19 that is kind of pneumonia. In this work, we aim to evaluate the performance of single and ensemble learning models for the pneumonia disease classification. The ensembles used are mainly based on fined-tuned versions of (InceptionResNet_V2, ResNet50 and MobileNet_V2). We collected a new dataset containing 6087 chest X-ray images in which we conduct comprehensive experiments. As a result, for a single model, we found out that InceptionResNet_V2 gives 93.52% of F1 score. In addition, ensemble of 3 models (ResNet50 with MobileNet_V2 with InceptionResNet_V2) shows more accurate than other ensembles constructed (94.84% of F1 score).
随着最近 SARS-CoV-2 病毒的传播,计算机辅助诊断(CAD)受到了更多的关注。计算机辅助诊断(CAD)最重要的应用是利用 X 射线图像对肺炎疾病进行检测和分类,尤其是在属于肺炎的科维-19 病毒大流行的关键时期。在这项工作中,我们旨在评估单一学习模型和集合学习模型在肺炎疾病分类方面的性能。所使用的集合主要基于经过微调的版本(InceptionResNet_V2、ResNet50 和 MobileNet_V2)。我们收集了一个包含 6087 幅胸部 X 光图像的新数据集,并在其中进行了综合实验。结果发现,就单个模型而言,InceptionResNet_V2 的 F1 得分为 93.52%。此外,3 个模型(ResNet50、MobileNet_V2 和 InceptionResNet_V2)的集合比其他构建的集合更精确(F1 分数为 94.84%)。
{"title":"Design ensemble deep learning model for pneumonia disease classification.","authors":"Khalid El Asnaoui","doi":"10.1007/s13735-021-00204-7","DOIUrl":"10.1007/s13735-021-00204-7","url":null,"abstract":"<p><p>With the recent spread of the SARS-CoV-2 virus, computer-aided diagnosis (CAD) has received more attention. The most important CAD application is to detect and classify pneumonia diseases using X-ray images, especially, in a critical period as pandemic of covid-19 that is kind of pneumonia. In this work, we aim to evaluate the performance of single and ensemble learning models for the pneumonia disease classification. The ensembles used are mainly based on fined-tuned versions of (InceptionResNet_V2, ResNet50 and MobileNet_V2). We collected a new dataset containing 6087 chest X-ray images in which we conduct comprehensive experiments. As a result, for a single model, we found out that InceptionResNet_V2 gives 93.52% of F1 score. In addition, ensemble of 3 models (ResNet50 with MobileNet_V2 with InceptionResNet_V2) shows more accurate than other ensembles constructed (94.84% of F1 score).</p>","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"10 1","pages":"55-68"},"PeriodicalIF":3.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896551/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25415551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-15DOI: 10.5772/intechopen.94940
A. Al-Shoshan
This chapter addresses the topic of classification and separation of audio and music signals. It is a very important and a challenging research area. The importance of classification process of a stream of sounds come up for the sake of building two different libraries: speech library and music library. However, the separation process is needed sometimes in a cocktail-party problem to separate speech from music and remove the undesired one. In this chapter, some existed algorithms for the classification process and the separation process are presented and discussed thoroughly. The classification algorithms will be divided into three categories. The first category includes most of the real time approaches. The second category includes most of the frequency domain approaches. However, the third category introduces some of the approaches in the time-frequency distribution. The approaches of time domain discussed in this chapter are the short-time energy (STE), the zero-crossing rate (ZCR), modified version of the ZCR and the STE with positive derivative, the neural networks, and the roll-off variance. The approaches of the frequency spectrum are specifically the roll-off of the spectrum, the spectral centroid and the variance of the spectral centroid, the spectral flux and the variance of the spectral flux, the cepstral residual, and the delta pitch. The time-frequency domain approaches have not been yet tested thoroughly in the process of classification and separation of audio and music signals. Therefore, the spectrogram and the evolutionary spectrum will be introduced and discussed. In addition, some algorithms for separation and segregation of music and audio signals, like the independent Component Analysis, the pitch cancelation and the artificial neural networks will be introduced.
