首页 > 最新文献

Environmental Microbiome最新文献

英文 中文
From soil to sequence: filling the critical gap in genome-resolved metagenomics is essential to the future of soil microbial ecology. 从土壤到序列:填补基因组解析元基因组学的关键空白对土壤微生物生态学的未来至关重要。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-02 DOI: 10.1186/s40793-024-00599-w
Winston E Anthony, Steven D Allison, Caitlin M Broderick, Luciana Chavez Rodriguez, Alicia Clum, Hugh Cross, Emiley Eloe-Fadrosh, Sarah Evans, Dawson Fairbanks, Rachel Gallery, Júlia Brandão Gontijo, Jennifer Jones, Jason McDermott, Jennifer Pett-Ridge, Sydne Record, Jorge Luiz Mazza Rodrigues, William Rodriguez-Reillo, Katherine L Shek, Tina Takacs-Vesbach, Jeffrey L Blanchard

Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.

土壤微生物组是一个异质性的复杂微生物群落。元基因组分析产生了大量数据,给序列组装和分析带来了巨大挑战。虽然技术的进步使人们能够轻松收集大量序列数据,但包含数千个独特类群的土壤样本往往特征不清。这些挑战降低了基因组分辨元基因组(GRM)分析在微生物学其他领域的实用性,如创建高质量的元基因组组装基因组和采用基因组规模建模方法。这些资源的缺乏限制了未来研究的规模,限制了假设的产生和微生物群落的预测建模。建立公开可用的土壤 MAGs 数据库,类似于为其他微生物组建立的数据库,有可能改变对土壤微生物组的科学认识,而不需要组装和分选所需的计算资源和领域专业知识。
{"title":"From soil to sequence: filling the critical gap in genome-resolved metagenomics is essential to the future of soil microbial ecology.","authors":"Winston E Anthony, Steven D Allison, Caitlin M Broderick, Luciana Chavez Rodriguez, Alicia Clum, Hugh Cross, Emiley Eloe-Fadrosh, Sarah Evans, Dawson Fairbanks, Rachel Gallery, Júlia Brandão Gontijo, Jennifer Jones, Jason McDermott, Jennifer Pett-Ridge, Sydne Record, Jorge Luiz Mazza Rodrigues, William Rodriguez-Reillo, Katherine L Shek, Tina Takacs-Vesbach, Jeffrey L Blanchard","doi":"10.1186/s40793-024-00599-w","DOIUrl":"10.1186/s40793-024-00599-w","url":null,"abstract":"<p><p>Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"56"},"PeriodicalIF":6.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Effect of plant communities on bacterial and fungal communities in a Central European grassland. 更正:植物群落对中欧草原细菌和真菌群落的影响。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-31 DOI: 10.1186/s40793-024-00589-y
Clémentine Lepinay, Tomáš Větrovský, Milan Chytrý, Pavel Dřevojan, Karel Fajmon, Tomáš Cajthaml, Petr Kohout, Petr Baldrian
{"title":"Correction: Effect of plant communities on bacterial and fungal communities in a Central European grassland.","authors":"Clémentine Lepinay, Tomáš Větrovský, Milan Chytrý, Pavel Dřevojan, Karel Fajmon, Tomáš Cajthaml, Petr Kohout, Petr Baldrian","doi":"10.1186/s40793-024-00589-y","DOIUrl":"10.1186/s40793-024-00589-y","url":null,"abstract":"","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"55"},"PeriodicalIF":6.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. 日本亚热带冲绳岛周围不同沿海基质中沉积微生物群落的多样性、组成和潜在作用。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-30 DOI: 10.1186/s40793-024-00594-1
Kohei Hamamoto, Masaru Mizuyama, Miyuki Nishijima, Ayumi Maeda, Kodai Gibu, Angelo Poliseno, Akira Iguchi, James Davis Reimer

Background: Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions.

Results: The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation.

Conclusion: Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.

