首页 > 最新文献

Environmental Microbiome最新文献

英文 中文
The herbicidal activity of pre-emergence herbicide cinmethylin and its potential risks on soil ecology: pH, enzyme activities and bacterial community. 萌芽前除草剂嗪草酮的除草活性及其对土壤生态的潜在风险:pH 值、酶活性和细菌群落。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-08 DOI: 10.1186/s40793-024-00608-y
Haiyan Yu, Hailan Cui, Jingchao Chen, Xiangju Li

Background: The herbicide cinmethylin, which was originally registered for use in rice fields, has the potential to control grass weeds in wheat fields before the emergence of wheat. However, its herbicidal activity against various troublesome grass weeds that infest wheat fields in China and its relationships with soil pH, soil enzymes and soil bacteria are not well known. Here, the effects of applying cinmethylin on the soil surface were tested on six grass weeds, and its impacts on soil characteristics, including the soil pH, soil enzymes and bacterial community, were evaluated.

Results: Alopecurus aequalis, A. japonicus and A. myosuroides were highly sensitive to cinmethylin, with GR50 values of 78.77, 61.49 and 119.67 g a.i. ha- 1, respectively. The half-lives of cinmethylin at 1-, 10- and 100-fold the recommended rates were estimated at 26.46 - 52.33 d. Cinmethylin significantly increased the soil pH but decreased the activities of soil sucrase and urease. At 10- and 100-fold the recommended rate of cinmethylin, the bacterial abundance and diversity significantly decreased at 30 and 60 days after cinmethylin treatment. Cinmethylin at 100-fold the recommended rates largely promoted bacterial co-occurrence network complexity. Cinmethylin at high concentrations temporarily inhibited the abundance of the Nitrospira genus, as indicated by the copy numbers of the ammonia-oxidising archaea (AOA) amoA and ammonia-oxidising bacteria (AOB) amoA genes. Further analysis revealed that soil pH was negatively related to soil urease, and a significantly positive correlation was detected between soil urease and soil nitrification.

Conclusion: Collectively, the application of cinmethylin at the recommended field dose had nearly no effect on the soil ecosystem, but its potential risks at high concentrations deserve further attention.

背景:除草剂嗪草酮原登记用于水稻田,具有在小麦出苗前控制麦田禾本科杂草的潜力。然而,该除草剂对中国小麦田中各种棘手禾本科杂草的除草活性及其与土壤 pH 值、土壤酶和土壤细菌的关系尚不十分清楚。在此,我们测试了在土壤表面施用嗪草酮对六种禾本科杂草的效果,并评估了其对土壤特性(包括土壤 pH 值、土壤酶和细菌群落)的影响:结果:禾本科杂草(Alopecurus aequalis)、日本禾本科杂草(A. japonicus)和麝香禾本科杂草(A. myosuroides)对嗪草酮高度敏感,其 GR50 值分别为 78.77、61.49 和 119.67 g a.i. ha-1。在 1 倍、10 倍和 100 倍推荐剂量下,嗪草酮的半衰期估计为 26.46 - 52.33 d。嗪草酮可显著提高土壤 pH 值,但会降低土壤蔗糖酶和脲酶的活性。在使用 10 倍和 100 倍的嗪草酮的情况下,嗪草酮处理后 30 天和 60 天,细菌的丰度和多样性明显降低。建议浓度为 100 倍的茵甲灵在很大程度上促进了细菌共生网络的复杂性。从氨氧化古细菌(AOA)amoA 和氨氧化细菌(AOB)amoA 基因的拷贝数可以看出,高浓度的氨甲素暂时抑制了硝化螺菌属的数量。进一步分析表明,土壤 pH 值与土壤尿素酶呈负相关,土壤尿素酶与土壤硝化之间呈显著正相关:总之,按照田间推荐剂量施用嗪草酮对土壤生态系统几乎没有影响,但高浓度施用嗪草酮的潜在风险值得进一步关注。
{"title":"The herbicidal activity of pre-emergence herbicide cinmethylin and its potential risks on soil ecology: pH, enzyme activities and bacterial community.","authors":"Haiyan Yu, Hailan Cui, Jingchao Chen, Xiangju Li","doi":"10.1186/s40793-024-00608-y","DOIUrl":"10.1186/s40793-024-00608-y","url":null,"abstract":"<p><strong>Background: </strong>The herbicide cinmethylin, which was originally registered for use in rice fields, has the potential to control grass weeds in wheat fields before the emergence of wheat. However, its herbicidal activity against various troublesome grass weeds that infest wheat fields in China and its relationships with soil pH, soil enzymes and soil bacteria are not well known. Here, the effects of applying cinmethylin on the soil surface were tested on six grass weeds, and its impacts on soil characteristics, including the soil pH, soil enzymes and bacterial community, were evaluated.</p><p><strong>Results: </strong>Alopecurus aequalis, A. japonicus and A. myosuroides were highly sensitive to cinmethylin, with GR<sub>50</sub> values of 78.77, 61.49 and 119.67 g a.i. ha<sup>- 1</sup>, respectively. The half-lives of cinmethylin at 1-, 10- and 100-fold the recommended rates were estimated at 26.46 - 52.33 d. Cinmethylin significantly increased the soil pH but decreased the activities of soil sucrase and urease. At 10- and 100-fold the recommended rate of cinmethylin, the bacterial abundance and diversity significantly decreased at 30 and 60 days after cinmethylin treatment. Cinmethylin at 100-fold the recommended rates largely promoted bacterial co-occurrence network complexity. Cinmethylin at high concentrations temporarily inhibited the abundance of the Nitrospira genus, as indicated by the copy numbers of the ammonia-oxidising archaea (AOA) amoA and ammonia-oxidising bacteria (AOB) amoA genes. Further analysis revealed that soil pH was negatively related to soil urease, and a significantly positive correlation was detected between soil urease and soil nitrification.</p><p><strong>Conclusion: </strong>Collectively, the application of cinmethylin at the recommended field dose had nearly no effect on the soil ecosystem, but its potential risks at high concentrations deserve further attention.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"66"},"PeriodicalIF":6.2,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11382390/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Networking the desert plant microbiome, bacterial and fungal symbionts structure and assortativity in co-occurrence networks. 将沙漠植物微生物组、细菌和真菌共生体结构与共生网络中的同类性联系起来。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-02 DOI: 10.1186/s40793-024-00610-4
Kenji Maurice, Liam Laurent-Webb, Amélia Bourceret, Stéphane Boivin, Hassan Boukcim, Marc-André Selosse, Marc Ducousso

