Pub Date : 2024-08-02DOI: 10.1186/s40793-024-00599-w
Winston E Anthony, Steven D Allison, Caitlin M Broderick, Luciana Chavez Rodriguez, Alicia Clum, Hugh Cross, Emiley Eloe-Fadrosh, Sarah Evans, Dawson Fairbanks, Rachel Gallery, Júlia Brandão Gontijo, Jennifer Jones, Jason McDermott, Jennifer Pett-Ridge, Sydne Record, Jorge Luiz Mazza Rodrigues, William Rodriguez-Reillo, Katherine L Shek, Tina Takacs-Vesbach, Jeffrey L Blanchard
Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.
{"title":"From soil to sequence: filling the critical gap in genome-resolved metagenomics is essential to the future of soil microbial ecology.","authors":"Winston E Anthony, Steven D Allison, Caitlin M Broderick, Luciana Chavez Rodriguez, Alicia Clum, Hugh Cross, Emiley Eloe-Fadrosh, Sarah Evans, Dawson Fairbanks, Rachel Gallery, Júlia Brandão Gontijo, Jennifer Jones, Jason McDermott, Jennifer Pett-Ridge, Sydne Record, Jorge Luiz Mazza Rodrigues, William Rodriguez-Reillo, Katherine L Shek, Tina Takacs-Vesbach, Jeffrey L Blanchard","doi":"10.1186/s40793-024-00599-w","DOIUrl":"10.1186/s40793-024-00599-w","url":null,"abstract":"<p><p>Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"56"},"PeriodicalIF":6.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1186/s40793-024-00589-y
Clémentine Lepinay, Tomáš Větrovský, Milan Chytrý, Pavel Dřevojan, Karel Fajmon, Tomáš Cajthaml, Petr Kohout, Petr Baldrian
{"title":"Correction: Effect of plant communities on bacterial and fungal communities in a Central European grassland.","authors":"Clémentine Lepinay, Tomáš Větrovský, Milan Chytrý, Pavel Dřevojan, Karel Fajmon, Tomáš Cajthaml, Petr Kohout, Petr Baldrian","doi":"10.1186/s40793-024-00589-y","DOIUrl":"10.1186/s40793-024-00589-y","url":null,"abstract":"","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"55"},"PeriodicalIF":6.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1186/s40793-024-00594-1
Kohei Hamamoto, Masaru Mizuyama, Miyuki Nishijima, Ayumi Maeda, Kodai Gibu, Angelo Poliseno, Akira Iguchi, James Davis Reimer
Background: Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions.
Results: The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation.
Conclusion: Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.
{"title":"Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan.","authors":"Kohei Hamamoto, Masaru Mizuyama, Miyuki Nishijima, Ayumi Maeda, Kodai Gibu, Angelo Poliseno, Akira Iguchi, James Davis Reimer","doi":"10.1186/s40793-024-00594-1","DOIUrl":"10.1186/s40793-024-00594-1","url":null,"abstract":"<p><strong>Background: </strong>Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions.</p><p><strong>Results: </strong>The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation.</p><p><strong>Conclusion: </strong>Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"54"},"PeriodicalIF":6.2,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11290285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-27DOI: 10.1186/s40793-024-00597-y
Enoch Narh Kudjordjie, Susana S Santos, Olivera Topalović, Mette Vestergård
The interplay between root-knot nematode (RKN) parasitism and the complex web of host-associated microbiota has been recognized as pivotal for effective management of the pest. However, studies assessing this relationship have focussed on the bacterial and fungal communities, neglecting the unicellular eukaryotic members. Here, we employed amplicon sequencing analysis of the bacterial 16S rRNA, fungal ITS and eukaryotic 18S rRNA genes, and comprehensively examined how the microbiome composition, diversity and networking developed with time in the rhizospheres and roots of RKN-inoculated and non-inoculated tomato plants. As expected, infection with the RKN Meloidogyne incognita decreased plant growth. At individual timepoints, we found distinct bacterial, fungal and eukaryote community structures in the RKN-inoculated and non-inoculated rhizospheres and roots, and RKN inoculation affected several taxa in the root-associated microbiome differentially. Correlation analysis revealed several bacterial and fungal and few protist taxa that correlated negatively or positively with M. incognita. Moreover, network analysis using bacterial, fungal and eukaryotic data revealed more dynamic networks with higher robustness to disturbances in the RKN-inoculated than in the non-inoculated rhizospheres/roots. Hub taxa displayed a noticeable successional pattern that coincided with different phases of M. incognita parasitism. We found that fungal hubs had strong negative correlations with bacteria and eukaryotes, while positive correlations characterized hub members within individual kingdoms. Our results reveal dynamic tomato-associated microbiomes that develop along different trajectories in plants suffering M. incognita infestation and non-infested plants. Overall, the results identify stronger associations between RKN and bacterial and fungal taxa than between eukaryotic taxa and RKN, suggesting that fungal and bacterial communities could play a larger role in the regulation of RKN. The study identifies several putative RKN-antagonistic bacterial and fungal taxa and confirms the antagonistic potential previously identified in other taxa.