{"title":"Classification and Separation of Audio and Music Signals","authors":"A. Al-Shoshan","doi":"10.5772/intechopen.94940","DOIUrl":"https://doi.org/10.5772/intechopen.94940","url":null,"abstract":"This chapter addresses the topic of classification and separation of audio and music signals. It is a very important and a challenging research area. The importance of classification process of a stream of sounds come up for the sake of building two different libraries: speech library and music library. However, the separation process is needed sometimes in a cocktail-party problem to separate speech from music and remove the undesired one. In this chapter, some existed algorithms for the classification process and the separation process are presented and discussed thoroughly. The classification algorithms will be divided into three categories. The first category includes most of the real time approaches. The second category includes most of the frequency domain approaches. However, the third category introduces some of the approaches in the time-frequency distribution. The approaches of time domain discussed in this chapter are the short-time energy (STE), the zero-crossing rate (ZCR), modified version of the ZCR and the STE with positive derivative, the neural networks, and the roll-off variance. The approaches of the frequency spectrum are specifically the roll-off of the spectrum, the spectral centroid and the variance of the spectral centroid, the spectral flux and the variance of the spectral flux, the cepstral residual, and the delta pitch. The time-frequency domain approaches have not been yet tested thoroughly in the process of classification and separation of audio and music signals. Therefore, the spectrogram and the evolutionary spectrum will be introduced and discussed. In addition, some algorithms for separation and segregation of music and audio signals, like the independent Component Analysis, the pitch cancelation and the artificial neural networks will be introduced.","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"58 2 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83411524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-12DOI: 10.1007/s13735-020-00199-7
Vatika Jalali, Dapinder Kaur
{"title":"A study of classification and feature extraction techniques for brain tumor detection","authors":"Vatika Jalali, Dapinder Kaur","doi":"10.1007/s13735-020-00199-7","DOIUrl":"https://doi.org/10.1007/s13735-020-00199-7","url":null,"abstract":"","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"9 1","pages":"271 - 290"},"PeriodicalIF":5.6,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88241357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-10DOI: 10.1007/s13735-020-00201-2
M. Lew
{"title":"State of the journal","authors":"M. Lew","doi":"10.1007/s13735-020-00201-2","DOIUrl":"https://doi.org/10.1007/s13735-020-00201-2","url":null,"abstract":"","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"44 1","pages":"229 - 229"},"PeriodicalIF":5.6,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86706776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-31DOI: 10.1007/s13735-020-00200-3
Khushbu Joshi, Manish I. Patel
{"title":"Recent advances in local feature detector and descriptor: a literature survey","authors":"Khushbu Joshi, Manish I. Patel","doi":"10.1007/s13735-020-00200-3","DOIUrl":"https://doi.org/10.1007/s13735-020-00200-3","url":null,"abstract":"","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"32 1","pages":"231 - 247"},"PeriodicalIF":5.6,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72683984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-28DOI: 10.1007/s13735-020-00197-9
Arkadip Ray, S. Roy
{"title":"Recent trends in image watermarking techniques for copyright protection: a survey","authors":"Arkadip Ray, S. Roy","doi":"10.1007/s13735-020-00197-9","DOIUrl":"https://doi.org/10.1007/s13735-020-00197-9","url":null,"abstract":"","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"59 1","pages":"249 - 270"},"PeriodicalIF":5.6,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87036469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-24DOI: 10.1007/s13735-020-00196-w
M. P. Pavan Kumar, P. Jayagopal
{"title":"Generative adversarial networks: a survey on applications and challenges","authors":"M. P. Pavan Kumar, P. Jayagopal","doi":"10.1007/s13735-020-00196-w","DOIUrl":"https://doi.org/10.1007/s13735-020-00196-w","url":null,"abstract":"","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"168 1","pages":"1 - 24"},"PeriodicalIF":5.6,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72743662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-10DOI: 10.5772/intechopen.93960
S. Ortega, M. Halicek, H. Fabelo, E. Quevedo, B. Fei, G. Callicó
Hyperspectral imaging (HSI) is a technology able to measure information about the spectral reflectance or transmission of light from the surface. The spectral data, usually within the ultraviolet and infrared regions of the electromagnetic spectrum, provide information about the interaction between light and different materials within the image. This fact enables the identification of different materials based on such spectral information. In recent years, this technology is being actively explored for clinical applications. One of the most relevant challenges in medical HSI is the information extraction, where image processing methods are used to extract useful information for disease detection and diagnosis. In this chapter, we provide an overview of the information extraction techniques for HSI. First, we introduce the background of HSI, and the main motivations of its usage for medical applications. Second, we present information extraction techniques based on both light propagation models within tissue and machine learning approaches. Then, we survey the usage of such information extraction techniques in HSI biomedical research applications. Finally, we discuss the main advantages and disadvantages of the most commonly used image processing approaches and the current challenges in HSI information extraction techniques in clinical applications.