In nature, microbes do not thrive in seclusion but are involved in complex interactions within- and between-microbial kingdoms. Among these, symbiotic associations with mycorrhizal fungi and nitrogen-fixing bacteria are namely known to improve plant health, while providing resources to benefit other microbial members. Yet, it is not clear how these microbial symbionts interact with each other or how they impact the microbiota network architecture. We used an extensive co-occurrence network analysis, including rhizosphere and roots samples from six plant species in a natural desert in AlUla region (Kingdom of Saudi Arabia) and described how these symbionts were structured within the plant microbiota network. We found that the plant species was a significant driver of its microbiota composition and also of the specificity of its interactions in networks at the microbial taxa level. Despite this specificity, a motif was conserved across all networks, i.e., mycorrhizal fungi highly covaried with other mycorrhizal fungi, especially in plant roots-this pattern is known as assortativity. This structural property might reflect their ecological niche preference or their ability to opportunistically colonize roots of plant species considered non symbiotic e.g., H. salicornicum, an Amaranthaceae. Furthermore, these results are consistent with previous findings regarding the architecture of the gut microbiome network, where a high level of assortativity at the level of bacterial and fungal orders was also identified, suggesting the existence of general rules of microbiome assembly. Otherwise, the bacterial symbionts Rhizobiales and Frankiales covaried with other bacterial and fungal members, and were highly structural to the intra- and inter-kingdom networks. Our extensive co-occurrence network analysis of plant microbiota and study of symbiont assortativity, provided further evidence on the importance of bacterial and fungal symbionts in structuring the global plant microbiota network.

在自然界中,微生物并非在隐居状态下繁衍生息,而是参与微生物王国内部和之间的复杂互动。其中,与菌根真菌和固氮细菌的共生关系可改善植物健康,同时为其他微生物成员提供资源。然而,目前还不清楚这些微生物共生体之间是如何相互作用的,也不清楚它们是如何影响微生物群网络结构的。我们使用了广泛的共生网络分析,包括来自沙特阿拉伯王国 AlUla 地区天然沙漠中六种植物的根圈和根部样本,并描述了这些共生体在植物微生物群网络中的结构。我们发现,植物物种是其微生物群组成的重要驱动因素,也是其在微生物类群层面的网络中相互作用的特异性的重要驱动因素。尽管存在这种特异性,但在所有网络中都保留了一个主题,即菌根真菌与其他菌根真菌高度共生,尤其是在植物根部--这种模式被称为同质性。这种结构特性可能反映了菌根真菌的生态位偏好,也可能反映了菌根真菌在非共生植物物种(如苋科植物 H. salicornicum)根部的机会性定植能力。此外,这些结果与之前关于肠道微生物组网络结构的研究结果一致,在肠道微生物组网络结构中,细菌和真菌的数量级存在高度的同类性,这表明微生物组的组装存在一般规则。除此之外,细菌共生体根瘤菌纲和法兰克菌纲与其他细菌和真菌成员共生,并在王国内部和王国之间的网络中具有高度结构性。我们对植物微生物群进行了广泛的共生网络分析,并对共生体的同源性进行了研究,这进一步证明了细菌和真菌共生体在构建全球植物微生物群网络中的重要性。
{"title":"Networking the desert plant microbiome, bacterial and fungal symbionts structure and assortativity in co-occurrence networks.","authors":"Kenji Maurice, Liam Laurent-Webb, Amélia Bourceret, Stéphane Boivin, Hassan Boukcim, Marc-André Selosse, Marc Ducousso","doi":"10.1186/s40793-024-00610-4","DOIUrl":"10.1186/s40793-024-00610-4","url":null,"abstract":"<p><p>In nature, microbes do not thrive in seclusion but are involved in complex interactions within- and between-microbial kingdoms. Among these, symbiotic associations with mycorrhizal fungi and nitrogen-fixing bacteria are namely known to improve plant health, while providing resources to benefit other microbial members. Yet, it is not clear how these microbial symbionts interact with each other or how they impact the microbiota network architecture. We used an extensive co-occurrence network analysis, including rhizosphere and roots samples from six plant species in a natural desert in AlUla region (Kingdom of Saudi Arabia) and described how these symbionts were structured within the plant microbiota network. We found that the plant species was a significant driver of its microbiota composition and also of the specificity of its interactions in networks at the microbial taxa level. Despite this specificity, a motif was conserved across all networks, i.e., mycorrhizal fungi highly covaried with other mycorrhizal fungi, especially in plant roots-this pattern is known as assortativity. This structural property might reflect their ecological niche preference or their ability to opportunistically colonize roots of plant species considered non symbiotic e.g., H. salicornicum, an Amaranthaceae. Furthermore, these results are consistent with previous findings regarding the architecture of the gut microbiome network, where a high level of assortativity at the level of bacterial and fungal orders was also identified, suggesting the existence of general rules of microbiome assembly. Otherwise, the bacterial symbionts Rhizobiales and Frankiales covaried with other bacterial and fungal members, and were highly structural to the intra- and inter-kingdom networks. Our extensive co-occurrence network analysis of plant microbiota and study of symbiont assortativity, provided further evidence on the importance of bacterial and fungal symbionts in structuring the global plant microbiota network.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"65"},"PeriodicalIF":6.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370318/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142120942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial core communities in activated sludge plants are strongly affected by immigration and geography. 活性污泥厂的微生物核心群落受移民和地理环境的影响很大。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-29 DOI: 10.1186/s40793-024-00604-2
Sofie Zacho Vestergaard, Giulia Dottorini, Miriam Peces, Admir Murguz, Morten Kam Dahl Dueholm, Marta Nierychlo, Per Halkjær Nielsen

Background: The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km2). With the use of an ecosystem-specific database (MiDAS 5.2), species-level classification allowed us to investigate the core and CRAT species, whether they were active, and important factors determining their presence.

Results: We established a comprehensive catalog of species with names or placeholder names showing each plant contained approx. 2,500 different species. Core and CRAT represented in total 258 species, constituting around 50% of all reads in every plant. However, not all core and CRAT could be regarded as process-critical as growth rate calculations revealed that 43% did not grow in the AS plants and were present only because of continuous immigration from the influent. Analyses of regional microbiota differences and distance decay patterns revealed a stronger effect for species than genera, demonstrating that geography had a clear effect on the AS microbiota, even across a limited geographical area such as Denmark (43,000 km2).

