Pub Date : 2024-09-08DOI: 10.1186/s40793-024-00608-y
Haiyan Yu, Hailan Cui, Jingchao Chen, Xiangju Li
Background: The herbicide cinmethylin, which was originally registered for use in rice fields, has the potential to control grass weeds in wheat fields before the emergence of wheat. However, its herbicidal activity against various troublesome grass weeds that infest wheat fields in China and its relationships with soil pH, soil enzymes and soil bacteria are not well known. Here, the effects of applying cinmethylin on the soil surface were tested on six grass weeds, and its impacts on soil characteristics, including the soil pH, soil enzymes and bacterial community, were evaluated.
Results: Alopecurus aequalis, A. japonicus and A. myosuroides were highly sensitive to cinmethylin, with GR50 values of 78.77, 61.49 and 119.67 g a.i. ha- 1, respectively. The half-lives of cinmethylin at 1-, 10- and 100-fold the recommended rates were estimated at 26.46 - 52.33 d. Cinmethylin significantly increased the soil pH but decreased the activities of soil sucrase and urease. At 10- and 100-fold the recommended rate of cinmethylin, the bacterial abundance and diversity significantly decreased at 30 and 60 days after cinmethylin treatment. Cinmethylin at 100-fold the recommended rates largely promoted bacterial co-occurrence network complexity. Cinmethylin at high concentrations temporarily inhibited the abundance of the Nitrospira genus, as indicated by the copy numbers of the ammonia-oxidising archaea (AOA) amoA and ammonia-oxidising bacteria (AOB) amoA genes. Further analysis revealed that soil pH was negatively related to soil urease, and a significantly positive correlation was detected between soil urease and soil nitrification.
Conclusion: Collectively, the application of cinmethylin at the recommended field dose had nearly no effect on the soil ecosystem, but its potential risks at high concentrations deserve further attention.
{"title":"The herbicidal activity of pre-emergence herbicide cinmethylin and its potential risks on soil ecology: pH, enzyme activities and bacterial community.","authors":"Haiyan Yu, Hailan Cui, Jingchao Chen, Xiangju Li","doi":"10.1186/s40793-024-00608-y","DOIUrl":"10.1186/s40793-024-00608-y","url":null,"abstract":"<p><strong>Background: </strong>The herbicide cinmethylin, which was originally registered for use in rice fields, has the potential to control grass weeds in wheat fields before the emergence of wheat. However, its herbicidal activity against various troublesome grass weeds that infest wheat fields in China and its relationships with soil pH, soil enzymes and soil bacteria are not well known. Here, the effects of applying cinmethylin on the soil surface were tested on six grass weeds, and its impacts on soil characteristics, including the soil pH, soil enzymes and bacterial community, were evaluated.</p><p><strong>Results: </strong>Alopecurus aequalis, A. japonicus and A. myosuroides were highly sensitive to cinmethylin, with GR<sub>50</sub> values of 78.77, 61.49 and 119.67 g a.i. ha<sup>- 1</sup>, respectively. The half-lives of cinmethylin at 1-, 10- and 100-fold the recommended rates were estimated at 26.46 - 52.33 d. Cinmethylin significantly increased the soil pH but decreased the activities of soil sucrase and urease. At 10- and 100-fold the recommended rate of cinmethylin, the bacterial abundance and diversity significantly decreased at 30 and 60 days after cinmethylin treatment. Cinmethylin at 100-fold the recommended rates largely promoted bacterial co-occurrence network complexity. Cinmethylin at high concentrations temporarily inhibited the abundance of the Nitrospira genus, as indicated by the copy numbers of the ammonia-oxidising archaea (AOA) amoA and ammonia-oxidising bacteria (AOB) amoA genes. Further analysis revealed that soil pH was negatively related to soil urease, and a significantly positive correlation was detected between soil urease and soil nitrification.</p><p><strong>Conclusion: </strong>Collectively, the application of cinmethylin at the recommended field dose had nearly no effect on the soil ecosystem, but its potential risks at high concentrations deserve further attention.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"66"},"PeriodicalIF":6.2,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In nature, microbes do not thrive in seclusion but are involved in complex interactions within- and between-microbial kingdoms. Among these, symbiotic associations with mycorrhizal fungi and nitrogen-fixing bacteria are namely known to improve plant health, while providing resources to benefit other microbial members. Yet, it is not clear how these microbial symbionts interact with each other or how they impact the microbiota network architecture. We used an extensive co-occurrence network analysis, including rhizosphere and roots samples from six plant species in a natural desert in AlUla region (Kingdom of Saudi Arabia) and described how these symbionts were structured within the plant microbiota network. We found that the plant species was a significant driver of its microbiota composition and also of the specificity of its interactions in networks at the microbial taxa level. Despite this specificity, a motif was conserved across all networks, i.e., mycorrhizal fungi highly covaried with other mycorrhizal fungi, especially in plant roots-this pattern is known as assortativity. This structural property might reflect their ecological niche preference or their ability to opportunistically colonize roots of plant species considered non symbiotic e.g., H. salicornicum, an Amaranthaceae. Furthermore, these results are consistent with previous findings regarding the architecture of the gut microbiome network, where a high level of assortativity at the level of bacterial and fungal orders was also identified, suggesting the existence of general rules of microbiome assembly. Otherwise, the bacterial symbionts Rhizobiales and Frankiales covaried with other bacterial and fungal members, and were highly structural to the intra- and inter-kingdom networks. Our extensive co-occurrence network analysis of plant microbiota and study of symbiont assortativity, provided further evidence on the importance of bacterial and fungal symbionts in structuring the global plant microbiota network.
