首页 > 最新文献

Journal of Computational Design and Engineering最新文献

英文 中文
Heat Transfer Analysis of Carreau-Yasuda Nanofluid Flow with Variable Thermal Conductivity and Quadratic Convection 导热系数可变和二次对流的 Carreau-Yasuda 纳米流体流的传热分析
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2024-01-23 DOI: 10.1093/jcde/qwae009
Asia Ali Akbar, A. Awan, Sohail Nadeem, N. A. Ahammad, Nauman Raza, M. Oreijah, Kamel Guedri, S. Allahyani
Brownian motions and Thermophoresis are primary sources of nanoparticle diffusion in nanofluids, having substantial implications for the thermo-physical characteristics of nanofluids. With such a high need, the two-dimensional, laminar MHD quadratic convective stream of Carreau-Yasuda nano liquid across the stretchy sheet has been reported. The flow is caused by surface stretching. The principal purpose of this extensive study is to enhance thermal transmission. The effects of variable thermal conductivity and heat source are considered as well. The governing boundary layer equations are transmuted using similarity parameters into a series of nonlinear ODEs. The bvp4c algorithm is adopted to fix the translated system numerically. The effects of prominent similarity variables over the temperature, velocity, and concentration field are graphically visualized and verified via tables. It explored that fluid’s speed diminishes for the more significant inputs of the magnetic coefficient, Brownian motion coefficient, and Prandtl number. The thermal efficiency is improved for larger values of thermophoretic constant, varying thermal conductance, and heat-generating parameters. The concentration field has proved to be a decreasing function of nanofluid constants.
布朗运动和热泳是纳米流体中纳米粒子扩散的主要来源,对纳米流体的热物理特性具有重大影响。在这样的高要求下,有人报道了 Carreau-Yasuda 纳米液体在拉伸片上的二维层流 MHD 二次对流。流动是由表面拉伸引起的。这项广泛研究的主要目的是增强热传导。研究还考虑了可变热导率和热源的影响。利用相似性参数将边界层方程转换为一系列非线性 ODE。采用 bvp4c 算法对转换后的系统进行数值修正。突出的相似性变量对温度场、速度场和浓度场的影响以图形直观显示,并通过表格进行验证。研究发现,当输入的磁力系数、布朗运动系数和普朗特数越大时,流体的速度越小。当热传导常数、不同热导率和发热参数的值越大时,热效率越高。事实证明,浓度场是纳米流体常数的递减函数。
{"title":"Heat Transfer Analysis of Carreau-Yasuda Nanofluid Flow with Variable Thermal Conductivity and Quadratic Convection","authors":"Asia Ali Akbar, A. Awan, Sohail Nadeem, N. A. Ahammad, Nauman Raza, M. Oreijah, Kamel Guedri, S. Allahyani","doi":"10.1093/jcde/qwae009","DOIUrl":"https://doi.org/10.1093/jcde/qwae009","url":null,"abstract":"\u0000 Brownian motions and Thermophoresis are primary sources of nanoparticle diffusion in nanofluids, having substantial implications for the thermo-physical characteristics of nanofluids. With such a high need, the two-dimensional, laminar MHD quadratic convective stream of Carreau-Yasuda nano liquid across the stretchy sheet has been reported. The flow is caused by surface stretching. The principal purpose of this extensive study is to enhance thermal transmission. The effects of variable thermal conductivity and heat source are considered as well. The governing boundary layer equations are transmuted using similarity parameters into a series of nonlinear ODEs. The bvp4c algorithm is adopted to fix the translated system numerically. The effects of prominent similarity variables over the temperature, velocity, and concentration field are graphically visualized and verified via tables. It explored that fluid’s speed diminishes for the more significant inputs of the magnetic coefficient, Brownian motion coefficient, and Prandtl number. The thermal efficiency is improved for larger values of thermophoretic constant, varying thermal conductance, and heat-generating parameters. The concentration field has proved to be a decreasing function of nanofluid constants.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139602773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conceptual design and optimization of polymer gear system for low-thrust turbofan aeroengine accessory transmission 低推力涡扇发动机附件传动聚合物齿轮系统的概念设计与优化
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2024-01-22 DOI: 10.1093/jcde/qwae008
Zehua Lu, Chang Liu, Changjun Liao, Jiazan Zhu, Huaiju Liu, Yiming Chen
The advancement in materials and lubrication has significantly improved the load-carrying capability of polymer gears, making them ideal for replacing metal gears in power transmission. However, this conversion is not as simple as substituting steel with polymer; it requires a thorough redesign of the structural parameters specific to polymer gears. To enable the metal-to-polymer conversion of gear in power transmission, a model for optimizing polymer gear systems was developed. An investigation of the accessory transmission system of a low-thrust turbofan aeroengine was conducted. A comprehensive performance index for the accessory transmission was developed using combined weighting coefficients to achieve the optimization goals including total mass, transmission efficiency, maximum transmission error and so on. The polymer gear system developed using the proposed optimization model demonstrated a 70.4% reduction in total mass compared to the metal gear system, as well as a transmission error decrease of over 29% when compared to polymer gear systems with standard tooth profiles. The contribution analysis results demonstrated that optimizing the tooth width, pressure angle, and addendum height of polymer gears can significantly enhance the load-carrying capacity of the polymer gear system while maximizing tooth profile flexibility.