Conclusions: The study is the first comprehensive investigation of WWTPs in a confined geographical area providing new insights in our understanding of activated sludge microbiology by introducing a concept of combining immigration and growth calculation with identifying core and CRAT to reveal the true ecosystem-critical organisms. Additionally, the clear biogeographical pattern on this scale highlights the need for more region-level studies to find regional process-critical taxa (core and CRAT), especially at species and amplicon sequence variant (ASV) level.

背景:污水处理厂(WWTPs)和流入废水中的微生物群对处理过程、自然生态系统和人类健康的保护以及资源的恢复和可持续发展目标的实现至关重要。核心物种和条件性稀有丰富类群(CRAT)都被认为是处理过程中的关键物种,但人们对其特性以及真正的功能和生态重要性知之甚少。在此,我们对丹麦(43,000 平方公里)84 个市政活性污泥(AS)厂的微生物群进行了全面调查,这些工厂具有去除营养物质的功能,处理了丹麦(43,000 平方公里)约 70% 的废水。通过使用生态系统专用数据库(MiDAS 5.2)进行物种级分类,我们调查了核心物种和CRAT物种、它们是否活跃以及决定其存在的重要因素:我们建立了一个全面的物种目录,其名称或占位名称显示每种植物包含约 2 500 个不同物种。核心和 CRAT 共代表 258 个物种,约占每种植物所有读数的 50%。然而,并不是所有的核心微生物群和 CRAT 都能被视为过程关键微生物群,因为生长率计算显示,43% 的核心微生物群和 CRAT 并不在 AS 工厂中生长,它们的存在只是因为进水的不断迁移。对区域微生物群差异和距离衰减模式的分析表明,对物种的影响比对属的影响更大,这表明即使在丹麦(43,000 平方公里)这样一个有限的地理区域内,地理环境对自来水厂微生物群也有明显的影响:该研究是首次对有限地理区域内的污水处理厂进行的全面调查,通过引入将移民和生长计算与识别核心和CRAT相结合的概念来揭示真正的生态系统关键生物,为我们了解活性污泥微生物学提供了新的视角。此外,这种规模的明显生物地理模式突出表明,有必要开展更多区域级研究,以发现区域过程关键类群(核心和 CRAT),特别是在物种和扩增子序列变异(ASV)水平上。
{"title":"Microbial core communities in activated sludge plants are strongly affected by immigration and geography.","authors":"Sofie Zacho Vestergaard, Giulia Dottorini, Miriam Peces, Admir Murguz, Morten Kam Dahl Dueholm, Marta Nierychlo, Per Halkjær Nielsen","doi":"10.1186/s40793-024-00604-2","DOIUrl":"https://doi.org/10.1186/s40793-024-00604-2","url":null,"abstract":"<p><strong>Background: </strong>The microbiota in wastewater treatment plants (WWTPs) and incoming wastewater is critical for the treatment process, the preservation of natural ecosystems and human health, and for the recovery of resources and achievement of sustainability goals. Both core species and conditionally rare and abundant taxa (CRAT) are considered process-critical but little is known about identity as well as true functional and ecological importance. Here, we present a comprehensive investigation of the microbiota of 84 municipal activated sludge (AS) plants with nutrient removal treating ~ 70% of all wastewater within a confined geographical area, Denmark (43,000 km<sup>2</sup>). With the use of an ecosystem-specific database (MiDAS 5.2), species-level classification allowed us to investigate the core and CRAT species, whether they were active, and important factors determining their presence.</p><p><strong>Results: </strong>We established a comprehensive catalog of species with names or placeholder names showing each plant contained approx. 2,500 different species. Core and CRAT represented in total 258 species, constituting around 50% of all reads in every plant. However, not all core and CRAT could be regarded as process-critical as growth rate calculations revealed that 43% did not grow in the AS plants and were present only because of continuous immigration from the influent. Analyses of regional microbiota differences and distance decay patterns revealed a stronger effect for species than genera, demonstrating that geography had a clear effect on the AS microbiota, even across a limited geographical area such as Denmark (43,000 km<sup>2</sup>).</p><p><strong>Conclusions: </strong>The study is the first comprehensive investigation of WWTPs in a confined geographical area providing new insights in our understanding of activated sludge microbiology by introducing a concept of combining immigration and growth calculation with identifying core and CRAT to reveal the true ecosystem-critical organisms. Additionally, the clear biogeographical pattern on this scale highlights the need for more region-level studies to find regional process-critical taxa (core and CRAT), especially at species and amplicon sequence variant (ASV) level.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"63"},"PeriodicalIF":6.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361056/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ancestral environment of teosinte populations shapes their root microbiome. 茶树种群的祖先环境塑造了其根部微生物群。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-29 DOI: 10.1186/s40793-024-00606-0
Christopher J Barnes, Maria Sophie Bünner, M Rosario Ramírez-Flores, Ida Broman Nielsen, Jazmin Ramos-Madrigal, Daria Zharikova, Chloee M McLaughlin, M Thomas Gilbert, Ruairidh J H Sawers

Background: The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes.

Results: The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations.

Conclusions: Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.

背景:根微生物组的组成会影响宿主的生长,宿主基因组的变化与微生物组的变化有关。然而,尚不清楚根部微生物组的这种特异性内变异是植物为适应当地环境而对其进行有针对性操作的结果,还是随着其他性状的变化而被动变化的结果。为了探索基因组、环境和微生物组之间的关系,我们从墨西哥原产地的茶树种群中采集了种子样本。然后,我们在一个共同的花园实验中,将茶树蛋白与两个现代玉米品系一起种植。我们使用通用细菌和真菌引物进行了元条形编码,以描述它们的根微生物组:结果:两个现代玉米品系和茶树新芽品种的根部微生物组存在差异。我们进一步发现,茶树蛋白基因组、祖先环境(温度/海拔)和根部微生物组的变化都是相关的。多个微生物群的相对丰度随温度/海拔的变化而显著不同,在高海拔地区的茶树品种中,与耐寒性相关的细菌丰度增加:我们的研究结果表明,根部微生物组的变异是由当地环境的基因组预先决定的(即非随机)。最终,通过证实根部微生物组的这些差异会影响宿主的表型(例如,通过证实高海拔茶树种群的根部微生物组增强了耐寒性),这些说法将得到加强。
{"title":"The ancestral environment of teosinte populations shapes their root microbiome.","authors":"Christopher J Barnes, Maria Sophie Bünner, M Rosario Ramírez-Flores, Ida Broman Nielsen, Jazmin Ramos-Madrigal, Daria Zharikova, Chloee M McLaughlin, M Thomas Gilbert, Ruairidh J H Sawers","doi":"10.1186/s40793-024-00606-0","DOIUrl":"https://doi.org/10.1186/s40793-024-00606-0","url":null,"abstract":"<p><strong>Background: </strong>The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes.</p><p><strong>Results: </strong>The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations.</p><p><strong>Conclusions: </strong>Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"64"},"PeriodicalIF":6.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142113584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oak seedling microbiome assembly under climate warming and drought. 气候变暖和干旱条件下橡树幼苗微生物组的组合。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-28 DOI: 10.1186/s40793-024-00602-4
Daniel Hoefle, Milena Sommer, Birgit Wassermann, Maria Faticov, Demetrio Serra, Gabriele Berg, Ayco J M Tack, Ahmed Abdelfattah