{"title":"Information Extraction Techniques in Hyperspectral Imaging Biomedical Applications","authors":"S. Ortega, M. Halicek, H. Fabelo, E. Quevedo, B. Fei, G. Callicó","doi":"10.5772/intechopen.93960","DOIUrl":"https://doi.org/10.5772/intechopen.93960","url":null,"abstract":"Hyperspectral imaging (HSI) is a technology able to measure information about the spectral reflectance or transmission of light from the surface. The spectral data, usually within the ultraviolet and infrared regions of the electromagnetic spectrum, provide information about the interaction between light and different materials within the image. This fact enables the identification of different materials based on such spectral information. In recent years, this technology is being actively explored for clinical applications. One of the most relevant challenges in medical HSI is the information extraction, where image processing methods are used to extract useful information for disease detection and diagnosis. In this chapter, we provide an overview of the information extraction techniques for HSI. First, we introduce the background of HSI, and the main motivations of its usage for medical applications. Second, we present information extraction techniques based on both light propagation models within tissue and machine learning approaches. Then, we survey the usage of such information extraction techniques in HSI biomedical research applications. Finally, we discuss the main advantages and disadvantages of the most commonly used image processing approaches and the current challenges in HSI information extraction techniques in clinical applications.","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"28 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77974562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-30DOI: 10.5772/intechopen.92369
Lee Mariel Heucheun Yepdia, A. Tiedeu, Z. Lachiri
This chapter proposes a new multiple-image encryption algorithm based on spectral fusion of watermarked images and new chaotic generators. Logistic-May (LM), May-Gaussian (MG), and Gaussian-Gompertz (GG) were used as chaotic generators for their good properties in order to correct the flaws of 1D chaotic maps (Logistic, May, Gaussian, Gompertz) when used individually. Firstly, the discrete cosine transformation (DCT) and the low-pass filter of appropriate sizes are used to combine the target watermarked images in the spectral domain in two different multiplex images. Secondly, each of the two images is concatenated into blocks of small size, which are mixed by changing their position following the order generated by a chaotic sequence from the Logistic-May system (LM). Finally, the fusion of both scrambled images is achieved by a nonlinear mathematical expression based on Cramer’s rule to obtain two hybrid encrypted images. Then, after the decryption step, the hidden message can be retrieved from the watermarked image without any loss. The security analysis and experimental simulations confirmed that the proposed algorithm has a good encryption performance; it can encrypt a large number of images combined with text, of different types while maintaining a reduced Mean Square Error (MSE) after decryption.
{"title":"Multiple-Image Fusion Encryption (MIFE) Using Discrete Cosine Transformation (DCT) and Pseudo Random Number Generators","authors":"Lee Mariel Heucheun Yepdia, A. Tiedeu, Z. Lachiri","doi":"10.5772/intechopen.92369","DOIUrl":"https://doi.org/10.5772/intechopen.92369","url":null,"abstract":"This chapter proposes a new multiple-image encryption algorithm based on spectral fusion of watermarked images and new chaotic generators. Logistic-May (LM), May-Gaussian (MG), and Gaussian-Gompertz (GG) were used as chaotic generators for their good properties in order to correct the flaws of 1D chaotic maps (Logistic, May, Gaussian, Gompertz) when used individually. Firstly, the discrete cosine transformation (DCT) and the low-pass filter of appropriate sizes are used to combine the target watermarked images in the spectral domain in two different multiplex images. Secondly, each of the two images is concatenated into blocks of small size, which are mixed by changing their position following the order generated by a chaotic sequence from the Logistic-May system (LM). Finally, the fusion of both scrambled images is achieved by a nonlinear mathematical expression based on Cramer’s rule to obtain two hybrid encrypted images. Then, after the decryption step, the hidden message can be retrieved from the watermarked image without any loss. The security analysis and experimental simulations confirmed that the proposed algorithm has a good encryption performance; it can encrypt a large number of images combined with text, of different types while maintaining a reduced Mean Square Error (MSE) after decryption.","PeriodicalId":48501,"journal":{"name":"International Journal of Multimedia Information Retrieval","volume":"6 1","pages":""},"PeriodicalIF":5.6,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77621833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}