背景:海洋底栖原核生物群落在包括珊瑚礁在内的沿海环境的物质循环中发挥着至关重要的作用。作为珊瑚礁环境中共生菌、有益菌和病原菌的潜在贮藏库,沿海沉积微生物群落尤为重要,因此可能在当地生态系统功能中发挥核心作用。然而,由于以往的研究主要集中在单个地点或特定的环境条件上,因此缺乏对岛屿尺度上多个地点的不同环境进行比较的研究,特别是侧重于原核生物群落的研究。在我们的研究中,我们从日本冲绳岛周围的七个地点采集了沿海沉积物,包括三种不同的底栖类型:沙质底部、海草草甸和有硬骨珊瑚的硬底层。然后,我们利用代谢编码来确定原核生物的组成,并估算基因编码的酶,以推断其功能:结果:结果表明,三种基质的原核生物组成明显不同。与沙质底层相比,海草草甸的原核生物α-多样性明显更高。ANCOM 分析表明,在每种基质中,多种细菌的数量都不同。在珊瑚礁地点,可能与疾病和热应力有关的机会性细菌(如Rhodobacterales、Verrucomicrobiales和Cytophagales)相对较多,而海草草甸地点则大量存在Desulfobacterales、Steroidobacterales和Chromatiales,这些都是海草草甸中常见的细菌种类。根据我们的基因编码酶分析,珊瑚礁地点的差异丰度酶数量最多。值得注意的是,超氧化物歧化酶是珊瑚组织中抗氧化压力的一种重要酶,在珊瑚礁区含量丰富。我们的研究结果提供了在每种基质中需要研究的原核生物清单,并进一步强调了考虑微生物组的重要性,尤其是在关注环境保护时:我们的研究结果证明,原核生物代谢编码能够捕捉三种不同环境中微生物群落的组成差异和多样性。结论:我们的研究结果证明,原核生物代谢编码能够捕捉到三种不同环境中微生物群落的组成差异和多样性。此外,一些类群在特定环境中的数量也有所不同,基因编码的酶组成也显示了生态功能的可能差异。进一步的研究,结合实地观察和时间取样,是更好地了解当地微生物群落与周围底栖生物群落之间相互作用的关键。
{"title":"Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan.","authors":"Kohei Hamamoto, Masaru Mizuyama, Miyuki Nishijima, Ayumi Maeda, Kodai Gibu, Angelo Poliseno, Akira Iguchi, James Davis Reimer","doi":"10.1186/s40793-024-00594-1","DOIUrl":"10.1186/s40793-024-00594-1","url":null,"abstract":"<p><strong>Background: </strong>Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions.</p><p><strong>Results: </strong>The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation.</p><p><strong>Conclusion: </strong>Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"54"},"PeriodicalIF":6.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct changes in tomato-associated multi-kingdom microbiomes during Meloidogyne incognita parasitism 在黑僵菌寄生期间,与番茄相关的多界微生物群发生了不同变化
IF 7.9 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-27 DOI: 10.1186/s40793-024-00597-y
Enoch Narh Kudjordjie, Susana S Santos, Olivera Topalović, Mette Vestergård
The interplay between root-knot nematode (RKN) parasitism and the complex web of host-associated microbiota has been recognized as pivotal for effective management of the pest. However, studies assessing this relationship have focussed on the bacterial and fungal communities, neglecting the unicellular eukaryotic members. Here, we employed amplicon sequencing analysis of the bacterial 16S rRNA, fungal ITS and eukaryotic 18S rRNA genes, and comprehensively examined how the microbiome composition, diversity and networking developed with time in the rhizospheres and roots of RKN-inoculated and non-inoculated tomato plants. As expected, infection with the RKN Meloidogyne incognita decreased plant growth. At individual timepoints, we found distinct bacterial, fungal and eukaryote community structures in the RKN-inoculated and non-inoculated rhizospheres and roots, and RKN inoculation affected several taxa in the root-associated microbiome differentially. Correlation analysis revealed several bacterial and fungal and few protist taxa that correlated negatively or positively with M. incognita. Moreover, network analysis using bacterial, fungal and eukaryotic data revealed more dynamic networks with higher robustness to disturbances in the RKN-inoculated than in the non-inoculated rhizospheres/roots. Hub taxa displayed a noticeable successional pattern that coincided with different phases of M. incognita parasitism. We found that fungal hubs had strong negative correlations with bacteria and eukaryotes, while positive correlations characterized hub members within individual kingdoms. Our results reveal dynamic tomato-associated microbiomes that develop along different trajectories in plants suffering M. incognita infestation and non-infested plants. Overall, the results identify stronger associations between RKN and bacterial and fungal taxa than between eukaryotic taxa and RKN, suggesting that fungal and bacterial communities could play a larger role in the regulation of RKN. The study identifies several putative RKN-antagonistic bacterial and fungal taxa and confirms the antagonistic potential previously identified in other taxa.
根结线虫(RKN)的寄生性与寄主相关微生物群落的复杂网络之间的相互作用已被认为是有效控制害虫的关键。然而,评估这种关系的研究主要集中在细菌和真菌群落,而忽略了单细胞真核生物成员。在这里,我们对细菌 16S rRNA、真菌 ITS 和真核生物 18S rRNA 基因进行了扩增子测序分析,并全面研究了接种 RKN 和未接种 RKN 的番茄植株根瘤和根部微生物组的组成、多样性和网络是如何随着时间的推移而发展的。正如预期的那样,感染 RKN Meloidogyne incognita 会降低植物的生长。在各个时间点上,我们发现接种 RKN 和未接种 RKN 的根瘤和根部存在不同的细菌、真菌和真核生物群落结构,接种 RKN 对根部相关微生物群中的几个类群产生了不同的影响。相关性分析表明,一些细菌和真菌类群以及少数原生动物类群与 M. incognita 存在负相关或正相关关系。此外,利用细菌、真菌和真核生物数据进行的网络分析显示,与未接种 RKN 的根瘤菌圈/根相比,接种 RKN 的根瘤菌圈/根中的网络更具活力,对干扰的稳健性更高。中枢类群显示出明显的演替模式,与 M. incognita 寄生的不同阶段相吻合。我们发现,真菌中枢与细菌和真核生物有很强的负相关关系,而在单个生物界中,中枢成员的特征则是正相关。我们的研究结果揭示了番茄相关微生物群的动态变化,这些微生物群在遭受 M. incognita 侵染的植物和未受侵染的植物中沿着不同的轨迹发展。总体而言,研究结果发现 RKN 与细菌和真菌类群之间的关联要强于真核类群与 RKN 之间的关联,这表明真菌和细菌群落可能在 RKN 的调控中发挥更大的作用。这项研究确定了几个可能与 RKN 拮抗的细菌和真菌类群,并证实了之前在其他类群中发现的拮抗潜力。
{"title":"Distinct changes in tomato-associated multi-kingdom microbiomes during Meloidogyne incognita parasitism","authors":"Enoch Narh Kudjordjie, Susana S Santos, Olivera Topalović, Mette Vestergård","doi":"10.1186/s40793-024-00597-y","DOIUrl":"https://doi.org/10.1186/s40793-024-00597-y","url":null,"abstract":"The interplay between root-knot nematode (RKN) parasitism and the complex web of host-associated microbiota has been recognized as pivotal for effective management of the pest. However, studies assessing this relationship have focussed on the bacterial and fungal communities, neglecting the unicellular eukaryotic members. Here, we employed amplicon sequencing analysis of the bacterial 16S rRNA, fungal ITS and eukaryotic 18S rRNA genes, and comprehensively examined how the microbiome composition, diversity and networking developed with time in the rhizospheres and roots of RKN-inoculated and non-inoculated tomato plants. As expected, infection with the RKN Meloidogyne incognita decreased plant growth. At individual timepoints, we found distinct bacterial, fungal and eukaryote community structures in the RKN-inoculated and non-inoculated rhizospheres and roots, and RKN inoculation affected several taxa in the root-associated microbiome differentially. Correlation analysis revealed several bacterial and fungal and few protist taxa that correlated negatively or positively with M. incognita. Moreover, network analysis using bacterial, fungal and eukaryotic data revealed more dynamic networks with higher robustness to disturbances in the RKN-inoculated than in the non-inoculated rhizospheres/roots. Hub taxa displayed a noticeable successional pattern that coincided with different phases of M. incognita parasitism. We found that fungal hubs had strong negative correlations with bacteria and eukaryotes, while positive correlations characterized hub members within individual kingdoms. Our results reveal dynamic tomato-associated microbiomes that develop along different trajectories in plants suffering M. incognita infestation and non-infested plants. Overall, the results identify stronger associations between RKN and bacterial and fungal taxa than between eukaryotic taxa and RKN, suggesting that fungal and bacterial communities could play a larger role in the regulation of RKN. The study identifies several putative RKN-antagonistic bacterial and fungal taxa and confirms the antagonistic potential previously identified in other taxa.","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"57 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soils of two Antarctic Dry Valleys exhibit unique microbial community structures in response to similar environmental disturbances. 两个南极干谷的土壤在类似的环境干扰下表现出独特的微生物群落结构。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-26 DOI: 10.1186/s40793-024-00587-0
Mafalda S Baptista, Charles K Lee, Maria R Monteiro, Luís Torgo, S Craig Cary, Catarina Magalhães