材料和润滑方面的进步大大提高了聚合物齿轮的承载能力,使其成为取代动力传输中金属齿轮的理想选择。然而,这种转换并不像用聚合物替代钢那么简单,它需要对聚合物齿轮特有的结构参数进行彻底的重新设计。为了实现动力传动中齿轮的金属-聚合物转换,我们开发了一个用于优化聚合物齿轮系统的模型。对低推力涡扇发动机的附件传动系统进行了研究。利用组合加权系数制定了附件传动系统的综合性能指标,以实现总质量、传动效率、最大传动误差等优化目标。使用所提出的优化模型开发的聚合物齿轮系统与金属齿轮系统相比,总质量减少了 70.4%,与具有标准齿形的聚合物齿轮系统相比,传动误差减少了 29% 以上。贡献分析结果表明,优化聚合物齿轮的齿宽、压力角和附加高度可显著提高聚合物齿轮系统的承载能力,同时最大限度地提高齿形灵活性。
{"title":"Conceptual design and optimization of polymer gear system for low-thrust turbofan aeroengine accessory transmission","authors":"Zehua Lu, Chang Liu, Changjun Liao, Jiazan Zhu, Huaiju Liu, Yiming Chen","doi":"10.1093/jcde/qwae008","DOIUrl":"https://doi.org/10.1093/jcde/qwae008","url":null,"abstract":"\u0000 The advancement in materials and lubrication has significantly improved the load-carrying capability of polymer gears, making them ideal for replacing metal gears in power transmission. However, this conversion is not as simple as substituting steel with polymer; it requires a thorough redesign of the structural parameters specific to polymer gears. To enable the metal-to-polymer conversion of gear in power transmission, a model for optimizing polymer gear systems was developed. An investigation of the accessory transmission system of a low-thrust turbofan aeroengine was conducted. A comprehensive performance index for the accessory transmission was developed using combined weighting coefficients to achieve the optimization goals including total mass, transmission efficiency, maximum transmission error and so on. The polymer gear system developed using the proposed optimization model demonstrated a 70.4% reduction in total mass compared to the metal gear system, as well as a transmission error decrease of over 29% when compared to polymer gear systems with standard tooth profiles. The contribution analysis results demonstrated that optimizing the tooth width, pressure angle, and addendum height of polymer gears can significantly enhance the load-carrying capacity of the polymer gear system while maximizing tooth profile flexibility.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139609007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint MR Image Reconstruction and Super-Resolution via Mutual Co-Attention Network 通过相互协作网络实现联合磁共振图像重建和超分辨率
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2024-01-19 DOI: 10.1093/jcde/qwae006
Jiacheng Chen, Fei Wu, Wanliang Wang
In the realm of medical diagnosis, recent strides in Deep Neural Network-guided Magnetic Resonance Imaging (MRI) restoration have shown promise. Nevertheless, persistent drawbacks overshadow these advancements. Challenges persist in balancing acquisition speed and image quality, while existing methods primarily focus on singular tasks like MRI reconstruction or super-resolution, neglecting the interplay between these tasks. To tackle these challenges, this paper introduces the Mutual Co-Attention Network (MCAN) specifically designed to concurrently address both MRI reconstruction and super-resolution tasks. Comprising multiple Mutual Cooperation Attention Blocks (MCABs) in succession, MCAN is tailored to maintain consistency between local physiological details and global anatomical structures. The intricately crafted MCAB includes a feature extraction block, a local attention block, and a global attention block. Additionally, to ensure data fidelity without compromising acquired data, we propose the Channel-wise Data Consistency (CDC) block. Thorough experimentation on the IXI and fastMRI dataset showcases MCAN’s superiority over existing state-of-the-art methods. Both quantitative metrics and visual quality assessments validate the enhanced performance of MCAN in MRI restoration. The findings underscore MCAN’s potential in significantly advancing therapeutic applications. By mitigating the trade-off between acquisition speed and image quality while simultaneously addressing both MRI reconstruction and super-resolution tasks, MCAN emerges as a promising solution in the domain of MR image restoration.