{"title":"Distinct changes in tomato-associated multi-kingdom microbiomes during Meloidogyne incognita parasitism","authors":"Enoch Narh Kudjordjie, Susana S Santos, Olivera Topalović, Mette Vestergård","doi":"10.1186/s40793-024-00597-y","DOIUrl":"https://doi.org/10.1186/s40793-024-00597-y","url":null,"abstract":"The interplay between root-knot nematode (RKN) parasitism and the complex web of host-associated microbiota has been recognized as pivotal for effective management of the pest. However, studies assessing this relationship have focussed on the bacterial and fungal communities, neglecting the unicellular eukaryotic members. Here, we employed amplicon sequencing analysis of the bacterial 16S rRNA, fungal ITS and eukaryotic 18S rRNA genes, and comprehensively examined how the microbiome composition, diversity and networking developed with time in the rhizospheres and roots of RKN-inoculated and non-inoculated tomato plants. As expected, infection with the RKN Meloidogyne incognita decreased plant growth. At individual timepoints, we found distinct bacterial, fungal and eukaryote community structures in the RKN-inoculated and non-inoculated rhizospheres and roots, and RKN inoculation affected several taxa in the root-associated microbiome differentially. Correlation analysis revealed several bacterial and fungal and few protist taxa that correlated negatively or positively with M. incognita. Moreover, network analysis using bacterial, fungal and eukaryotic data revealed more dynamic networks with higher robustness to disturbances in the RKN-inoculated than in the non-inoculated rhizospheres/roots. Hub taxa displayed a noticeable successional pattern that coincided with different phases of M. incognita parasitism. We found that fungal hubs had strong negative correlations with bacteria and eukaryotes, while positive correlations characterized hub members within individual kingdoms. Our results reveal dynamic tomato-associated microbiomes that develop along different trajectories in plants suffering M. incognita infestation and non-infested plants. Overall, the results identify stronger associations between RKN and bacterial and fungal taxa than between eukaryotic taxa and RKN, suggesting that fungal and bacterial communities could play a larger role in the regulation of RKN. The study identifies several putative RKN-antagonistic bacterial and fungal taxa and confirms the antagonistic potential previously identified in other taxa.","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"57 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141778981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1186/s40793-024-00587-0
Mafalda S Baptista, Charles K Lee, Maria R Monteiro, Luís Torgo, S Craig Cary, Catarina Magalhães
Background: Isolating the effects of deterministic variables (e.g., physicochemical conditions) on soil microbial communities from those of neutral processes (e.g., dispersal) remains a major challenge in microbial ecology. In this study, we disturbed soil microbial communities of two McMurdo Dry Valleys of Antarctica exhibiting distinct microbial biogeographic patterns, both devoid of aboveground biota and different in macro- and micro-physicochemical conditions. We modified the availability of water, nitrogen, carbon, copper ions, and sodium chloride salts in a laboratory-based experiment and monitored the microbial communities for up to two months. Our aim was to mimic a likely scenario in the near future, in which similar selective pressures will be applied to both valleys. We hypothesized that, given their unique microbial communities, the two valleys would select for different microbial populations when subjected to the same disturbances.
Results: The two soil microbial communities, subjected to the same disturbances, did not respond similarly as reflected in both 16S rRNA genes and transcripts. Turnover of the two microbial communities showed a contrasting response to the same environmental disturbances and revealed different potentials for adaptation to change. These results suggest that the heterogeneity between these microbial communities, reflected in their strong biogeographic patterns, was maintained even when subjected to the same selective pressure and that the 'rare biosphere', at least in these samples, were deeply divergent and did not act as a reservoir for microbiota that enabled convergent responses to change in environmental conditions.