Background: Isolating the effects of deterministic variables (e.g., physicochemical conditions) on soil microbial communities from those of neutral processes (e.g., dispersal) remains a major challenge in microbial ecology. In this study, we disturbed soil microbial communities of two McMurdo Dry Valleys of Antarctica exhibiting distinct microbial biogeographic patterns, both devoid of aboveground biota and different in macro- and micro-physicochemical conditions. We modified the availability of water, nitrogen, carbon, copper ions, and sodium chloride salts in a laboratory-based experiment and monitored the microbial communities for up to two months. Our aim was to mimic a likely scenario in the near future, in which similar selective pressures will be applied to both valleys. We hypothesized that, given their unique microbial communities, the two valleys would select for different microbial populations when subjected to the same disturbances.

Results: The two soil microbial communities, subjected to the same disturbances, did not respond similarly as reflected in both 16S rRNA genes and transcripts. Turnover of the two microbial communities showed a contrasting response to the same environmental disturbances and revealed different potentials for adaptation to change. These results suggest that the heterogeneity between these microbial communities, reflected in their strong biogeographic patterns, was maintained even when subjected to the same selective pressure and that the 'rare biosphere', at least in these samples, were deeply divergent and did not act as a reservoir for microbiota that enabled convergent responses to change in environmental conditions.

Conclusions: Our findings strongly support the occurrence of endemic microbial communities that show a structural resilience to environmental disturbances, spanning a wide range of physicochemical conditions. In the highly arid and nutrient-limited environment of the Dry Valleys, these results provide direct evidence of microbial biogeographic patterns that can shape the communities' response in the face of future environmental changes.