Despite that climate change is currently one of the most pervasive challenges, its effects on the plant-associated microbiome is still poorly studied. The aim of this study was to evaluate the impact of the independent and combinatory effect of climate warming and drought on the microbiome assembly of oak from seed to seedling. In a multifactorial experimental set up, acorns were subjected to different temperatures (15 °C, 20 °C, and 25 °C) and soil moisture levels (drought (15%) and control (60%)) from germination until the seedling stage, after which the bacterial and fungal communities associated to the rhizosphere and phyllosphere were characterized by amplicon sequencing and qPCR. The results showed a stronger effect of temperature on fungal than on bacterial diversity and the effect was more pronounced in the phyllosphere. Under drought condition, temperature had a significantly negative effect on phyllosphere fungal diversity. In the rhizosphere, temperature had a significant effect on the fungal community composition which was primarily caused by species turnover. Regardless of temperature, Actinobacteriota was significantly enriched in drought, a group of bacteria known to increase plant drought tolerance. This study provides new insights into the effect of climate change on the plant microbiome in natural ecosystems.

尽管气候变化是当前最普遍的挑战之一,但对其对植物相关微生物组的影响的研究仍然很少。本研究的目的是评估气候变暖和干旱对橡树从种子到幼苗的微生物组组合的独立和综合影响。在一个多因素实验装置中,橡子从萌芽到幼苗阶段分别受到不同温度(15 °C、20 °C和25 °C)和土壤水分水平(干旱(15%)和对照(60%))的影响,之后通过扩增子测序和 qPCR 鉴定了与根瘤层和叶球层相关的细菌和真菌群落。结果表明,温度对真菌多样性的影响强于对细菌多样性的影响,而且这种影响在植被层中更为明显。在干旱条件下,温度对叶球真菌多样性有明显的负面影响。在根瘤层,温度对真菌群落组成有显著影响,这主要是由于物种更替造成的。无论温度如何,放线菌群在干旱时明显富集,而放线菌群是已知能提高植物耐旱性的细菌群。这项研究为了解气候变化对自然生态系统中植物微生物群的影响提供了新的视角。
{"title":"Oak seedling microbiome assembly under climate warming and drought.","authors":"Daniel Hoefle, Milena Sommer, Birgit Wassermann, Maria Faticov, Demetrio Serra, Gabriele Berg, Ayco J M Tack, Ahmed Abdelfattah","doi":"10.1186/s40793-024-00602-4","DOIUrl":"10.1186/s40793-024-00602-4","url":null,"abstract":"<p><p>Despite that climate change is currently one of the most pervasive challenges, its effects on the plant-associated microbiome is still poorly studied. The aim of this study was to evaluate the impact of the independent and combinatory effect of climate warming and drought on the microbiome assembly of oak from seed to seedling. In a multifactorial experimental set up, acorns were subjected to different temperatures (15 °C, 20 °C, and 25 °C) and soil moisture levels (drought (15%) and control (60%)) from germination until the seedling stage, after which the bacterial and fungal communities associated to the rhizosphere and phyllosphere were characterized by amplicon sequencing and qPCR. The results showed a stronger effect of temperature on fungal than on bacterial diversity and the effect was more pronounced in the phyllosphere. Under drought condition, temperature had a significantly negative effect on phyllosphere fungal diversity. In the rhizosphere, temperature had a significant effect on the fungal community composition which was primarily caused by species turnover. Regardless of temperature, Actinobacteriota was significantly enriched in drought, a group of bacteria known to increase plant drought tolerance. This study provides new insights into the effect of climate change on the plant microbiome in natural ecosystems.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"62"},"PeriodicalIF":6.2,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360865/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathogen-driven Pseudomonas reshaped the phyllosphere microbiome in combination with Pseudostellaria heterophylla foliar disease resistance via the release of volatile organic compounds. 病原体驱动的假单胞菌通过释放挥发性有机化合物重塑了叶球微生物组,并与异叶假叶藻叶片抗病性相结合。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-25 DOI: 10.1186/s40793-024-00603-3
Qing-Song Yuan, Yanping Gao, Lu Wang, Xiaoai Wang, Lingling Wang, Jiayue Ran, Xiaohong Ou, Yanhong Wang, Chenghong Xiao, Weike Jiang, Lanping Guo, Tao Zhou, Luqi Huang

Background: Continuous monocropping obstacles are common in plants, especially medicinal plants, resulting in disease outbreaks and productivity reductions. Foliar disease, mainly caused by Fusarium oxysporum, results in a severe decrease in the yield of Pseudostellaria heterophylla annually. Determining an effective biomethod to alleviate this disease is urgently needed to improve its productivity and quality.

Results: This study screened thirty-two keystone bacterial genera induced by pathogens in P. heterophylla rhizosphere soil under continuous monocropping conditions. Pseudomonas, Chryseobacterium, and Flavobacterium, referred to as the beneficial microbiota, were significantly attracted by pathogen infection. The P. palleroniana strain B-BH16-1 can directly inhibit the growth and spore formation of seven primary pathogens of P. heterophylla foliar disease by disrupting fusaric acid production via the emission of volatile organic compounds (VOCs). In addition, strain B-BH16-1 enhances the disease resistance of P. heterophylla by obliterating the pathogen and assembling beneficial microbiota.

Conclusion: Pathogen-induced Pseudomonas reshaped phyllosphere microbial communities via direct antagonism of pathogens and indirect disruption of the pathogen virulence factor biosynthesis to enhance disease suppression and improve yields. These results show that inhibiting pathogen virulence biosynthesis to reshape the plant microbial community using disease-induing probiotics will be an innovative strategy for managing plant disease, especially under continuous monoculture conditions.