Conclusions: Our findings strongly support the occurrence of endemic microbial communities that show a structural resilience to environmental disturbances, spanning a wide range of physicochemical conditions. In the highly arid and nutrient-limited environment of the Dry Valleys, these results provide direct evidence of microbial biogeographic patterns that can shape the communities' response in the face of future environmental changes.
{"title":"Soils of two Antarctic Dry Valleys exhibit unique microbial community structures in response to similar environmental disturbances.","authors":"Mafalda S Baptista, Charles K Lee, Maria R Monteiro, Luís Torgo, S Craig Cary, Catarina Magalhães","doi":"10.1186/s40793-024-00587-0","DOIUrl":"10.1186/s40793-024-00587-0","url":null,"abstract":"<p><strong>Background: </strong>Isolating the effects of deterministic variables (e.g., physicochemical conditions) on soil microbial communities from those of neutral processes (e.g., dispersal) remains a major challenge in microbial ecology. In this study, we disturbed soil microbial communities of two McMurdo Dry Valleys of Antarctica exhibiting distinct microbial biogeographic patterns, both devoid of aboveground biota and different in macro- and micro-physicochemical conditions. We modified the availability of water, nitrogen, carbon, copper ions, and sodium chloride salts in a laboratory-based experiment and monitored the microbial communities for up to two months. Our aim was to mimic a likely scenario in the near future, in which similar selective pressures will be applied to both valleys. We hypothesized that, given their unique microbial communities, the two valleys would select for different microbial populations when subjected to the same disturbances.</p><p><strong>Results: </strong>The two soil microbial communities, subjected to the same disturbances, did not respond similarly as reflected in both 16S rRNA genes and transcripts. Turnover of the two microbial communities showed a contrasting response to the same environmental disturbances and revealed different potentials for adaptation to change. These results suggest that the heterogeneity between these microbial communities, reflected in their strong biogeographic patterns, was maintained even when subjected to the same selective pressure and that the 'rare biosphere', at least in these samples, were deeply divergent and did not act as a reservoir for microbiota that enabled convergent responses to change in environmental conditions.</p><p><strong>Conclusions: </strong>Our findings strongly support the occurrence of endemic microbial communities that show a structural resilience to environmental disturbances, spanning a wide range of physicochemical conditions. In the highly arid and nutrient-limited environment of the Dry Valleys, these results provide direct evidence of microbial biogeographic patterns that can shape the communities' response in the face of future environmental changes.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"52"},"PeriodicalIF":6.2,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282855/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.1186/s40793-024-00591-4
S L Tsola, A A Prevodnik, L F Sinclair, I A Sanders, C K Economou, Ö Eyice
Background: Rivers and streams are important components of the global carbon cycle and methane budget. However, our understanding of the microbial diversity and the metabolic pathways underpinning methylotrophic methane production in river sediments is limited. Dimethylsulfide is an important methylated compound, found in freshwater sediments. Yet, the magnitude of DMS-dependent methanogenesis nor the methanogens carrying out this process in river sediments have been explored before. This study addressed this knowledge gap in DMS-dependent methanogenesis in gravel and sandy river sediments.
Results: Significant methane production via DMS degradation was found in all sediment microcosms. Sandy, less permeable river sediments had higher methane yields (83 and 92%) than gravel, permeable sediments (40 and 48%). There was no significant difference between the methanogen diversity in DMS-amended gravel and sandy sediment microcosms, which Methanomethylovorans dominated. Metagenomics data analysis also showed the dominance of Methanomethylovorans and Methanosarcina. DMS-specific methyltransferase genes (mts) were found in very low relative abundances whilst the methanol-, trimethylamine- and dimethylamine-specific methyltransferase genes (mtaA, mttB and mtbB) had the highest relative abundances, suggesting their involvement in DMS-dependent methanogenesis.
Conclusions: This is the first study demonstrating a significant potential for DMS-dependent methanogenesis in river sediments with contrasting geologies. Methanomethylovorans were the dominant methylotrophic methanogen in all river sediment microcosms. Methyltransferases specific to methylotrophic substrates other than DMS are likely key enzymes in DMS-dependent methanogenesis, highlighting their versatility and importance in the methane cycle in freshwater sediments, which would warrant further study.