在医学诊断领域,深度神经网络引导的磁共振成像(MRI)修复技术最近取得了长足进步,前景广阔。然而,持续存在的缺陷给这些进步蒙上了阴影。在平衡采集速度和图像质量方面一直存在挑战,而现有方法主要关注磁共振成像重建或超分辨率等单一任务,忽视了这些任务之间的相互作用。为了应对这些挑战,本文介绍了专为同时解决磁共振成像重建和超分辨率任务而设计的相互协作注意力网络(MCAN)。MCAN 由多个连续的相互协作注意区块(MCAB)组成,旨在保持局部生理细节与整体解剖结构之间的一致性。精心设计的 MCAB 包括一个特征提取块、一个局部注意块和一个全局注意块。此外,为了确保数据的保真度,同时不影响已获取的数据,我们提出了通道数据一致性(CDC)块。在 IXI 和 fastMRI 数据集上进行的全面实验表明,MCAN 优于现有的先进方法。定量指标和视觉质量评估都验证了 MCAN 在磁共振成像修复中的增强性能。这些发现凸显了 MCAN 在显著推进治疗应用方面的潜力。MCAN 可减轻采集速度和图像质量之间的权衡,同时解决磁共振成像重建和超分辨率任务,是磁共振图像复原领域前景广阔的解决方案。
{"title":"Joint MR Image Reconstruction and Super-Resolution via Mutual Co-Attention Network","authors":"Jiacheng Chen, Fei Wu, Wanliang Wang","doi":"10.1093/jcde/qwae006","DOIUrl":"https://doi.org/10.1093/jcde/qwae006","url":null,"abstract":"\u0000 In the realm of medical diagnosis, recent strides in Deep Neural Network-guided Magnetic Resonance Imaging (MRI) restoration have shown promise. Nevertheless, persistent drawbacks overshadow these advancements. Challenges persist in balancing acquisition speed and image quality, while existing methods primarily focus on singular tasks like MRI reconstruction or super-resolution, neglecting the interplay between these tasks. To tackle these challenges, this paper introduces the Mutual Co-Attention Network (MCAN) specifically designed to concurrently address both MRI reconstruction and super-resolution tasks. Comprising multiple Mutual Cooperation Attention Blocks (MCABs) in succession, MCAN is tailored to maintain consistency between local physiological details and global anatomical structures. The intricately crafted MCAB includes a feature extraction block, a local attention block, and a global attention block. Additionally, to ensure data fidelity without compromising acquired data, we propose the Channel-wise Data Consistency (CDC) block. Thorough experimentation on the IXI and fastMRI dataset showcases MCAN’s superiority over existing state-of-the-art methods. Both quantitative metrics and visual quality assessments validate the enhanced performance of MCAN in MRI restoration. The findings underscore MCAN’s potential in significantly advancing therapeutic applications. By mitigating the trade-off between acquisition speed and image quality while simultaneously addressing both MRI reconstruction and super-resolution tasks, MCAN emerges as a promising solution in the domain of MR image restoration.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139612879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brep2Seq: A dataset and hierarchical deep learning network for reconstruction and generation of computer-aided design models Brep2Seq:用于重建和生成计算机辅助设计模型的数据集和分层深度学习网络
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2024-01-19 DOI: 10.1093/jcde/qwae005
Shuming Zhang, Zhidong Guan, Hao Jiang, Tao Ning, Xiaodong Wang, Pingan Tan
3D reconstruction is a significant research topic in the field of Computer-Aided Design (CAD), which is used to recover editable CAD models from original shapes, including point clouds, voxels, meshes, and boundary representations (B-rep). Recently, there has been considerable research interest in deep model generation due to the increasing potential of deep learning methods. To address the challenges of 3D reconstruction and generation, we propose Brep2Seq, a novel deep neural network designed to transform the B-rep model into a sequence of editable parametrized feature-based modeling operations comprising principal primitives and detailed features. Brep2Seq employs an encoder-decoder architecture based on the Transformer, leveraging geometry and topological information within B-rep models to extract the feature representation of the original 3D shape. Due to its hierarchical network architecture and training strategy, Brep2Seq achieved improved model reconstruction and controllable model generation by distinguishing between the primary shape and detailed features of CAD models. To train Brep2Seq, a large-scale dataset comprising one million CAD designs is established through an automatic geometry synthesis method. Extensive experiments on both DeepCAD and Fusion 360 datasets demonstrate the effectiveness of Brep2Seq, and show its applicability to simple mechanical components in real-world scenarios. We further apply Brep2Seq to various downstream applications, including point cloud reconstruction, model interpolation, shape constraint generation and CAD feature recognition.