背景:将决定性变量(如物理化学条件)对土壤微生物群落的影响与中性过程(如扩散)的影响区分开来,仍然是微生物生态学的一大挑战。在这项研究中,我们扰乱了南极洲两个麦克默多干谷的土壤微生物群落,这两个干谷都没有地面生物群,而且宏观和微观物理化学条件不同,表现出截然不同的微生物生物地理格局。我们在实验室实验中改变了水、氮、碳、铜离子和氯化钠盐的供应,并对微生物群落进行了长达两个月的监测。我们的目的是模拟不久的将来可能发生的情况,即两个山谷都将面临类似的选择性压力。我们假设,由于两个山谷的微生物群落各具特色,当受到相同的干扰时,它们会选择不同的微生物种群:结果:两个土壤微生物群落在受到相同干扰时的反应并不相似,这反映在 16S rRNA 基因和转录本上。两个微生物群落的更替对相同的环境干扰做出了截然不同的反应,并显示出对变化的不同适应潜力。这些结果表明,即使受到相同的选择压力,这些微生物群落之间的异质性(反映在其强烈的生物地理格局中)仍能保持,而且 "稀有生物圈",至少在这些样本中,是深度分化的,并没有成为微生物群落的储藏库,使其能够对环境条件的变化做出趋同的反应:我们的研究结果有力地支持了地方性微生物群落的存在,这些群落在各种物理化学条件下对环境干扰表现出结构性的恢复能力。在干谷高度干旱和养分有限的环境中,这些结果提供了微生物生物地理模式的直接证据,这些模式可以塑造群落在面对未来环境变化时的反应。
{"title":"Soils of two Antarctic Dry Valleys exhibit unique microbial community structures in response to similar environmental disturbances.","authors":"Mafalda S Baptista, Charles K Lee, Maria R Monteiro, Luís Torgo, S Craig Cary, Catarina Magalhães","doi":"10.1186/s40793-024-00587-0","DOIUrl":"10.1186/s40793-024-00587-0","url":null,"abstract":"<p><strong>Background: </strong>Isolating the effects of deterministic variables (e.g., physicochemical conditions) on soil microbial communities from those of neutral processes (e.g., dispersal) remains a major challenge in microbial ecology. In this study, we disturbed soil microbial communities of two McMurdo Dry Valleys of Antarctica exhibiting distinct microbial biogeographic patterns, both devoid of aboveground biota and different in macro- and micro-physicochemical conditions. We modified the availability of water, nitrogen, carbon, copper ions, and sodium chloride salts in a laboratory-based experiment and monitored the microbial communities for up to two months. Our aim was to mimic a likely scenario in the near future, in which similar selective pressures will be applied to both valleys. We hypothesized that, given their unique microbial communities, the two valleys would select for different microbial populations when subjected to the same disturbances.</p><p><strong>Results: </strong>The two soil microbial communities, subjected to the same disturbances, did not respond similarly as reflected in both 16S rRNA genes and transcripts. Turnover of the two microbial communities showed a contrasting response to the same environmental disturbances and revealed different potentials for adaptation to change. These results suggest that the heterogeneity between these microbial communities, reflected in their strong biogeographic patterns, was maintained even when subjected to the same selective pressure and that the 'rare biosphere', at least in these samples, were deeply divergent and did not act as a reservoir for microbiota that enabled convergent responses to change in environmental conditions.</p><p><strong>Conclusions: </strong>Our findings strongly support the occurrence of endemic microbial communities that show a structural resilience to environmental disturbances, spanning a wide range of physicochemical conditions. In the highly arid and nutrient-limited environment of the Dry Valleys, these results provide direct evidence of microbial biogeographic patterns that can shape the communities' response in the face of future environmental changes.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"52"},"PeriodicalIF":6.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanomethylovorans are the dominant dimethylsulfide-degrading methanogens in gravel and sandy river sediment microcosms. 在砾石和沙质河流沉积物微观生态系统中,甲烷甲基酵母菌是主要的二甲基硫化物降解甲烷菌。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-20 DOI: 10.1186/s40793-024-00591-4
S L Tsola, A A Prevodnik, L F Sinclair, I A Sanders, C K Economou, Ö Eyice

Background: Rivers and streams are important components of the global carbon cycle and methane budget. However, our understanding of the microbial diversity and the metabolic pathways underpinning methylotrophic methane production in river sediments is limited. Dimethylsulfide is an important methylated compound, found in freshwater sediments. Yet, the magnitude of DMS-dependent methanogenesis nor the methanogens carrying out this process in river sediments have been explored before. This study addressed this knowledge gap in DMS-dependent methanogenesis in gravel and sandy river sediments.

Results: Significant methane production via DMS degradation was found in all sediment  microcosms. Sandy, less permeable river sediments had higher methane yields (83 and 92%) than gravel, permeable sediments (40 and 48%). There was no significant difference between the methanogen diversity in DMS-amended gravel and sandy sediment microcosms, which Methanomethylovorans dominated. Metagenomics data analysis also showed the dominance of Methanomethylovorans and Methanosarcina. DMS-specific methyltransferase genes (mts) were found in very low relative abundances whilst the methanol-, trimethylamine- and dimethylamine-specific methyltransferase genes (mtaA, mttB and mtbB) had the highest relative abundances, suggesting their involvement in DMS-dependent methanogenesis.

Conclusions: This is the first study demonstrating a significant potential for DMS-dependent methanogenesis in river sediments with contrasting geologies. Methanomethylovorans were the dominant methylotrophic methanogen in all river sediment microcosms. Methyltransferases specific to methylotrophic substrates other than DMS are likely key enzymes in DMS-dependent methanogenesis, highlighting their versatility and importance in the methane cycle in freshwater sediments, which would warrant further study.