在自然界中,微生物并非在隐居状态下繁衍生息,而是参与微生物王国内部和之间的复杂互动。其中,与菌根真菌和固氮细菌的共生关系可改善植物健康,同时为其他微生物成员提供资源。然而,目前还不清楚这些微生物共生体之间是如何相互作用的,也不清楚它们是如何影响微生物群网络结构的。我们使用了广泛的共生网络分析,包括来自沙特阿拉伯王国 AlUla 地区天然沙漠中六种植物的根圈和根部样本,并描述了这些共生体在植物微生物群网络中的结构。我们发现,植物物种是其微生物群组成的重要驱动因素,也是其在微生物类群层面的网络中相互作用的特异性的重要驱动因素。尽管存在这种特异性,但在所有网络中都保留了一个主题,即菌根真菌与其他菌根真菌高度共生,尤其是在植物根部--这种模式被称为同质性。这种结构特性可能反映了菌根真菌的生态位偏好,也可能反映了菌根真菌在非共生植物物种(如苋科植物 H. salicornicum)根部的机会性定植能力。此外,这些结果与之前关于肠道微生物组网络结构的研究结果一致,在肠道微生物组网络结构中,细菌和真菌的数量级存在高度的同类性,这表明微生物组的组装存在一般规则。除此之外,细菌共生体根瘤菌纲和法兰克菌纲与其他细菌和真菌成员共生,并在王国内部和王国之间的网络中具有高度结构性。我们对植物微生物群进行了广泛的共生网络分析,并对共生体的同源性进行了研究,这进一步证明了细菌和真菌共生体在构建全球植物微生物群网络中的重要性。
{"title":"Networking the desert plant microbiome, bacterial and fungal symbionts structure and assortativity in co-occurrence networks.","authors":"Kenji Maurice, Liam Laurent-Webb, Amélia Bourceret, Stéphane Boivin, Hassan Boukcim, Marc-André Selosse, Marc Ducousso","doi":"10.1186/s40793-024-00610-4","DOIUrl":"10.1186/s40793-024-00610-4","url":null,"abstract":"<p><p>In nature, microbes do not thrive in seclusion but are involved in complex interactions within- and between-microbial kingdoms. Among these, symbiotic associations with mycorrhizal fungi and nitrogen-fixing bacteria are namely known to improve plant health, while providing resources to benefit other microbial members. Yet, it is not clear how these microbial symbionts interact with each other or how they impact the microbiota network architecture. We used an extensive co-occurrence network analysis, including rhizosphere and roots samples from six plant species in a natural desert in AlUla region (Kingdom of Saudi Arabia) and described how these symbionts were structured within the plant microbiota network. We found that the plant species was a significant driver of its microbiota composition and also of the specificity of its interactions in networks at the microbial taxa level. Despite this specificity, a motif was conserved across all networks, i.e., mycorrhizal fungi highly covaried with other mycorrhizal fungi, especially in plant roots-this pattern is known as assortativity. This structural property might reflect their ecological niche preference or their ability to opportunistically colonize roots of plant species considered non symbiotic e.g., H. salicornicum, an Amaranthaceae. Furthermore, these results are consistent with previous findings regarding the architecture of the gut microbiome network, where a high level of assortativity at the level of bacterial and fungal orders was also identified, suggesting the existence of general rules of microbiome assembly. Otherwise, the bacterial symbionts Rhizobiales and Frankiales covaried with other bacterial and fungal members, and were highly structural to the intra- and inter-kingdom networks. Our extensive co-occurrence network analysis of plant microbiota and study of symbiont assortativity, provided further evidence on the importance of bacterial and fungal symbionts in structuring the global plant microbiota network.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"65"},"PeriodicalIF":6.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1186/s40793-024-00604-2
Sofie Zacho Vestergaard, Giulia Dottorini, Miriam Peces, Admir Murguz, Morten Kam Dahl Dueholm, Marta Nierychlo, Per Halkjær Nielsen
Background: The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km2). With the use of an ecosystem-specific database (MiDAS 5.2), species-level classification allowed us to investigate the core and CRAT species, whether they were active, and important factors determining their presence.