{"title":"Methanomethylovorans are the dominant dimethylsulfide-degrading methanogens in gravel and sandy river sediment microcosms.","authors":"S L Tsola, A A Prevodnik, L F Sinclair, I A Sanders, C K Economou, Ö Eyice","doi":"10.1186/s40793-024-00591-4","DOIUrl":"10.1186/s40793-024-00591-4","url":null,"abstract":"<p><strong>Background: </strong>Rivers and streams are important components of the global carbon cycle and methane budget. However, our understanding of the microbial diversity and the metabolic pathways underpinning methylotrophic methane production in river sediments is limited. Dimethylsulfide is an important methylated compound, found in freshwater sediments. Yet, the magnitude of DMS-dependent methanogenesis nor the methanogens carrying out this process in river sediments have been explored before. This study addressed this knowledge gap in DMS-dependent methanogenesis in gravel and sandy river sediments.</p><p><strong>Results: </strong>Significant methane production via DMS degradation was found in all sediment microcosms. Sandy, less permeable river sediments had higher methane yields (83 and 92%) than gravel, permeable sediments (40 and 48%). There was no significant difference between the methanogen diversity in DMS-amended gravel and sandy sediment microcosms, which Methanomethylovorans dominated. Metagenomics data analysis also showed the dominance of Methanomethylovorans and Methanosarcina. DMS-specific methyltransferase genes (mts) were found in very low relative abundances whilst the methanol-, trimethylamine- and dimethylamine-specific methyltransferase genes (mtaA, mttB and mtbB) had the highest relative abundances, suggesting their involvement in DMS-dependent methanogenesis.</p><p><strong>Conclusions: </strong>This is the first study demonstrating a significant potential for DMS-dependent methanogenesis in river sediments with contrasting geologies. Methanomethylovorans were the dominant methylotrophic methanogen in all river sediment microcosms. Methyltransferases specific to methylotrophic substrates other than DMS are likely key enzymes in DMS-dependent methanogenesis, highlighting their versatility and importance in the methane cycle in freshwater sediments, which would warrant further study.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"51"},"PeriodicalIF":6.2,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264916/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1186/s40793-024-00595-0
Luiz Gustavo Moretti, Carlos Alexandre Costa Crusciol, Marcio Fernandes Alves Leite, Letusa Momesso, João William Bossolani, Ohana Yonara Assis Costa, Mariangela Hungria, Eiko Eurya Kuramae
Soybean cultivation in tropical regions relies on symbioses with nitrogen-fixing Bradyrhizobium and plant growth-promoting bacteria (PGPBs), reducing environmental impacts of N fertilizers and pesticides. We evaluate the effects of soybean inoculation with different bacterial consortia combined with PGPBs or microbial secondary metabolites (MSMs) on rhizosoil chemistry, plant physiology, plant nutrition, grain yield, and rhizosphere microbial functions under field conditions over three growing seasons with four treatments: standard inoculation of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens consortium (SI); SI plus foliar spraying with Bacillus subtilis (SI + Bs); SI plus foliar spraying with Azospirillum brasilense (SI + Az); and SI plus seed application of MSMs enriched in lipo-chitooligosaccharides extracted from B. diazoefficiens and Rhizobium tropici (SI + MSM). Rhizosphere microbial composition, diversity, and function was assessed by metagenomics. The relationships between rhizosoil chemistry, plant nutrition, grain yield, and the abundance of microbial taxa and functions were determined by generalized joint attribute modeling. The bacterial consortia had the most significant impact on rhizosphere soil fertility, which in turn affected the bacterial community, plant physiology, nutrient availability, and production. Cluster analysis identified microbial groups and functions correlated with shifts in rhizosoil chemistry and plant nutrition. Bacterial consortia positively modulated specific genera and functional pathways involved in biosynthesis of plant secondary metabolites, amino acids, lipopolysaccharides, photosynthesis, bacterial secretion systems, and sulfur metabolism. The effects of the bacterial consortia on the soybean holobiont, particularly the rhizomicrobiome and rhizosoil fertility, highlight the importance of selecting appropriate consortia for desired outcomes. These findings have implications for microbial-based agricultural practices that enhance crop productivity, quality, and sustainability.