背景:植物(尤其是药用植物)普遍存在连续单一种植的障碍,导致病害爆发和产量下降。主要由镰孢菌引起的叶面病害导致异叶假山每年严重减产。为提高其产量和质量,迫切需要确定一种有效的生物方法来缓解这种病害:结果:本研究筛选了 32 个由病原体诱导的关键细菌菌属,这些菌属存在于连续单作条件下的异叶假叶芹根瘤土壤中。被称为有益微生物群的假单胞菌、绿脓杆菌和黄杆菌受到病原体感染的显著吸引。P. palleroniana菌株B-BH16-1能通过释放挥发性有机化合物(VOCs)干扰镰刀菌酸的产生,从而直接抑制异型叶枯病七种主要病原体的生长和孢子形成。此外,菌株 B-BH16-1 还能通过抹杀病原体和聚集有益微生物群来增强异型叶枯病的抗病性:病原体诱导的假单胞菌通过直接拮抗病原体和间接破坏病原体毒力因子的生物合成来重塑叶球微生物群落,从而增强病害抑制能力并提高产量。这些结果表明,利用病原诱导型益生菌抑制病原毒力生物合成以重塑植物微生物群落,将是管理植物病害的一种创新策略,尤其是在连续单一栽培条件下。
{"title":"Pathogen-driven Pseudomonas reshaped the phyllosphere microbiome in combination with Pseudostellaria heterophylla foliar disease resistance via the release of volatile organic compounds.","authors":"Qing-Song Yuan, Yanping Gao, Lu Wang, Xiaoai Wang, Lingling Wang, Jiayue Ran, Xiaohong Ou, Yanhong Wang, Chenghong Xiao, Weike Jiang, Lanping Guo, Tao Zhou, Luqi Huang","doi":"10.1186/s40793-024-00603-3","DOIUrl":"10.1186/s40793-024-00603-3","url":null,"abstract":"<p><strong>Background: </strong>Continuous monocropping obstacles are common in plants, especially medicinal plants, resulting in disease outbreaks and productivity reductions. Foliar disease, mainly caused by Fusarium oxysporum, results in a severe decrease in the yield of Pseudostellaria heterophylla annually. Determining an effective biomethod to alleviate this disease is urgently needed to improve its productivity and quality.</p><p><strong>Results: </strong>This study screened thirty-two keystone bacterial genera induced by pathogens in P. heterophylla rhizosphere soil under continuous monocropping conditions. Pseudomonas, Chryseobacterium, and Flavobacterium, referred to as the beneficial microbiota, were significantly attracted by pathogen infection. The P. palleroniana strain B-BH16-1 can directly inhibit the growth and spore formation of seven primary pathogens of P. heterophylla foliar disease by disrupting fusaric acid production via the emission of volatile organic compounds (VOCs). In addition, strain B-BH16-1 enhances the disease resistance of P. heterophylla by obliterating the pathogen and assembling beneficial microbiota.</p><p><strong>Conclusion: </strong>Pathogen-induced Pseudomonas reshaped phyllosphere microbial communities via direct antagonism of pathogens and indirect disruption of the pathogen virulence factor biosynthesis to enhance disease suppression and improve yields. These results show that inhibiting pathogen virulence biosynthesis to reshape the plant microbial community using disease-induing probiotics will be an innovative strategy for managing plant disease, especially under continuous monoculture conditions.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"61"},"PeriodicalIF":6.2,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial assemblages and associated biogeochemical processes in Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys, Antarctica. 南极洲麦克默多干谷永久冰封湖泊邦尼湖中的微生物群落及相关生物地球化学过程。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-20 DOI: 10.1186/s40793-024-00605-1
Hanbyul Lee, Kyuin Hwang, Ahnna Cho, Soyeon Kim, Minkyung Kim, Rachael Morgan-Kiss, John C Priscu, Kyung Mo Kim, Ok-Sun Kim

Background: Lake Bonney, which is divided into a west lobe (WLB) and an east lobe (ELB), is a perennially ice-covered lake located in the McMurdo Dry Valleys of Antarctica. Despite previous reports on the microbial community dynamics of ice-covered lakes in this region, there is a paucity of information on the relationship between microbial genomic diversity and associated nutrient cycling. Here, we applied gene- and genome-centric approaches to investigate the microbial ecology and reconstruct microbial metabolic potential along the depth gradient in Lake Bonney.

Results: Lake Bonney is strongly chemically stratified with three distinct redox zones, yielding different microbial niches. Our genome enabled approach revealed that in the sunlit and relatively freshwater epilimnion, oxygenic photosynthetic production by the cyanobacterium Pseudanabaena and a diversity of protists and microalgae may provide new organic carbon to the environment. CO-oxidizing bacteria, such as Acidimicrobiales, Nanopelagicales, and Burkholderiaceae were also prominent in the epilimnion and their ability to oxidize carbon monoxide to carbon dioxide may serve as a supplementary energy conservation strategy. In the more saline metalimnion of ELB, an accumulation of inorganic nitrogen and phosphorus supports photosynthesis despite relatively low light levels. Conversely, in WLB the release of organic rich subglacial discharge from Taylor Glacier into WLB would be implicated in the possible high abundance of heterotrophs supported by increased potential for glycolysis, beta-oxidation, and glycoside hydrolase and may contribute to the growth of iron reducers in the dark and extremely saline hypolimnion of WLB. The suboxic and subzero temperature zones beneath the metalimnia in both lobes supported microorganisms capable of utilizing reduced nitrogens and sulfurs as electron donors. Heterotrophs, including nitrate reducing sulfur oxidizing bacteria, such as Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), and denitrifying bacteria, such as Gracilimonas (MAG7), Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), dominated the hypolimnion of WLB, whereas the environmental harshness of the hypolimnion of ELB was supported by the relatively low in metabolic potential, as well as the abundance of halophile Halomonas and endospore-forming Virgibacillus.

Conclusions: The vertical distribution of microbially driven C, N and S cycling genes/pathways in Lake Bonney reveals the importance of geochemical gradients to microbial diversity and biogeochemical cycles with the vertical water column.