Results: We established a comprehensive catalog of species with names or placeholder names showing each plant contained approx. 2,500 different species. Core and CRAT represented in total 258 species, constituting around 50% of all reads in every plant. However, not all core and CRAT could be regarded as process-critical as growth rate calculations revealed that 43% did not grow in the AS plants and were present only because of continuous immigration from the influent. Analyses of regional microbiota differences and distance decay patterns revealed a stronger effect for species than genera, demonstrating that geography had a clear effect on the AS microbiota, even across a limited geographical area such as Denmark (43,000 km2).
Conclusions: The study is the first comprehensive investigation of WWTPs in a confined geographical area providing new insights in our understanding of activated sludge microbiology by introducing a concept of combining immigration and growth calculation with identifying core and CRAT to reveal the true ecosystem-critical organisms. Additionally, the clear biogeographical pattern on this scale highlights the need for more region-level studies to find regional process-critical taxa (core and CRAT), especially at species and amplicon sequence variant (ASV) level.
{"title":"Microbial core communities in activated sludge plants are strongly affected by immigration and geography.","authors":"Sofie Zacho Vestergaard, Giulia Dottorini, Miriam Peces, Admir Murguz, Morten Kam Dahl Dueholm, Marta Nierychlo, Per Halkjær Nielsen","doi":"10.1186/s40793-024-00604-2","DOIUrl":"https://doi.org/10.1186/s40793-024-00604-2","url":null,"abstract":"<p><strong>Background: </strong>The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km<sup>2</sup>). With the use of an ecosystem-specific database (MiDAS 5.2), species-level classification allowed us to investigate the core and CRAT species, whether they were active, and important factors determining their presence.</p><p><strong>Results: </strong>We established a comprehensive catalog of species with names or placeholder names showing each plant contained approx. 2,500 different species. Core and CRAT represented in total 258 species, constituting around 50% of all reads in every plant. However, not all core and CRAT could be regarded as process-critical as growth rate calculations revealed that 43% did not grow in the AS plants and were present only because of continuous immigration from the influent. Analyses of regional microbiota differences and distance decay patterns revealed a stronger effect for species than genera, demonstrating that geography had a clear effect on the AS microbiota, even across a limited geographical area such as Denmark (43,000 km<sup>2</sup>).</p><p><strong>Conclusions: </strong>The study is the first comprehensive investigation of WWTPs in a confined geographical area providing new insights in our understanding of activated sludge microbiology by introducing a concept of combining immigration and growth calculation with identifying core and CRAT to reveal the true ecosystem-critical organisms. Additionally, the clear biogeographical pattern on this scale highlights the need for more region-level studies to find regional process-critical taxa (core and CRAT), especially at species and amplicon sequence variant (ASV) level.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"63"},"PeriodicalIF":6.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-29DOI: 10.1186/s40793-024-00606-0
Christopher J Barnes, Maria Sophie Bünner, M Rosario Ramírez-Flores, Ida Broman Nielsen, Jazmin Ramos-Madrigal, Daria Zharikova, Chloee M McLaughlin, M Thomas Gilbert, Ruairidh J H Sawers
Background: The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes.
Results: The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations.
Conclusions: Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.