三维重建是计算机辅助设计(CAD)领域的一个重要研究课题,用于从原始形状(包括点云、体素、网格和边界表示(B-rep))中恢复可编辑的 CAD 模型。最近,由于深度学习方法的潜力越来越大,人们对深度模型生成产生了浓厚的研究兴趣。为了应对三维重建和生成的挑战,我们提出了 Brep2Seq,这是一种新颖的深度神经网络,旨在将 B-rep 模型转化为一连串可编辑的基于特征的参数化建模操作,其中包括主基元和细节特征。Brep2Seq 采用基于变换器的编码器-解码器架构,利用 B-rep 模型中的几何和拓扑信息来提取原始三维形状的特征表示。由于采用了分层网络架构和训练策略,Brep2Seq 通过区分 CAD 模型的主要形状和细节特征,实现了更好的模型重建和可控模型生成。为了训练 Brep2Seq,我们通过自动几何合成方法建立了一个包含一百万个 CAD 设计的大规模数据集。在 DeepCAD 和 Fusion 360 数据集上进行的广泛实验证明了 Brep2Seq 的有效性,并展示了它在实际场景中对简单机械部件的适用性。我们进一步将 Brep2Seq 应用于各种下游应用,包括点云重建、模型插值、形状约束生成和 CAD 特征识别。
{"title":"Brep2Seq: A dataset and hierarchical deep learning network for reconstruction and generation of computer-aided design models","authors":"Shuming Zhang, Zhidong Guan, Hao Jiang, Tao Ning, Xiaodong Wang, Pingan Tan","doi":"10.1093/jcde/qwae005","DOIUrl":"https://doi.org/10.1093/jcde/qwae005","url":null,"abstract":"\u0000 3D reconstruction is a significant research topic in the field of Computer-Aided Design (CAD), which is used to recover editable CAD models from original shapes, including point clouds, voxels, meshes, and boundary representations (B-rep). Recently, there has been considerable research interest in deep model generation due to the increasing potential of deep learning methods. To address the challenges of 3D reconstruction and generation, we propose Brep2Seq, a novel deep neural network designed to transform the B-rep model into a sequence of editable parametrized feature-based modeling operations comprising principal primitives and detailed features. Brep2Seq employs an encoder-decoder architecture based on the Transformer, leveraging geometry and topological information within B-rep models to extract the feature representation of the original 3D shape. Due to its hierarchical network architecture and training strategy, Brep2Seq achieved improved model reconstruction and controllable model generation by distinguishing between the primary shape and detailed features of CAD models. To train Brep2Seq, a large-scale dataset comprising one million CAD designs is established through an automatic geometry synthesis method. Extensive experiments on both DeepCAD and Fusion 360 datasets demonstrate the effectiveness of Brep2Seq, and show its applicability to simple mechanical components in real-world scenarios. We further apply Brep2Seq to various downstream applications, including point cloud reconstruction, model interpolation, shape constraint generation and CAD feature recognition.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139612618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric design and modeling method of CFRP laminated components applicable for multi-material vehicle body development 适用于多材料车身开发的 CFRP 层压部件的参数化设计和建模方法
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2024-01-19 DOI: 10.1093/jcde/qwae007
Tiantong Lv, Zipeng Chen, Dengfeng Wang, Xuejing Du
Combined application of steel, aluminum and CFRP is the main direction of future lightweight body development. However, the anisotropy and additional lamination design variables of CFRP parts poses significant challenges for the development of multi-material bodies. This study establishes a parametric design method for the variable-thickness lamination scheme based on non-uniform rational B-splines (NURBS), it can be coupled with existing parametric design methods for structural shapes to formulate a complete parametric design and modelling of CFRP components. On this basis, a homogenized intermediate material property is derived from classic laminate theory by introducing lamination assumptions, it enables a stepwise multi-material body optimization method to solve the challenge that components’ material design variables switching between CFRP and alloy will introduce/eliminate lamination design variables iteratively, posing a great optimization convergence difficulty. The proposed parametric modeling method for CFRP components was validated by experimental tests of a fabricated roof beam, and the proposed optimization method was applied to a vehicle body, achieving 15.9%, 23.9%, 18.6%, 12.2% increase in bending and tortional stiffness and modal frequencies; 20.2%, 9.3%, 12.7% reduction of weight and peak acceleration in frontal and side collisions. This study enables the forward design of multi-material bodies compatible with CFRP parts.