背景:邦尼湖(Lake Bonney)分为西湖(WLB)和东湖(ELB),是位于南极洲麦克默多干谷(McMurdo Dry Valleys)的一个常年冰封的湖泊。尽管之前有关于该地区冰封湖泊微生物群落动态的报道,但关于微生物基因组多样性与相关营养循环之间关系的信息却很少。在这里,我们采用了以基因和基因组为中心的方法来研究邦尼湖的微生物生态学,并沿着深度梯度重建微生物的代谢潜力:结果:邦尼湖具有强烈的化学分层,有三个不同的氧化还原区,产生了不同的微生物生态位。我们的基因组学方法发现,在阳光充足和相对淡水的上水层,蓝藻、多种原生动物和微藻类的氧光合作用可为环境提供新的有机碳。一氧化碳氧化细菌,如酸性微生物菌、Nanopelagicales 和 Burkholderiaceae 等,在上水层也很突出,它们将一氧化碳氧化为二氧化碳的能力可能是一种补充性节能策略。在盐度较高的 ELB 金属盐层中,尽管光照水平相对较低,但无机氮和磷的积累仍能支持光合作用。相反,在 WLB 中,泰勒冰川向 WLB 释放的富含有机物的冰川下泄流可能与异养生物的大量存在有关,这些异养生物因糖酵解、β-氧化和糖苷水解酶的潜力增加而得到支持,并可能有助于铁还原剂在 WLB 黑暗和极度盐化的下盐层中生长。两个叶片金属膜下的亚缺氧和亚零度温度区支持能够利用还原型氮和硫作为电子供体的微生物。异养生物,包括硝酸盐还原硫氧化细菌,如酸性微生物菌(MAG72)和 Salinisphaeraceae(MAG109),以及反硝化细菌,如 Gracilimonas(MAG7)、酸性微生物菌(MAG72)和 Salinisphaeraceae(MAG109)、而 ELB 的下盐层环境恶劣,代谢潜力相对较低,嗜卤卤单胞菌和内生孢子形成维吉巴氏菌数量丰富。结论邦尼湖中微生物驱动的 C、N 和 S 循环基因/途径的垂直分布揭示了地球化学梯度对微生物多样性和垂直水柱生物地球化学循环的重要性。
{"title":"Microbial assemblages and associated biogeochemical processes in Lake Bonney, a permanently ice-covered lake in the McMurdo Dry Valleys, Antarctica.","authors":"Hanbyul Lee, Kyuin Hwang, Ahnna Cho, Soyeon Kim, Minkyung Kim, Rachael Morgan-Kiss, John C Priscu, Kyung Mo Kim, Ok-Sun Kim","doi":"10.1186/s40793-024-00605-1","DOIUrl":"10.1186/s40793-024-00605-1","url":null,"abstract":"<p><strong>Background: </strong>Lake Bonney, which is divided into a west lobe (WLB) and an east lobe (ELB), is a perennially ice-covered lake located in the McMurdo Dry Valleys of Antarctica. Despite previous reports on the microbial community dynamics of ice-covered lakes in this region, there is a paucity of information on the relationship between microbial genomic diversity and associated nutrient cycling. Here, we applied gene- and genome-centric approaches to investigate the microbial ecology and reconstruct microbial metabolic potential along the depth gradient in Lake Bonney.</p><p><strong>Results: </strong>Lake Bonney is strongly chemically stratified with three distinct redox zones, yielding different microbial niches. Our genome enabled approach revealed that in the sunlit and relatively freshwater epilimnion, oxygenic photosynthetic production by the cyanobacterium Pseudanabaena and a diversity of protists and microalgae may provide new organic carbon to the environment. CO-oxidizing bacteria, such as Acidimicrobiales, Nanopelagicales, and Burkholderiaceae were also prominent in the epilimnion and their ability to oxidize carbon monoxide to carbon dioxide may serve as a supplementary energy conservation strategy. In the more saline metalimnion of ELB, an accumulation of inorganic nitrogen and phosphorus supports photosynthesis despite relatively low light levels. Conversely, in WLB the release of organic rich subglacial discharge from Taylor Glacier into WLB would be implicated in the possible high abundance of heterotrophs supported by increased potential for glycolysis, beta-oxidation, and glycoside hydrolase and may contribute to the growth of iron reducers in the dark and extremely saline hypolimnion of WLB. The suboxic and subzero temperature zones beneath the metalimnia in both lobes supported microorganisms capable of utilizing reduced nitrogens and sulfurs as electron donors. Heterotrophs, including nitrate reducing sulfur oxidizing bacteria, such as Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), and denitrifying bacteria, such as Gracilimonas (MAG7), Acidimicrobiales (MAG72) and Salinisphaeraceae (MAG109), dominated the hypolimnion of WLB, whereas the environmental harshness of the hypolimnion of ELB was supported by the relatively low in metabolic potential, as well as the abundance of halophile Halomonas and endospore-forming Virgibacillus.</p><p><strong>Conclusions: </strong>The vertical distribution of microbially driven C, N and S cycling genes/pathways in Lake Bonney reveals the importance of geochemical gradients to microbial diversity and biogeochemical cycles with the vertical water column.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"60"},"PeriodicalIF":6.2,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334312/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The symbiotic alga Trebouxia fuels a coherent soil ecosystem on the landscape scale in the Atacama Desert. 在阿塔卡马沙漠的地貌尺度上,共生藻类 "特雷布夏 "为连贯的土壤生态系统提供了动力。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-09 DOI: 10.1186/s40793-024-00601-5
Patrick Jung, Rebekah Brand, Laura Briegel-Williams, Lina Werner, Emily Jost, Guillaume Lentendu, David Singer, Rujuta Athavale, Dennis J Nürnberg, Fernando D Alfaro, Burkhard Büdel, Michael Lakatos

Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens. To understand its biodiversity and impact, we applied a polyphasic approach on the phototrophic microbiome of this biocrust, combining isolation and characterization of the lichen photobionts, multi-gene phylogeny of the photobionts and mycobionts based on a direct sequencing and microphotography approach, metabarcoding and determination of chlorophylla+b contents. Metabarcoding showed that yet undescribed lichens within the Caliciaceae dominated the biocrust together with Trebouxia as the most abundant eukaryote in all plots. Together with high mean chlorophylla+b contents exceeding 410 mg m-2, this distinguished the symbiotic algae Trebouxia as the main driver of the grit crust ecosystem. The trebouxioid photobionts could be assigned to the I (T. impressa/gelatinosa) and A (T. arboricola) clades and represented several lineages containing five potential species candidates, which were identified based on the unique phylogenetic position, morphological features, and developmental cycles of the corresponding isolates. These results designate the grit crust as the only known coherent soil layer with significant landscape covering impact of at least 440 km2, predominantly ruled by a single symbiotic algal genus.