{"title":"The ancestral environment of teosinte populations shapes their root microbiome.","authors":"Christopher J Barnes, Maria Sophie Bünner, M Rosario Ramírez-Flores, Ida Broman Nielsen, Jazmin Ramos-Madrigal, Daria Zharikova, Chloee M McLaughlin, M Thomas Gilbert, Ruairidh J H Sawers","doi":"10.1186/s40793-024-00606-0","DOIUrl":"https://doi.org/10.1186/s40793-024-00606-0","url":null,"abstract":"<p><strong>Background: </strong>The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes.</p><p><strong>Results: </strong>The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations.</p><p><strong>Conclusions: </strong>Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"64"},"PeriodicalIF":6.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-28DOI: 10.1186/s40793-024-00602-4
Daniel Hoefle, Milena Sommer, Birgit Wassermann, Maria Faticov, Demetrio Serra, Gabriele Berg, Ayco J M Tack, Ahmed Abdelfattah
Despite that climate change is currently one of the most pervasive challenges, its effects on the plant-associated microbiome is still poorly studied. The aim of this study was to evaluate the impact of the independent and combinatory effect of climate warming and drought on the microbiome assembly of oak from seed to seedling. In a multifactorial experimental set up, acorns were subjected to different temperatures (15 °C, 20 °C, and 25 °C) and soil moisture levels (drought (15%) and control (60%)) from germination until the seedling stage, after which the bacterial and fungal communities associated to the rhizosphere and phyllosphere were characterized by amplicon sequencing and qPCR. The results showed a stronger effect of temperature on fungal than on bacterial diversity and the effect was more pronounced in the phyllosphere. Under drought condition, temperature had a significantly negative effect on phyllosphere fungal diversity. In the rhizosphere, temperature had a significant effect on the fungal community composition which was primarily caused by species turnover. Regardless of temperature, Actinobacteriota was significantly enriched in drought, a group of bacteria known to increase plant drought tolerance. This study provides new insights into the effect of climate change on the plant microbiome in natural ecosystems.
{"title":"Oak seedling microbiome assembly under climate warming and drought.","authors":"Daniel Hoefle, Milena Sommer, Birgit Wassermann, Maria Faticov, Demetrio Serra, Gabriele Berg, Ayco J M Tack, Ahmed Abdelfattah","doi":"10.1186/s40793-024-00602-4","DOIUrl":"10.1186/s40793-024-00602-4","url":null,"abstract":"<p><p>Despite that climate change is currently one of the most pervasive challenges, its effects on the plant-associated microbiome is still poorly studied. The aim of this study was to evaluate the impact of the independent and combinatory effect of climate warming and drought on the microbiome assembly of oak from seed to seedling. In a multifactorial experimental set up, acorns were subjected to different temperatures (15 °C, 20 °C, and 25 °C) and soil moisture levels (drought (15%) and control (60%)) from germination until the seedling stage, after which the bacterial and fungal communities associated to the rhizosphere and phyllosphere were characterized by amplicon sequencing and qPCR. The results showed a stronger effect of temperature on fungal than on bacterial diversity and the effect was more pronounced in the phyllosphere. Under drought condition, temperature had a significantly negative effect on phyllosphere fungal diversity. In the rhizosphere, temperature had a significant effect on the fungal community composition which was primarily caused by species turnover. Regardless of temperature, Actinobacteriota was significantly enriched in drought, a group of bacteria known to increase plant drought tolerance. This study provides new insights into the effect of climate change on the plant microbiome in natural ecosystems.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"62"},"PeriodicalIF":6.2,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Continuous monocropping obstacles are common in plants, especially medicinal plants, resulting in disease outbreaks and productivity reductions. Foliar disease, mainly caused by Fusarium oxysporum, results in a severe decrease in the yield of Pseudostellaria heterophylla annually. Determining an effective biomethod to alleviate this disease is urgently needed to improve its productivity and quality.
Results: This study screened thirty-two keystone bacterial genera induced by pathogens in P. heterophylla rhizosphere soil under continuous monocropping conditions. Pseudomonas, Chryseobacterium, and Flavobacterium, referred to as the beneficial microbiota, were significantly attracted by pathogen infection. The P. palleroniana strain B-BH16-1 can directly inhibit the growth and spore formation of seven primary pathogens of P. heterophylla foliar disease by disrupting fusaric acid production via the emission of volatile organic compounds (VOCs). In addition, strain B-BH16-1 enhances the disease resistance of P. heterophylla by obliterating the pathogen and assembling beneficial microbiota.