{"title":"Diverse bacterial consortia: key drivers of rhizosoil fertility modulating microbiome functions, plant physiology, nutrition, and soybean grain yield.","authors":"Luiz Gustavo Moretti, Carlos Alexandre Costa Crusciol, Marcio Fernandes Alves Leite, Letusa Momesso, João William Bossolani, Ohana Yonara Assis Costa, Mariangela Hungria, Eiko Eurya Kuramae","doi":"10.1186/s40793-024-00595-0","DOIUrl":"10.1186/s40793-024-00595-0","url":null,"abstract":"<p><p>Soybean cultivation in tropical regions relies on symbioses with nitrogen-fixing Bradyrhizobium and plant growth-promoting bacteria (PGPBs), reducing environmental impacts of N fertilizers and pesticides. We evaluate the effects of soybean inoculation with different bacterial consortia combined with PGPBs or microbial secondary metabolites (MSMs) on rhizosoil chemistry, plant physiology, plant nutrition, grain yield, and rhizosphere microbial functions under field conditions over three growing seasons with four treatments: standard inoculation of Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens consortium (SI); SI plus foliar spraying with Bacillus subtilis (SI + Bs); SI plus foliar spraying with Azospirillum brasilense (SI + Az); and SI plus seed application of MSMs enriched in lipo-chitooligosaccharides extracted from B. diazoefficiens and Rhizobium tropici (SI + MSM). Rhizosphere microbial composition, diversity, and function was assessed by metagenomics. The relationships between rhizosoil chemistry, plant nutrition, grain yield, and the abundance of microbial taxa and functions were determined by generalized joint attribute modeling. The bacterial consortia had the most significant impact on rhizosphere soil fertility, which in turn affected the bacterial community, plant physiology, nutrient availability, and production. Cluster analysis identified microbial groups and functions correlated with shifts in rhizosoil chemistry and plant nutrition. Bacterial consortia positively modulated specific genera and functional pathways involved in biosynthesis of plant secondary metabolites, amino acids, lipopolysaccharides, photosynthesis, bacterial secretion systems, and sulfur metabolism. The effects of the bacterial consortia on the soybean holobiont, particularly the rhizomicrobiome and rhizosoil fertility, highlight the importance of selecting appropriate consortia for desired outcomes. These findings have implications for microbial-based agricultural practices that enhance crop productivity, quality, and sustainability.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"50"},"PeriodicalIF":6.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141727987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1186/s40793-024-00592-3
Mohamed R Abdelfadil, Sascha Patz, Steffen Kolb, Silke Ruppel
Background: Climate change and anthropogenic activities intensify salinity stress impacting significantly on plant productivity and biodiversity in agroecosystems. There are naturally salt-tolerant plants (halophytes) that can grow and withstand such harsh conditions. Halophytes have evolved along with their associated microbiota to adapt to hypersaline environments. Identifying shared microbial taxa between halophyte species has rarely been investigated. We performed a comprehensive meta-analysis using the published bacterial 16S rRNA gene sequence datasets to untangle the rhizosphere microbiota structure of two halophyte groups and non-halophytes. We aimed for the identification of marker taxa of plants being adapted to a high salinity using three independent approaches.
Results: Fifteen studies met the selection criteria for downstream analysis, consisting of 40 plants representing diverse halophyte and non-halophyte species. Microbiome structural analysis revealed distinct compositions for halophytes that face high salt concentrations in their rhizosphere compared to halophytes grown at low salt concentrations or from non-halophytes. For halophytes grown at high salt concentrations, we discovered three bacterial genera that were independently detected through the analysis of the core microbiome, key hub taxa by network analysis and random forest analysis. These genera were Thalassospira, Erythrobacter, and Marinobacter.
Conclusions: Our meta-analysis revealed that salinity level is a critical factor in affecting the rhizosphere microbiome assembly of plants. Detecting marker taxa across high-halophytes may help to select Bacteria that might improve the salt tolerance of non-halophytic plants.