背景:河流和溪流是全球碳循环和甲烷预算的重要组成部分。然而,我们对河流沉积物中的微生物多样性和甲烷生产的代谢途径了解有限。二甲基硫醚是一种重要的甲基化化合物,存在于淡水沉积物中。然而,人们以前从未探究过河流沉积物中依赖于二甲基硫化物的甲烷生成的规模以及执行这一过程的甲烷菌。本研究填补了砾石和沙质河流沉积物中 DMS 依赖性甲烷生成方面的知识空白:结果:在所有沉积物微生态系统中都发现了通过 DMS 降解产生甲烷的现象。渗透性较差的沙质河流沉积物的甲烷产量(83% 和 92%)高于渗透性较好的砾石沉积物(40% 和 48%)。经二甲基亚砜(DMS)改良的砾石沉积物和沙质沉积物微生态系统中的甲烷菌多样性没有明显差异,其中甲烷甲基小孢子菌(Methanomethylovorans)占主导地位。元基因组学数据分析也表明,甲烷菌和甲烷弧菌占主导地位。DMS 特异性甲基转移酶基因(mts)的相对丰度很低,而甲醇、三甲胺和二甲胺特异性甲基转移酶基因(mtaA、mttB 和 mtbB)的相对丰度最高,这表明它们参与了依赖 DMS 的甲烷生成过程:这是首次研究表明,在地质构造截然不同的河流沉积物中,DMS 依赖性甲烷生成的可能性很大。Methanomethylovorans是所有河流沉积物微生态系统中最主要的甲基营养甲烷菌。除 DMS 外,对养甲底物具有特异性的甲基转移酶可能是 DMS 依赖性甲烷生成过程中的关键酶,这突显了它们在淡水沉积物甲烷循环中的多功能性和重要性,值得进一步研究。
{"title":"Methanomethylovorans are the dominant dimethylsulfide-degrading methanogens in gravel and sandy river sediment microcosms.","authors":"S L Tsola, A A Prevodnik, L F Sinclair, I A Sanders, C K Economou, Ö Eyice","doi":"10.1186/s40793-024-00591-4","DOIUrl":"10.1186/s40793-024-00591-4","url":null,"abstract":"<p><strong>Background: </strong>Rivers and streams are important components of the global carbon cycle and methane budget. However, our understanding of the microbial diversity and the metabolic pathways underpinning methylotrophic methane production in river sediments is limited. Dimethylsulfide is an important methylated compound, found in freshwater sediments. Yet, the magnitude of DMS-dependent methanogenesis nor the methanogens carrying out this process in river sediments have been explored before. This study addressed this knowledge gap in DMS-dependent methanogenesis in gravel and sandy river sediments.</p><p><strong>Results: </strong>Significant methane production via DMS degradation was found in all sediment  microcosms. Sandy, less permeable river sediments had higher methane yields (83 and 92%) than gravel, permeable sediments (40 and 48%). There was no significant difference between the methanogen diversity in DMS-amended gravel and sandy sediment microcosms, which Methanomethylovorans dominated. Metagenomics data analysis also showed the dominance of Methanomethylovorans and Methanosarcina. DMS-specific methyltransferase genes (mts) were found in very low relative abundances whilst the methanol-, trimethylamine- and dimethylamine-specific methyltransferase genes (mtaA, mttB and mtbB) had the highest relative abundances, suggesting their involvement in DMS-dependent methanogenesis.</p><p><strong>Conclusions: </strong>This is the first study demonstrating a significant potential for DMS-dependent methanogenesis in river sediments with contrasting geologies. Methanomethylovorans were the dominant methylotrophic methanogen in all river sediment microcosms. Methyltransferases specific to methylotrophic substrates other than DMS are likely key enzymes in DMS-dependent methanogenesis, highlighting their versatility and importance in the methane cycle in freshwater sediments, which would warrant further study.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"51"},"PeriodicalIF":6.2,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse bacterial consortia: key drivers of rhizosoil fertility modulating microbiome functions, plant physiology, nutrition, and soybean grain yield. 多样化的细菌群:调节微生物组功能、植物生理、营养和大豆产量的根瘤肥力的关键驱动因素。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-19 DOI: 10.1186/s40793-024-00595-0
Luiz Gustavo Moretti, Carlos Alexandre Costa Crusciol, Marcio Fernandes Alves Leite, Letusa Momesso, João William Bossolani, Ohana Yonara Assis Costa, Mariangela Hungria, Eiko Eurya Kuramae

Soybean cultivation in tropical regions relies on symbioses with nitrogen-fixing Bradyrhizobium and plant growth-promoting bacteria (PGPBs), reducing environmental impacts of N fertilizers and pesticides. We evaluate the effects of soybean inoculation with different bacterial consortia combined with PGPBs or microbial secondary metabolites (MSMs) on rhizosoil chemistry, plant physiology, plant nutrition, grain yield, and rhizosphere microbial functions under field conditions over three growing seasons with four treatments: standard inoculation of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens consortium (SI); SI plus foliar spraying with Bacillus subtilis (SI + Bs); SI plus foliar spraying with Azospirillum brasilense (SI + Az); and SI plus seed application of MSMs enriched in lipo-chitooligosaccharides extracted from B. diazoefficiens and Rhizobium tropici (SI + MSM). Rhizosphere microbial composition, diversity, and function was assessed by metagenomics. The relationships between rhizosoil chemistry, plant nutrition, grain yield, and the abundance of microbial taxa and functions were determined by generalized joint attribute modeling. The bacterial consortia had the most significant impact on rhizosphere soil fertility, which in turn affected the bacterial community, plant physiology, nutrient availability, and production. Cluster analysis identified microbial groups and functions correlated with shifts in rhizosoil chemistry and plant nutrition. Bacterial consortia positively modulated specific genera and functional pathways involved in biosynthesis of plant secondary metabolites, amino acids, lipopolysaccharides, photosynthesis, bacterial secretion systems, and sulfur metabolism. The effects of the bacterial consortia on the soybean holobiont, particularly the rhizomicrobiome and rhizosoil fertility, highlight the importance of selecting appropriate consortia for desired outcomes. These findings have implications for microbial-based agricultural practices that enhance crop productivity, quality, and sustainability.