Conclusion: Pathogen-induced Pseudomonas reshaped phyllosphere microbial communities via direct antagonism of pathogens and indirect disruption of the pathogen virulence factor biosynthesis to enhance disease suppression and improve yields. These results show that inhibiting pathogen virulence biosynthesis to reshape the plant microbial community using disease-induing probiotics will be an innovative strategy for managing plant disease, especially under continuous monoculture conditions.
{"title":"Pathogen-driven Pseudomonas reshaped the phyllosphere microbiome in combination with Pseudostellaria heterophylla foliar disease resistance via the release of volatile organic compounds.","authors":"Qing-Song Yuan, Yanping Gao, Lu Wang, Xiaoai Wang, Lingling Wang, Jiayue Ran, Xiaohong Ou, Yanhong Wang, Chenghong Xiao, Weike Jiang, Lanping Guo, Tao Zhou, Luqi Huang","doi":"10.1186/s40793-024-00603-3","DOIUrl":"10.1186/s40793-024-00603-3","url":null,"abstract":"<p><strong>Background: </strong>Continuous monocropping obstacles are common in plants, especially medicinal plants, resulting in disease outbreaks and productivity reductions. Foliar disease, mainly caused by Fusarium oxysporum, results in a severe decrease in the yield of Pseudostellaria heterophylla annually. Determining an effective biomethod to alleviate this disease is urgently needed to improve its productivity and quality.</p><p><strong>Results: </strong>This study screened thirty-two keystone bacterial genera induced by pathogens in P. heterophylla rhizosphere soil under continuous monocropping conditions. Pseudomonas, Chryseobacterium, and Flavobacterium, referred to as the beneficial microbiota, were significantly attracted by pathogen infection. The P. palleroniana strain B-BH16-1 can directly inhibit the growth and spore formation of seven primary pathogens of P. heterophylla foliar disease by disrupting fusaric acid production via the emission of volatile organic compounds (VOCs). In addition, strain B-BH16-1 enhances the disease resistance of P. heterophylla by obliterating the pathogen and assembling beneficial microbiota.</p><p><strong>Conclusion: </strong>Pathogen-induced Pseudomonas reshaped phyllosphere microbial communities via direct antagonism of pathogens and indirect disruption of the pathogen virulence factor biosynthesis to enhance disease suppression and improve yields. These results show that inhibiting pathogen virulence biosynthesis to reshape the plant microbial community using disease-induing probiotics will be an innovative strategy for managing plant disease, especially under continuous monoculture conditions.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"61"},"PeriodicalIF":6.2,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1186/s40793-024-00605-1
Hanbyul Lee, Kyuin Hwang, Ahnna Cho, Soyeon Kim, Minkyung Kim, Rachael Morgan-Kiss, John C Priscu, Kyung Mo Kim, Ok-Sun Kim
Background: Lake Bonney, which is divided into a west lobe (WLB) and an east lobe (ELB), is a perennially ice-covered lake located in the McMurdo Dry Valleys of Antarctica. Despite previous reports on the microbial community dynamics of ice-covered lakes in this region, there is a paucity of information on the relationship between microbial genomic diversity and associated nutrient cycling. Here, we applied gene- and genome-centric approaches to investigate the microbial ecology and reconstruct microbial metabolic potential along the depth gradient in Lake Bonney.
Results: Lake Bonney is strongly chemically stratified with three distinct redox zones, yielding different microbial niches. Our genome enabled approach revealed that in the sunlit and relatively freshwater epilimnion, oxygenic photosynthetic production by the cyanobacterium Pseudanabaena and a diversity of protists and microalgae may provide new organic carbon to the environment. CO-oxidizing bacteria, such as Acidimicrobiales, Nanopelagicales, and Burkholderiaceae were also prominent in the epilimnion and their ability to oxidize carbon monoxide to carbon dioxide may serve as a supplementary energy conservation strategy. In the more saline metalimnion of ELB, an accumulation of inorganic nitrogen and phosphorus supports photosynthesis despite relatively low light levels. Conversely, in WLB the release of organic rich subglacial discharge from Taylor Glacier into WLB would be implicated in the possible high abundance of heterotrophs supported by increased potential for glycolysis, beta-oxidation, and glycoside hydrolase and may contribute to the growth of iron reducers in the dark and extremely saline hypolimnion of WLB. The suboxic and subzero temperature zones beneath the metalimnia in both lobes supported microorganisms capable of utilizing reduced nitrogens and sulfurs as electron donors. Heterotrophs, including nitrate reducing sulfur oxidizing bacteria, such as Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), and denitrifying bacteria, such as Gracilimonas (MAG7), Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), dominated the hypolimnion of WLB, whereas the environmental harshness of the hypolimnion of ELB was supported by the relatively low in metabolic potential, as well as the abundance of halophile Halomonas and endospore-forming Virgibacillus.