生物地壳是地衣、绿藻、蓝藻、真菌和其他微生物的结合体,在不同比例的主要干旱生物群落的土壤中生长。所谓的砂砾结壳是最近在智利阿塔卡马沙漠海岸山脉发现的一种生物结壳,由生长在花岗岩卵石上和卵石中的微生物组成,在地形上形成肉眼可见的棋盘图案。这种特殊的微生物群落提供了广泛的生态系统服务,所有这些服务可能都是由雾和露水引起的光合作用活动驱动的,而光合作用活动主要是由微型栗鼠进行的。为了了解其生物多样性及其影响,我们对该生物群的光营养微生物组采用了一种多相方法,将地衣光附生虫的分离和特征描述、基于直接测序和显微照相方法的光附生虫和霉菌的多基因系统发育、元条码和叶绿素+b含量的测定结合起来。元条码显示,钙华科地衣属中尚未被描述的地衣在生物覆盖层中占主导地位,而真核菌(Trebouxia)是所有地块中最丰富的真核生物。加上平均叶绿素+b 含量超过 410 毫克/平方米-2,共生藻类树袋藻成为砂壳生态系统的主要驱动力。根据相应分离物的独特系统发育位置、形态特征和发育周期,确定了包含五个潜在候选物种的几个系。这些结果表明,砂砾结壳是唯一已知的连贯土壤层,具有重要的景观覆盖影响,面积至少达 440 平方公里,主要由单一共生藻属统治。
{"title":"The symbiotic alga Trebouxia fuels a coherent soil ecosystem on the landscape scale in the Atacama Desert.","authors":"Patrick Jung, Rebekah Brand, Laura Briegel-Williams, Lina Werner, Emily Jost, Guillaume Lentendu, David Singer, Rujuta Athavale, Dennis J Nürnberg, Fernando D Alfaro, Burkhard Büdel, Michael Lakatos","doi":"10.1186/s40793-024-00601-5","DOIUrl":"10.1186/s40793-024-00601-5","url":null,"abstract":"<p><p>Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens. To understand its biodiversity and impact, we applied a polyphasic approach on the phototrophic microbiome of this biocrust, combining isolation and characterization of the lichen photobionts, multi-gene phylogeny of the photobionts and mycobionts based on a direct sequencing and microphotography approach, metabarcoding and determination of chlorophyll<sub>a+b</sub> contents. Metabarcoding showed that yet undescribed lichens within the Caliciaceae dominated the biocrust together with Trebouxia as the most abundant eukaryote in all plots. Together with high mean chlorophyll<sub>a+b</sub> contents exceeding 410 mg m<sup>-2</sup>, this distinguished the symbiotic algae Trebouxia as the main driver of the grit crust ecosystem. The trebouxioid photobionts could be assigned to the I (T. impressa/gelatinosa) and A (T. arboricola) clades and represented several lineages containing five potential species candidates, which were identified based on the unique phylogenetic position, morphological features, and developmental cycles of the corresponding isolates. These results designate the grit crust as the only known coherent soil layer with significant landscape covering impact of at least 440 km<sup>2</sup>, predominantly ruled by a single symbiotic algal genus.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"59"},"PeriodicalIF":6.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311966/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MICROPHERRET: MICRObial PHEnotypic tRait ClassifieR using Machine lEarning Techniques. MICROPHERRET:利用机器学习技术进行微生病理信道分类。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-08 DOI: 10.1186/s40793-024-00600-6
Edoardo Bizzotto, Sofia Fraulini, Guido Zampieri, Esteban Orellana, Laura Treu, Stefano Campanaro

Background: In recent years, there has been a rapid increase in the number of microbial genomes reconstructed through shotgun sequencing, and obtained by newly developed approaches including metagenomic binning and single-cell sequencing. However, our ability to functionally characterize these genomes by experimental assays is orders of magnitude less efficient. Consequently, there is a pressing need for the development of swift and automated strategies for the functional classification of microbial genomes.

Results: The present work leverages a suite of supervised machine learning algorithms to establish a range of 86 metabolic and other ecological functions, such as methanotrophy and plastic degradation, starting from widely obtainable microbial genome annotations. Tests performed on independent datasets demonstrated robust performance across complete, fragmented, and incomplete genomes above a 70% completeness level for most of the considered functions. Application of the algorithms to the Biogas Microbiome database yielded predictions broadly consistent with current biological knowledge and correctly detecting functionally-related nuances of archaeal genomes. Finally, a case study focused on acetoclastic methanogenesis demonstrated how the developed machine learning models can be refined or expanded with models describing novel functions of interest.

Conclusions: The resulting tool, MICROPHERRET, incorporates a total of 86 models, one for each tested functional class, and can be applied to high-quality microbial genomes as well as to low-quality genomes derived from metagenomics and single-cell sequencing. MICROPHERRET can thus aid in understanding the functional role of newly generated genomes within their micro-ecological context.