{"title":"Unveiling the influence of salinity on bacterial microbiome assembly of halophytes and crops.","authors":"Mohamed R Abdelfadil, Sascha Patz, Steffen Kolb, Silke Ruppel","doi":"10.1186/s40793-024-00592-3","DOIUrl":"10.1186/s40793-024-00592-3","url":null,"abstract":"<p><strong>Background: </strong>Climate change and anthropogenic activities intensify salinity stress impacting significantly on plant productivity and biodiversity in agroecosystems. There are naturally salt-tolerant plants (halophytes) that can grow and withstand such harsh conditions. Halophytes have evolved along with their associated microbiota to adapt to hypersaline environments. Identifying shared microbial taxa between halophyte species has rarely been investigated. We performed a comprehensive meta-analysis using the published bacterial 16S rRNA gene sequence datasets to untangle the rhizosphere microbiota structure of two halophyte groups and non-halophytes. We aimed for the identification of marker taxa of plants being adapted to a high salinity using three independent approaches.</p><p><strong>Results: </strong>Fifteen studies met the selection criteria for downstream analysis, consisting of 40 plants representing diverse halophyte and non-halophyte species. Microbiome structural analysis revealed distinct compositions for halophytes that face high salt concentrations in their rhizosphere compared to halophytes grown at low salt concentrations or from non-halophytes. For halophytes grown at high salt concentrations, we discovered three bacterial genera that were independently detected through the analysis of the core microbiome, key hub taxa by network analysis and random forest analysis. These genera were Thalassospira, Erythrobacter, and Marinobacter.</p><p><strong>Conclusions: </strong>Our meta-analysis revealed that salinity level is a critical factor in affecting the rhizosphere microbiome assembly of plants. Detecting marker taxa across high-halophytes may help to select Bacteria that might improve the salt tolerance of non-halophytic plants.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"49"},"PeriodicalIF":6.2,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1186/s40793-024-00596-z
Júlia B Gontijo, Fabiana S Paula, Wanderlei Bieluczyk, Aline G França, Deisi Navroski, Jéssica A Mandro, Andressa M Venturini, Fernanda O Asselta, Lucas W Mendes, José M S Moura, Marcelo Z Moreira, Klaus Nüsslein, Brendan J M Bohannan, Paul L E Bodelier, Jorge L Mazza Rodrigues, Siu M Tsai
Seasonal floodplains in the Amazon basin are important sources of methane (CH4), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH4 cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH4 fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH4 fluxes. CH4 emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH4 sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH4 oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH4 oxidizing Bacteria and Archaea. Taken together, our data indicate that CH4 cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH4 oxidation pathways in mitigating CH4 emissions in Amazonian floodplains.
{"title":"Methane-cycling microbial communities from Amazon floodplains and upland forests respond differently to simulated climate change scenarios.","authors":"Júlia B Gontijo, Fabiana S Paula, Wanderlei Bieluczyk, Aline G França, Deisi Navroski, Jéssica A Mandro, Andressa M Venturini, Fernanda O Asselta, Lucas W Mendes, José M S Moura, Marcelo Z Moreira, Klaus Nüsslein, Brendan J M Bohannan, Paul L E Bodelier, Jorge L Mazza Rodrigues, Siu M Tsai","doi":"10.1186/s40793-024-00596-z","DOIUrl":"10.1186/s40793-024-00596-z","url":null,"abstract":"<p><p>Seasonal floodplains in the Amazon basin are important sources of methane (CH<sub>4</sub>), while upland forests are known for their sink capacity. Climate change effects, including shifts in rainfall patterns and rising temperatures, may alter the functionality of soil microbial communities, leading to uncertain changes in CH<sub>4</sub> cycling dynamics. To investigate the microbial feedback under climate change scenarios, we performed a microcosm experiment using soils from two floodplains (i.e., Amazonas and Tapajós rivers) and one upland forest. We employed a two-factorial experimental design comprising flooding (with non-flooded control) and temperature (at 27 °C and 30 °C, representing a 3 °C increase) as variables. We assessed prokaryotic community dynamics over 30 days using 16S rRNA gene sequencing and qPCR. These data were integrated with chemical properties, CH<sub>4</sub> fluxes, and isotopic values and signatures. In the floodplains, temperature changes did not significantly affect the overall microbial composition and CH<sub>4</sub> fluxes. CH<sub>4</sub> emissions and uptake in response to flooding and non-flooding conditions, respectively, were observed in the floodplain soils. By contrast, in the upland forest, the higher temperature caused a sink-to-source shift under flooding conditions and reduced CH<sub>4</sub> sink capability under dry conditions. The upland soil microbial communities also changed in response to increased temperature, with a higher percentage of specialist microbes observed. Floodplains showed higher total and relative abundances of methanogenic and methanotrophic microbes compared to forest soils. Isotopic data from some flooded samples from the Amazonas river floodplain indicated CH<sub>4</sub> oxidation metabolism. This floodplain also showed a high relative abundance of aerobic and anaerobic CH<sub>4</sub> oxidizing Bacteria and Archaea. Taken together, our data indicate that CH<sub>4</sub> cycle dynamics and microbial communities in Amazonian floodplain and upland forest soils may respond differently to climate change effects. We also highlight the potential role of CH<sub>4</sub> oxidation pathways in mitigating CH<sub>4</sub> emissions in Amazonian floodplains.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"48"},"PeriodicalIF":6.2,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-13DOI: 10.1186/s40793-024-00593-2
Dayu Zou, Cuijing Zhang, Yang Liu, Meng Li
Background: Myxococcota, characterized by their distinct social lifestyles, are widely distributed micro-predators in global sediments. They can feed on a wide range of bacterial, archaeal, and fungal prey. Myxococcota are capable of producing diverse secondary metabolites, playing key roles in microbial food webs, and regulating the microbial community structures in different ecosystems. However, Myxococcota are rarely pure cultured due to the challenging and stringent culturing conditions. Their natural distribution, niche differentiation, and predator-prey relationships in a specific habitat are poorly understood.