Conclusions: The vertical distribution of microbially driven C, N and S cycling genes/pathways in Lake Bonney reveals the importance of geochemical gradients to microbial diversity and biogeochemical cycles with the vertical water column.
{"title":"Microbial assemblages and associated biogeochemical processes in Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys, Antarctica.","authors":"Hanbyul Lee, Kyuin Hwang, Ahnna Cho, Soyeon Kim, Minkyung Kim, Rachael Morgan-Kiss, John C Priscu, Kyung Mo Kim, Ok-Sun Kim","doi":"10.1186/s40793-024-00605-1","DOIUrl":"10.1186/s40793-024-00605-1","url":null,"abstract":"<p><strong>Background: </strong>Lake Bonney, which is divided into a west lobe (WLB) and an east lobe (ELB), is a perennially ice-covered lake located in the McMurdo Dry Valleys of Antarctica. Despite previous reports on the microbial community dynamics of ice-covered lakes in this region, there is a paucity of information on the relationship between microbial genomic diversity and associated nutrient cycling. Here, we applied gene- and genome-centric approaches to investigate the microbial ecology and reconstruct microbial metabolic potential along the depth gradient in Lake Bonney.</p><p><strong>Results: </strong>Lake Bonney is strongly chemically stratified with three distinct redox zones, yielding different microbial niches. Our genome enabled approach revealed that in the sunlit and relatively freshwater epilimnion, oxygenic photosynthetic production by the cyanobacterium Pseudanabaena and a diversity of protists and microalgae may provide new organic carbon to the environment. CO-oxidizing bacteria, such as Acidimicrobiales, Nanopelagicales, and Burkholderiaceae were also prominent in the epilimnion and their ability to oxidize carbon monoxide to carbon dioxide may serve as a supplementary energy conservation strategy. In the more saline metalimnion of ELB, an accumulation of inorganic nitrogen and phosphorus supports photosynthesis despite relatively low light levels. Conversely, in WLB the release of organic rich subglacial discharge from Taylor Glacier into WLB would be implicated in the possible high abundance of heterotrophs supported by increased potential for glycolysis, beta-oxidation, and glycoside hydrolase and may contribute to the growth of iron reducers in the dark and extremely saline hypolimnion of WLB. The suboxic and subzero temperature zones beneath the metalimnia in both lobes supported microorganisms capable of utilizing reduced nitrogens and sulfurs as electron donors. Heterotrophs, including nitrate reducing sulfur oxidizing bacteria, such as Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), and denitrifying bacteria, such as Gracilimonas (MAG7), Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), dominated the hypolimnion of WLB, whereas the environmental harshness of the hypolimnion of ELB was supported by the relatively low in metabolic potential, as well as the abundance of halophile Halomonas and endospore-forming Virgibacillus.</p><p><strong>Conclusions: </strong>The vertical distribution of microbially driven C, N and S cycling genes/pathways in Lake Bonney reveals the importance of geochemical gradients to microbial diversity and biogeochemical cycles with the vertical water column.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"60"},"PeriodicalIF":6.2,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1186/s40793-024-00601-5
Patrick Jung, Rebekah Brand, Laura Briegel-Williams, Lina Werner, Emily Jost, Guillaume Lentendu, David Singer, Rujuta Athavale, Dennis J Nürnberg, Fernando D Alfaro, Burkhard Büdel, Michael Lakatos
Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens. To understand its biodiversity and impact, we applied a polyphasic approach on the phototrophic microbiome of this biocrust, combining isolation and characterization of the lichen photobionts, multi-gene phylogeny of the photobionts and mycobionts based on a direct sequencing and microphotography approach, metabarcoding and determination of chlorophylla+b contents. Metabarcoding showed that yet undescribed lichens within the Caliciaceae dominated the biocrust together with Trebouxia as the most abundant eukaryote in all plots. Together with high mean chlorophylla+b contents exceeding 410 mg m-2, this distinguished the symbiotic algae Trebouxia as the main driver of the grit crust ecosystem. The trebouxioid photobionts could be assigned to the I (T. impressa/gelatinosa) and A (T. arboricola) clades and represented several lineages containing five potential species candidates, which were identified based on the unique phylogenetic position, morphological features, and developmental cycles of the corresponding isolates. These results designate the grit crust as the only known coherent soil layer with significant landscape covering impact of at least 440 km2, predominantly ruled by a single symbiotic algal genus.