背景:近年来,通过霰弹枪测序重建的微生物基因组数量迅速增加,新开发的方法包括元基因组分选和单细胞测序。然而,我们通过实验测定法对这些基因组进行功能表征的能力却低了几个数量级。因此,我们迫切需要开发快速、自动化的微生物基因组功能分类策略:本研究利用一套有监督的机器学习算法,从广泛获得的微生物基因组注释出发,建立了一系列 86 种代谢功能和其他生态功能,如甲烷营养和塑料降解。在独立数据集上进行的测试表明,对于大多数考虑的功能,该算法在完整、片段和不完整基因组中的表现都很稳健,完整度超过 70%。在沼气微生物组数据库中应用该算法得出的预测结果与当前的生物学知识基本一致,并能正确检测出古细菌基因组中与功能相关的细微差别。最后,以乙酰甲烷生成为重点的案例研究表明,所开发的机器学习模型可以通过描述感兴趣的新功能的模型进行完善或扩展:由此产生的工具 MICROPHERRET 共包含 86 个模型,每个测试的功能类别都有一个模型,可应用于高质量微生物基因组以及从元基因组学和单细胞测序中获得的低质量基因组。因此,MICROPHERRET 有助于了解新生成的基因组在其微生态环境中的功能作用。
{"title":"MICROPHERRET: MICRObial PHEnotypic tRait ClassifieR using Machine lEarning Techniques.","authors":"Edoardo Bizzotto, Sofia Fraulini, Guido Zampieri, Esteban Orellana, Laura Treu, Stefano Campanaro","doi":"10.1186/s40793-024-00600-6","DOIUrl":"10.1186/s40793-024-00600-6","url":null,"abstract":"<p><strong>Background: </strong>In recent years, there has been a rapid increase in the number of microbial genomes reconstructed through shotgun sequencing, and obtained by newly developed approaches including metagenomic binning and single-cell sequencing. However, our ability to functionally characterize these genomes by experimental assays is orders of magnitude less efficient. Consequently, there is a pressing need for the development of swift and automated strategies for the functional classification of microbial genomes.</p><p><strong>Results: </strong>The present work leverages a suite of supervised machine learning algorithms to establish a range of 86 metabolic and other ecological functions, such as methanotrophy and plastic degradation, starting from widely obtainable microbial genome annotations. Tests performed on independent datasets demonstrated robust performance across complete, fragmented, and incomplete genomes above a 70% completeness level for most of the considered functions. Application of the algorithms to the Biogas Microbiome database yielded predictions broadly consistent with current biological knowledge and correctly detecting functionally-related nuances of archaeal genomes. Finally, a case study focused on acetoclastic methanogenesis demonstrated how the developed machine learning models can be refined or expanded with models describing novel functions of interest.</p><p><strong>Conclusions: </strong>The resulting tool, MICROPHERRET, incorporates a total of 86 models, one for each tested functional class, and can be applied to high-quality microbial genomes as well as to low-quality genomes derived from metagenomics and single-cell sequencing. MICROPHERRET can thus aid in understanding the functional role of newly generated genomes within their micro-ecological context.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"58"},"PeriodicalIF":6.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11308548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141903280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host specialization and spatial divergence of bacteria associated with Peltigera lichens promote landscape gamma diversity. 与盾皮地衣相关的细菌的寄主专一性和空间分化促进了景观伽马多样性。
IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-05 DOI: 10.1186/s40793-024-00598-x
Guillaume Schwob, Katerin Almendras, Karla Veas-Mattheos, Matías Pezoa, Julieta Orlando

Background: Lichens are micro-ecosystems relying on diverse microorganisms for nutrient cycling, environmental adaptation, and structural support. We investigated the spatial-scale dependency of factors shaping the ecological processes that govern lichen-associated bacteria. We hypothesize that lichens function as island-like habitats hosting divergent microbiomes and promoting landscape gamma-diversity. Three microenvironments -thalli, substrates, and neighboring soils- were sampled from four geographically overlapping species of Peltigera cyanolichens, spanning three bioclimatic zones in the Chilean Patagonia, to determine how bacterial diversity, assembly processes, ecological drivers, interaction patterns, and niche breadth vary among Peltigera microenvironments on a broad geographical scale.

Results: The hosts' phylogeny, especially that of the cyanobiont, alongside climate as a secondary factor, impose a strong ecological filtering of bacterial communities within Peltigera thalli. This results in deterministically assembled, low diverse, and phylogenetically convergent yet structurally divergent bacterial communities. Host evolutionary and geographic distances accentuate the divergence in bacterial community composition of Peltigera thalli. Compared to soil and substrate, Peltigera thalli harbor specialized and locally adapted bacterial taxa, conforming sparse and weak ecological networks.

Conclusions: The findings suggest that Petigera thalli create fragmented habitats that foster landscape bacterial gamma-diversity. This underscores the importance of preserving lichens for maintaining a potential reservoir of specialized bacteria.

背景:地衣是一种微型生态系统,依靠多种微生物进行营养循环、环境适应和结构支持。我们研究了影响地衣相关细菌生态过程的各种因素的空间尺度依赖性。我们假设地衣作为类似岛屿的栖息地,可以容纳不同的微生物群,并促进景观伽马多样性。我们从智利巴塔哥尼亚地区跨越三个生物气候带的四个地理位置重叠的蓝藻物种中采集了三种微环境样本--地衣、基质和邻近土壤,以确定细菌多样性、组装过程、生态驱动因素、相互作用模式和生态位广度在广泛的地理范围内如何在蓝藻微环境中发生变化:结果:宿主的系统发育,尤其是蓝藻的系统发育,以及气候这一次要因素,对盾皮藻毛丛中的细菌群落产生了强烈的生态过滤作用。这导致了细菌群落的确定性组合、低多样性、系统发育趋同但结构上的差异。宿主的进化和地理距离加剧了盾皮藻细菌群落组成的差异。与土壤和基质相比,盾叶菌蕴藏着特化的、适应当地环境的细菌类群,形成了稀疏而薄弱的生态网络:结论:研究结果表明,盾皮藻苔藓创造了支离破碎的栖息地,促进了景观细菌伽马多样性的形成。这强调了保护地衣以保持潜在的特化细菌库的重要性。
{"title":"Host specialization and spatial divergence of bacteria associated with Peltigera lichens promote landscape gamma diversity.","authors":"Guillaume Schwob, Katerin Almendras, Karla Veas-Mattheos, Matías Pezoa, Julieta Orlando","doi":"10.1186/s40793-024-00598-x","DOIUrl":"10.1186/s40793-024-00598-x","url":null,"abstract":"<p><strong>Background: </strong>Lichens are micro-ecosystems relying on diverse microorganisms for nutrient cycling, environmental adaptation, and structural support. We investigated the spatial-scale dependency of factors shaping the ecological processes that govern lichen-associated bacteria. We hypothesize that lichens function as island-like habitats hosting divergent microbiomes and promoting landscape gamma-diversity. Three microenvironments -thalli, substrates, and neighboring soils- were sampled from four geographically overlapping species of Peltigera cyanolichens, spanning three bioclimatic zones in the Chilean Patagonia, to determine how bacterial diversity, assembly processes, ecological drivers, interaction patterns, and niche breadth vary among Peltigera microenvironments on a broad geographical scale.</p><p><strong>Results: </strong>The hosts' phylogeny, especially that of the cyanobiont, alongside climate as a secondary factor, impose a strong ecological filtering of bacterial communities within Peltigera thalli. This results in deterministically assembled, low diverse, and phylogenetically convergent yet structurally divergent bacterial communities. Host evolutionary and geographic distances accentuate the divergence in bacterial community composition of Peltigera thalli. Compared to soil and substrate, Peltigera thalli harbor specialized and locally adapted bacterial taxa, conforming sparse and weak ecological networks.</p><p><strong>Conclusions: </strong>The findings suggest that Petigera thalli create fragmented habitats that foster landscape bacterial gamma-diversity. This underscores the importance of preserving lichens for maintaining a potential reservoir of specialized bacteria.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"57"},"PeriodicalIF":6.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Environmental Microbiome
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1