热带地区的大豆种植依赖于固氮的巴西根瘤菌和植物生长促进菌(PGPBs)的共生,从而减少了氮肥和农药对环境的影响。我们评估了大豆接种不同的细菌群与 PGPBs 或微生物次生代谢物(MSMs)对根油化学、植物生理、植物营养、谷物产量和根圈微生物功能的影响:标准接种日本农杆菌和 Bradyrhizobium diazoefficiens 联合菌(SI);SI 加叶面喷洒枯草芽孢杆菌(SI + Bs);SI 加叶面喷洒巴西天青霉(SI + Az);SI 加种子施用从 B. Bradyrhizobium 和 Rh.根瘤菌(SI + MSM)。通过元基因组学评估了根瘤微生物的组成、多样性和功能。通过广义联合属性建模确定了根瘤化学、植物营养、谷物产量以及微生物类群和功能丰度之间的关系。细菌群对根瘤土壤肥力的影响最大,进而影响细菌群落、植物生理、养分供应和产量。聚类分析确定了与根瘤土壤化学和植物营养变化相关的微生物群和功能。细菌群落对涉及植物次生代谢物、氨基酸、脂多糖、光合作用、细菌分泌系统和硫代谢的特定菌属和功能途径有积极的调节作用。细菌群对大豆全植株的影响,特别是对根瘤微生物群和根瘤肥力的影响,突出了选择适当的菌群以获得理想结果的重要性。这些发现对以微生物为基础的农业实践具有重要意义,可提高作物产量、质量和可持续性。
{"title":"Diverse bacterial consortia: key drivers of rhizosoil fertility modulating microbiome functions, plant physiology, nutrition, and soybean grain yield.","authors":"Luiz Gustavo Moretti, Carlos Alexandre Costa Crusciol, Marcio Fernandes Alves Leite, Letusa Momesso, João William Bossolani, Ohana Yonara Assis Costa, Mariangela Hungria, Eiko Eurya Kuramae","doi":"10.1186/s40793-024-00595-0","DOIUrl":"10.1186/s40793-024-00595-0","url":null,"abstract":"<p><p>Soybean cultivation in tropical regions relies on symbioses with nitrogen-fixing Bradyrhizobium and plant growth-promoting bacteria (PGPBs), reducing environmental impacts of N fertilizers and pesticides. We evaluate the effects of soybean inoculation with different bacterial consortia combined with PGPBs or microbial secondary metabolites (MSMs) on rhizosoil chemistry, plant physiology, plant nutrition, grain yield, and rhizosphere microbial functions under field conditions over three growing seasons with four treatments: standard inoculation of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens consortium (SI); SI plus foliar spraying with Bacillus subtilis (SI + Bs); SI plus foliar spraying with Azospirillum brasilense (SI + Az); and SI plus seed application of MSMs enriched in lipo-chitooligosaccharides extracted from B. diazoefficiens and Rhizobium tropici (SI + MSM). Rhizosphere microbial composition, diversity, and function was assessed by metagenomics. The relationships between rhizosoil chemistry, plant nutrition, grain yield, and the abundance of microbial taxa and functions were determined by generalized joint attribute modeling. The bacterial consortia had the most significant impact on rhizosphere soil fertility, which in turn affected the bacterial community, plant physiology, nutrient availability, and production. Cluster analysis identified microbial groups and functions correlated with shifts in rhizosoil chemistry and plant nutrition. Bacterial consortia positively modulated specific genera and functional pathways involved in biosynthesis of plant secondary metabolites, amino acids, lipopolysaccharides, photosynthesis, bacterial secretion systems, and sulfur metabolism. The effects of the bacterial consortia on the soybean holobiont, particularly the rhizomicrobiome and rhizosoil fertility, highlight the importance of selecting appropriate consortia for desired outcomes. These findings have implications for microbial-based agricultural practices that enhance crop productivity, quality, and sustainability.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"50"},"PeriodicalIF":6.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the influence of salinity on bacterial microbiome assembly of halophytes and crops. 揭示盐度对盐生植物和农作物细菌微生物组的影响。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-18 DOI: 10.1186/s40793-024-00592-3
Mohamed R Abdelfadil, Sascha Patz, Steffen Kolb, Silke Ruppel

Background: Climate change and anthropogenic activities intensify salinity stress impacting significantly on plant productivity and biodiversity in agroecosystems. There are naturally salt-tolerant plants (halophytes) that can grow and withstand such harsh conditions. Halophytes have evolved along with their associated microbiota to adapt to hypersaline environments. Identifying shared microbial taxa between halophyte species has rarely been investigated. We performed a comprehensive meta-analysis using the published bacterial 16S rRNA gene sequence datasets to untangle the rhizosphere microbiota structure of two halophyte groups and non-halophytes. We aimed for the identification of marker taxa of plants being adapted to a high salinity using three independent approaches.

Results: Fifteen studies met the selection criteria for downstream analysis, consisting of 40 plants representing diverse halophyte and non-halophyte species. Microbiome structural analysis revealed distinct compositions for halophytes that face high salt concentrations in their rhizosphere compared to halophytes grown at low salt concentrations or from non-halophytes. For halophytes grown at high salt concentrations, we discovered three bacterial genera that were independently detected through the analysis of the core microbiome, key hub taxa by network analysis and random forest analysis. These genera were Thalassospira, Erythrobacter, and Marinobacter.

Conclusions: Our meta-analysis revealed that salinity level is a critical factor in affecting the rhizosphere microbiome assembly of plants. Detecting marker taxa across high-halophytes may help to select Bacteria that might improve the salt tolerance of non-halophytic plants.