{"title":"The symbiotic alga Trebouxia fuels a coherent soil ecosystem on the landscape scale in the Atacama Desert.","authors":"Patrick Jung, Rebekah Brand, Laura Briegel-Williams, Lina Werner, Emily Jost, Guillaume Lentendu, David Singer, Rujuta Athavale, Dennis J Nürnberg, Fernando D Alfaro, Burkhard Büdel, Michael Lakatos","doi":"10.1186/s40793-024-00601-5","DOIUrl":"10.1186/s40793-024-00601-5","url":null,"abstract":"<p><p>Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens. To understand its biodiversity and impact, we applied a polyphasic approach on the phototrophic microbiome of this biocrust, combining isolation and characterization of the lichen photobionts, multi-gene phylogeny of the photobionts and mycobionts based on a direct sequencing and microphotography approach, metabarcoding and determination of chlorophyll<sub>a+b</sub> contents. Metabarcoding showed that yet undescribed lichens within the Caliciaceae dominated the biocrust together with Trebouxia as the most abundant eukaryote in all plots. Together with high mean chlorophyll<sub>a+b</sub> contents exceeding 410 mg m<sup>-2</sup>, this distinguished the symbiotic algae Trebouxia as the main driver of the grit crust ecosystem. The trebouxioid photobionts could be assigned to the I (T. impressa/gelatinosa) and A (T. arboricola) clades and represented several lineages containing five potential species candidates, which were identified based on the unique phylogenetic position, morphological features, and developmental cycles of the corresponding isolates. These results designate the grit crust as the only known coherent soil layer with significant landscape covering impact of at least 440 km<sup>2</sup>, predominantly ruled by a single symbiotic algal genus.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"59"},"PeriodicalIF":6.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1186/s40793-024-00600-6
Edoardo Bizzotto, Sofia Fraulini, Guido Zampieri, Esteban Orellana, Laura Treu, Stefano Campanaro
Background: In recent years, there has been a rapid increase in the number of microbial genomes reconstructed through shotgun sequencing, and obtained by newly developed approaches including metagenomic binning and single-cell sequencing. However, our ability to functionally characterize these genomes by experimental assays is orders of magnitude less efficient. Consequently, there is a pressing need for the development of swift and automated strategies for the functional classification of microbial genomes.
Results: The present work leverages a suite of supervised machine learning algorithms to establish a range of 86 metabolic and other ecological functions, such as methanotrophy and plastic degradation, starting from widely obtainable microbial genome annotations. Tests performed on independent datasets demonstrated robust performance across complete, fragmented, and incomplete genomes above a 70% completeness level for most of the considered functions. Application of the algorithms to the Biogas Microbiome database yielded predictions broadly consistent with current biological knowledge and correctly detecting functionally-related nuances of archaeal genomes. Finally, a case study focused on acetoclastic methanogenesis demonstrated how the developed machine learning models can be refined or expanded with models describing novel functions of interest.
Conclusions: The resulting tool, MICROPHERRET, incorporates a total of 86 models, one for each tested functional class, and can be applied to high-quality microbial genomes as well as to low-quality genomes derived from metagenomics and single-cell sequencing. MICROPHERRET can thus aid in understanding the functional role of newly generated genomes within their micro-ecological context.