Results: In this study, we conducted a comprehensive analysis of the 16S rRNA gene sequence data from public databases and our collection. We compared the abundance, diversity, and distribution patterns of Myxococcota in various habitats, with a specific focus on mangroves. We found that Myxococcota accounted for 1.45% of the total prokaryotes in global sediments based on the abundance of 16S rRNA genes. Myxococcota are abundant and diverse in mangrove sediments. They tend to be more generalistic in mangroves than in other habitats due to their wide niche breadth. Besides, the deterministic processes (variable selection) influenced the assembly of mangrove Myxococcota communities significantly more than stochastic processes. Further, we determined that environmental factors explained a greater amount of total community variation in mangrove Myxococcota than geographical variables (latitude and sediment depth). In the end, through the analysis of microbial co-occurrence networks, Myxococcota emerges as a key component and functions as a connector in the mangrove microbial community.
Conclusions: Our study enhances comprehension of mangrove Myxococcota's biogeography, assembly patterns, driving factors, and co-occurrence relationships, as well as highlights their unique niche and ecological importance in mangrove sediments.
{"title":"Biogeographical distribution and community assembly of Myxococcota in mangrove sediments.","authors":"Dayu Zou, Cuijing Zhang, Yang Liu, Meng Li","doi":"10.1186/s40793-024-00593-2","DOIUrl":"10.1186/s40793-024-00593-2","url":null,"abstract":"<p><strong>Background: </strong>Myxococcota, characterized by their distinct social lifestyles, are widely distributed micro-predators in global sediments. They can feed on a wide range of bacterial, archaeal, and fungal prey. Myxococcota are capable of producing diverse secondary metabolites, playing key roles in microbial food webs, and regulating the microbial community structures in different ecosystems. However, Myxococcota are rarely pure cultured due to the challenging and stringent culturing conditions. Their natural distribution, niche differentiation, and predator-prey relationships in a specific habitat are poorly understood.</p><p><strong>Results: </strong>In this study, we conducted a comprehensive analysis of the 16S rRNA gene sequence data from public databases and our collection. We compared the abundance, diversity, and distribution patterns of Myxococcota in various habitats, with a specific focus on mangroves. We found that Myxococcota accounted for 1.45% of the total prokaryotes in global sediments based on the abundance of 16S rRNA genes. Myxococcota are abundant and diverse in mangrove sediments. They tend to be more generalistic in mangroves than in other habitats due to their wide niche breadth. Besides, the deterministic processes (variable selection) influenced the assembly of mangrove Myxococcota communities significantly more than stochastic processes. Further, we determined that environmental factors explained a greater amount of total community variation in mangrove Myxococcota than geographical variables (latitude and sediment depth). In the end, through the analysis of microbial co-occurrence networks, Myxococcota emerges as a key component and functions as a connector in the mangrove microbial community.</p><p><strong>Conclusions: </strong>Our study enhances comprehension of mangrove Myxococcota's biogeography, assembly patterns, driving factors, and co-occurrence relationships, as well as highlights their unique niche and ecological importance in mangrove sediments.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"47"},"PeriodicalIF":6.2,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245791/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}