背景:气候变化和人为活动加剧了盐分胁迫,对农业生态系统中的植物生产力和生物多样性产生了重大影响。有一些天然耐盐植物(盐生植物)可以生长并承受这种恶劣条件。盐生植物与相关微生物群一起进化,以适应高盐环境。目前还很少有人对盐生植物物种之间共有的微生物类群进行研究。我们利用已发表的细菌 16S rRNA 基因序列数据集进行了全面的荟萃分析,以理清两个卤叶植物群和非卤叶植物群的根瘤微生物群结构。我们采用三种独立的方法,旨在确定适应高盐度植物的标记类群:结果:15 项研究符合下游分析的选择标准,包括 40 种植物,代表了不同的盐生和非盐生物种。微生物组结构分析表明,与在低盐浓度下生长的卤叶植物或非卤叶植物相比,在根瘤中面临高盐浓度的卤叶植物有不同的组成。对于在高盐浓度下生长的卤叶植物,我们发现了三个细菌属,它们是通过核心微生物组分析、网络分析和随机森林分析独立检测到的关键中心类群。这些菌属分别是 Thalassospira、Erythrobacter 和 Marinobacter:我们的荟萃分析表明,盐度是影响植物根瘤微生物组组合的关键因素。检测高盐碱度植物的标记类群可能有助于选择可提高非高盐性植物耐盐性的细菌。
{"title":"Unveiling the influence of salinity on bacterial microbiome assembly of halophytes and crops.","authors":"Mohamed R Abdelfadil, Sascha Patz, Steffen Kolb, Silke Ruppel","doi":"10.1186/s40793-024-00592-3","DOIUrl":"10.1186/s40793-024-00592-3","url":null,"abstract":"<p><strong>Background: </strong>Climate change and anthropogenic activities intensify salinity stress impacting significantly on plant productivity and biodiversity in agroecosystems. There are naturally salt-tolerant plants (halophytes) that can grow and withstand such harsh conditions. Halophytes have evolved along with their associated microbiota to adapt to hypersaline environments. Identifying shared microbial taxa between halophyte species has rarely been investigated. We performed a comprehensive meta-analysis using the published bacterial 16S rRNA gene sequence datasets to untangle the rhizosphere microbiota structure of two halophyte groups and non-halophytes. We aimed for the identification of marker taxa of plants being adapted to a high salinity using three independent approaches.</p><p><strong>Results: </strong>Fifteen studies met the selection criteria for downstream analysis, consisting of 40 plants representing diverse halophyte and non-halophyte species. Microbiome structural analysis revealed distinct compositions for halophytes that face high salt concentrations in their rhizosphere compared to halophytes grown at low salt concentrations or from non-halophytes. For halophytes grown at high salt concentrations, we discovered three bacterial genera that were independently detected through the analysis of the core microbiome, key hub taxa by network analysis and random forest analysis. These genera were Thalassospira, Erythrobacter, and Marinobacter.</p><p><strong>Conclusions: </strong>Our meta-analysis revealed that salinity level is a critical factor in affecting the rhizosphere microbiome assembly of plants. Detecting marker taxa across high-halophytes may help to select Bacteria that might improve the salt tolerance of non-halophytic plants.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"49"},"PeriodicalIF":6.2,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methane-cycling microbial communities from Amazon floodplains and upland forests respond differently to simulated climate change scenarios. 亚马逊洪泛平原和高地森林的甲烷循环微生物群落对模拟气候变化情景的反应不同。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-17 DOI: 10.1186/s40793-024-00596-z
Júlia B Gontijo, Fabiana S Paula, Wanderlei Bieluczyk, Aline G França, Deisi Navroski, Jéssica A Mandro, Andressa M Venturini, Fernanda O Asselta, Lucas W Mendes, José M S Moura, Marcelo Z Moreira, Klaus Nüsslein, Brendan J M Bohannan, Paul L E Bodelier, Jorge L Mazza Rodrigues, Siu M Tsai

Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.

亚马逊流域的季节性洪泛平原是甲烷(CH4)的重要来源,而高地森林则以其吸收能力而闻名。气候变化的影响,包括降雨模式的变化和气温的升高,可能会改变土壤微生物群落的功能,从而导致甲烷(CH4)循环动态发生不确定的变化。为了研究气候变化情景下的微生物反馈,我们利用两个洪泛平原(即亚马逊河和塔帕约斯河)和一个高地森林的土壤进行了微观世界实验。我们采用了双因子实验设计,将洪水(与非洪水对照)和温度(27 °C和30 °C,代表温度上升 3 °C)作为变量。我们使用 16S rRNA 基因测序和 qPCR 评估了 30 天内原核生物群落的动态。这些数据与化学特性、甲烷通量、同位素值和特征进行了整合。在洪泛平原,温度变化对整体微生物组成和甲烷通量没有显著影响。在洪泛平原土壤中,观察到了CH4排放和吸收分别对洪水和非洪水条件的响应。与此相反,在高地森林中,较高的温度导致洪水条件下从吸收汇向吸收源转变,并降低了干旱条件下的 CH4 吸收汇能力。高地土壤微生物群落也随着温度的升高而发生变化,观察到更高比例的专性微生物。与森林土壤相比,洪泛平原的产甲烷微生物和甲烷营养微生物的总丰度和相对丰度更高。来自亚马孙河洪泛平原的一些洪泛样本的同位素数据表明了 CH4 氧化代谢作用。该洪泛平原还显示出需氧和厌氧 CH4 氧化细菌和古细菌的相对丰度较高。总之,我们的数据表明,亚马逊洪泛平原和高地森林土壤中的甲烷循环动力学和微生物群落可能会对气候变化的影响做出不同的反应。我们还强调了 CH4 氧化途径在减缓亚马逊洪泛平原 CH4 排放中的潜在作用。
{"title":"Methane-cycling microbial communities from Amazon floodplains and upland forests respond differently to simulated climate change scenarios.","authors":"Júlia B Gontijo, Fabiana S Paula, Wanderlei Bieluczyk, Aline G França, Deisi Navroski, Jéssica A Mandro, Andressa M Venturini, Fernanda O Asselta, Lucas W Mendes, José M S Moura, Marcelo Z Moreira, Klaus Nüsslein, Brendan J M Bohannan, Paul L E Bodelier, Jorge L Mazza Rodrigues, Siu M Tsai","doi":"10.1186/s40793-024-00596-z","DOIUrl":"10.1186/s40793-024-00596-z","url":null,"abstract":"<p><p>Seasonal floodplains in the Amazon basin are important sources of methane (CH<sub>4</sub>), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH<sub>4</sub> cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH<sub>4</sub> fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH<sub>4</sub> fluxes. CH<sub>4</sub> emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH<sub>4</sub> sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH<sub>4</sub> oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH<sub>4</sub> oxidizing Bacteria and Archaea. Taken together, our data indicate that CH<sub>4</sub> cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH<sub>4</sub> oxidation pathways in mitigating CH<sub>4</sub> emissions in Amazonian floodplains.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"48"},"PeriodicalIF":6.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogeographical distribution and community assembly of Myxococcota in mangrove sediments. 红树林沉积物中 Myxococcota 的生物地理分布和群落组合。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-07-13 DOI: 10.1186/s40793-024-00593-2
Dayu Zou, Cuijing Zhang, Yang Liu, Meng Li