{"title":"MICROPHERRET: MICRObial PHEnotypic tRait ClassifieR using Machine lEarning Techniques.","authors":"Edoardo Bizzotto, Sofia Fraulini, Guido Zampieri, Esteban Orellana, Laura Treu, Stefano Campanaro","doi":"10.1186/s40793-024-00600-6","DOIUrl":"10.1186/s40793-024-00600-6","url":null,"abstract":"<p><strong>Background: </strong>In recent years, there has been a rapid increase in the number of microbial genomes reconstructed through shotgun sequencing, and obtained by newly developed approaches including metagenomic binning and single-cell sequencing. However, our ability to functionally characterize these genomes by experimental assays is orders of magnitude less efficient. Consequently, there is a pressing need for the development of swift and automated strategies for the functional classification of microbial genomes.</p><p><strong>Results: </strong>The present work leverages a suite of supervised machine learning algorithms to establish a range of 86 metabolic and other ecological functions, such as methanotrophy and plastic degradation, starting from widely obtainable microbial genome annotations. Tests performed on independent datasets demonstrated robust performance across complete, fragmented, and incomplete genomes above a 70% completeness level for most of the considered functions. Application of the algorithms to the Biogas Microbiome database yielded predictions broadly consistent with current biological knowledge and correctly detecting functionally-related nuances of archaeal genomes. Finally, a case study focused on acetoclastic methanogenesis demonstrated how the developed machine learning models can be refined or expanded with models describing novel functions of interest.</p><p><strong>Conclusions: </strong>The resulting tool, MICROPHERRET, incorporates a total of 86 models, one for each tested functional class, and can be applied to high-quality microbial genomes as well as to low-quality genomes derived from metagenomics and single-cell sequencing. MICROPHERRET can thus aid in understanding the functional role of newly generated genomes within their micro-ecological context.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"58"},"PeriodicalIF":6.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-05DOI: 10.1186/s40793-024-00598-x
Guillaume Schwob, Katerin Almendras, Karla Veas-Mattheos, Matías Pezoa, Julieta Orlando
Background: Lichens are micro-ecosystems relying on diverse microorganisms for nutrient cycling, environmental adaptation, and structural support. We investigated the spatial-scale dependency of factors shaping the ecological processes that govern lichen-associated bacteria. We hypothesize that lichens function as island-like habitats hosting divergent microbiomes and promoting landscape gamma-diversity. Three microenvironments -thalli, substrates, and neighboring soils- were sampled from four geographically overlapping species of Peltigera cyanolichens, spanning three bioclimatic zones in the Chilean Patagonia, to determine how bacterial diversity, assembly processes, ecological drivers, interaction patterns, and niche breadth vary among Peltigera microenvironments on a broad geographical scale.
Results: The hosts' phylogeny, especially that of the cyanobiont, alongside climate as a secondary factor, impose a strong ecological filtering of bacterial communities within Peltigera thalli. This results in deterministically assembled, low diverse, and phylogenetically convergent yet structurally divergent bacterial communities. Host evolutionary and geographic distances accentuate the divergence in bacterial community composition of Peltigera thalli. Compared to soil and substrate, Peltigera thalli harbor specialized and locally adapted bacterial taxa, conforming sparse and weak ecological networks.
Conclusions: The findings suggest that Petigera thalli create fragmented habitats that foster landscape bacterial gamma-diversity. This underscores the importance of preserving lichens for maintaining a potential reservoir of specialized bacteria.
{"title":"Host specialization and spatial divergence of bacteria associated with Peltigera lichens promote landscape gamma diversity.","authors":"Guillaume Schwob, Katerin Almendras, Karla Veas-Mattheos, Matías Pezoa, Julieta Orlando","doi":"10.1186/s40793-024-00598-x","DOIUrl":"10.1186/s40793-024-00598-x","url":null,"abstract":"<p><strong>Background: </strong>Lichens are micro-ecosystems relying on diverse microorganisms for nutrient cycling, environmental adaptation, and structural support. We investigated the spatial-scale dependency of factors shaping the ecological processes that govern lichen-associated bacteria. We hypothesize that lichens function as island-like habitats hosting divergent microbiomes and promoting landscape gamma-diversity. Three microenvironments -thalli, substrates, and neighboring soils- were sampled from four geographically overlapping species of Peltigera cyanolichens, spanning three bioclimatic zones in the Chilean Patagonia, to determine how bacterial diversity, assembly processes, ecological drivers, interaction patterns, and niche breadth vary among Peltigera microenvironments on a broad geographical scale.</p><p><strong>Results: </strong>The hosts' phylogeny, especially that of the cyanobiont, alongside climate as a secondary factor, impose a strong ecological filtering of bacterial communities within Peltigera thalli. This results in deterministically assembled, low diverse, and phylogenetically convergent yet structurally divergent bacterial communities. Host evolutionary and geographic distances accentuate the divergence in bacterial community composition of Peltigera thalli. Compared to soil and substrate, Peltigera thalli harbor specialized and locally adapted bacterial taxa, conforming sparse and weak ecological networks.</p><p><strong>Conclusions: </strong>The findings suggest that Petigera thalli create fragmented habitats that foster landscape bacterial gamma-diversity. This underscores the importance of preserving lichens for maintaining a potential reservoir of specialized bacteria.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"57"},"PeriodicalIF":6.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}