Background: Myxococcota, characterized by their distinct social lifestyles, are widely distributed micro-predators in global sediments. They can feed on a wide range of bacterial, archaeal, and fungal prey. Myxococcota are capable of producing diverse secondary metabolites, playing key roles in microbial food webs, and regulating the microbial community structures in different ecosystems. However, Myxococcota are rarely pure cultured due to the challenging and stringent culturing conditions. Their natural distribution, niche differentiation, and predator-prey relationships in a specific habitat are poorly understood.

Results: In this study, we conducted a comprehensive analysis of the 16S rRNA gene sequence data from public databases and our collection. We compared the abundance, diversity, and distribution patterns of Myxococcota in various habitats, with a specific focus on mangroves. We found that Myxococcota accounted for 1.45% of the total prokaryotes in global sediments based on the abundance of 16S rRNA genes. Myxococcota are abundant and diverse in mangrove sediments. They tend to be more generalistic in mangroves than in other habitats due to their wide niche breadth. Besides, the deterministic processes (variable selection) influenced the assembly of mangrove Myxococcota communities significantly more than stochastic processes. Further, we determined that environmental factors explained a greater amount of total community variation in mangrove Myxococcota than geographical variables (latitude and sediment depth). In the end, through the analysis of microbial co-occurrence networks, Myxococcota emerges as a key component and functions as a connector in the mangrove microbial community.

Conclusions: Our study enhances comprehension of mangrove Myxococcota's biogeography, assembly patterns, driving factors, and co-occurrence relationships, as well as highlights their unique niche and ecological importance in mangrove sediments.

背景:Myxococcota 以其独特的社会生活方式为特征,是广泛分布于全球沉积物中的微型食肉动物。它们可以捕食多种细菌、古细菌和真菌猎物。Myxococcota 能够产生多种次级代谢产物,在微生物食物网中发挥关键作用,并能调节不同生态系统中的微生物群落结构。然而,由于具有挑战性和严格的培养条件,霉球菌很少被纯培养。人们对它们在特定生境中的自然分布、生态位分化以及捕食与被捕食的关系知之甚少:在本研究中,我们对来自公共数据库和我们收集的 16S rRNA 基因序列数据进行了全面分析。我们比较了Myxococcota在不同栖息地的丰度、多样性和分布模式,重点是红树林。根据 16S rRNA 基因的丰度,我们发现 Myxococcota 占全球沉积物中原核生物总数的 1.45%。红树林沉积物中的Myxococcota种类繁多。与其他生境相比,它们在红树林中的生态位更为广泛。此外,确定性过程(可变选择)对红树林 Myxococcota 群落组成的影响明显大于随机过程。此外,我们还确定,环境因素比地理变量(纬度和沉积深度)更能解释红树林 Myxococcota 群落的总体变化。最后,通过对微生物共现网络的分析,Myxococcota 成为了红树林微生物群落的一个关键组成部分,并发挥着连接器的作用:我们的研究加深了对红树林 Myxococcota 的生物地理学、组装模式、驱动因素和共生关系的理解,并突出了它们在红树林沉积物中的独特生态位和生态重要性。
{"title":"Biogeographical distribution and community assembly of Myxococcota in mangrove sediments.","authors":"Dayu Zou, Cuijing Zhang, Yang Liu, Meng Li","doi":"10.1186/s40793-024-00593-2","DOIUrl":"10.1186/s40793-024-00593-2","url":null,"abstract":"<p><strong>Background: </strong>Myxococcota, characterized by their distinct social lifestyles, are widely distributed micro-predators in global sediments. They can feed on a wide range of bacterial, archaeal, and fungal prey. Myxococcota are capable of producing diverse secondary metabolites, playing key roles in microbial food webs, and regulating the microbial community structures in different ecosystems. However, Myxococcota are rarely pure cultured due to the challenging and stringent culturing conditions. Their natural distribution, niche differentiation, and predator-prey relationships in a specific habitat are poorly understood.</p><p><strong>Results: </strong>In this study, we conducted a comprehensive analysis of the 16S rRNA gene sequence data from public databases and our collection. We compared the abundance, diversity, and distribution patterns of Myxococcota in various habitats, with a specific focus on mangroves. We found that Myxococcota accounted for 1.45% of the total prokaryotes in global sediments based on the abundance of 16S rRNA genes. Myxococcota are abundant and diverse in mangrove sediments. They tend to be more generalistic in mangroves than in other habitats due to their wide niche breadth. Besides, the deterministic processes (variable selection) influenced the assembly of mangrove Myxococcota communities significantly more than stochastic processes. Further, we determined that environmental factors explained a greater amount of total community variation in mangrove Myxococcota than geographical variables (latitude and sediment depth). In the end, through the analysis of microbial co-occurrence networks, Myxococcota emerges as a key component and functions as a connector in the mangrove microbial community.</p><p><strong>Conclusions: </strong>Our study enhances comprehension of mangrove Myxococcota's biogeography, assembly patterns, driving factors, and co-occurrence relationships, as well as highlights their unique niche and ecological importance in mangrove sediments.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"47"},"PeriodicalIF":6.2,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Microbiome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1