钢、铝和 CFRP 的组合应用是未来轻量化车身发展的主要方向。然而,CFRP 部件的各向异性和额外的层压设计变量给多材料车身的开发带来了巨大挑战。本研究建立了一种基于非均匀有理 B-样条曲线(NURBS)的变厚度层压方案参数化设计方法,它可以与现有的结构形状参数化设计方法相结合,制定出完整的 CFRP 部件参数化设计和建模方法。在此基础上,通过引入层压假设,从经典层压理论推导出均质化的中间材料属性,从而实现分步式多材料体优化方法,解决了组件材料设计变量在 CFRP 和合金之间切换时会迭代引入/消除层压设计变量,给优化收敛带来极大困难的难题。所提出的 CFRP 组件参数化建模方法通过制造的车顶梁的实验测试得到了验证,所提出的优化方法应用于车身,使车身的弯曲和扭转刚度及模态频率分别提高了 15.9%、23.9%、18.6% 和 12.2%;车身重量和正面及侧面碰撞的峰值加速度分别降低了 20.2%、9.3% 和 12.7%。通过这项研究,可以对与 CFRP 部件兼容的多材料车身进行前瞻性设计。
{"title":"Parametric design and modeling method of CFRP laminated components applicable for multi-material vehicle body development","authors":"Tiantong Lv, Zipeng Chen, Dengfeng Wang, Xuejing Du","doi":"10.1093/jcde/qwae007","DOIUrl":"https://doi.org/10.1093/jcde/qwae007","url":null,"abstract":"\u0000 Combined application of steel, aluminum and CFRP is the main direction of future lightweight body development. However, the anisotropy and additional lamination design variables of CFRP parts poses significant challenges for the development of multi-material bodies. This study establishes a parametric design method for the variable-thickness lamination scheme based on non-uniform rational B-splines (NURBS), it can be coupled with existing parametric design methods for structural shapes to formulate a complete parametric design and modelling of CFRP components. On this basis, a homogenized intermediate material property is derived from classic laminate theory by introducing lamination assumptions, it enables a stepwise multi-material body optimization method to solve the challenge that components’ material design variables switching between CFRP and alloy will introduce/eliminate lamination design variables iteratively, posing a great optimization convergence difficulty. The proposed parametric modeling method for CFRP components was validated by experimental tests of a fabricated roof beam, and the proposed optimization method was applied to a vehicle body, achieving 15.9%, 23.9%, 18.6%, 12.2% increase in bending and tortional stiffness and modal frequencies; 20.2%, 9.3%, 12.7% reduction of weight and peak acceleration in frontal and side collisions. This study enables the forward design of multi-material bodies compatible with CFRP parts.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139525911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting Aquila Optimizer by Marine Predators Algorithm for Combinatorial Optimization 用海洋捕食者算法提升 Aquila 优化器的组合优化能力
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2024-01-17 DOI: 10.1093/jcde/qwae004
Shuang Wang, Heming Jia, A. Hussien, L. Abualigah, Guanjun Lin, Hongwei Wei, Zhenheng Lin, K. G. Dhal
In this study, an improved version of Aquila Optimizer (AO) known as EHAOMPA has been developed by using the Marine Predators Algorithm (MPA). MPA is a recent and well-behaved optimizer with a unique memory saving and FADs mechanism. At the same time, it suffers from various defects such as inadequate global search, sluggish convergence, and stagnation of local optima. However, AO has contented robust global exploration capability, fast convergence speed, and high search efficiency. Thus, the proposed EHAOMPA aims to complement the shortcomings of AO and MPA while bringing new features. Specifically, the representative-based hunting technique is incorporated into the exploration stage to enhance population diversity. At the same time, random opposition-based learning (ROBL) is introduced into the exploitation stage to prevent the optimizer from sticking to local optima. This study tests the performance of EHAOMPA's on twenty-three standard mathematical benchmark functions, 29 complex test functions from the CEC2017 test suite, six constrained industrial engineering design problems, and a CNN-hyperparameter optimization for COVID-19 CT-image detection problem. EHAOMPA is compared with four existing optimization algorithm types, achieving the best performance on both numerical and practical issues. Compared to other methods, the test function results demonstrate that EHAOMPA exhibits a more potent global search capability, a higher convergence rate, increased accuracy, and an improved ability to avoid local optima. The excellent experimental results in practical problems indicate that the developed EHAOMPA has great potential in solving real-world optimization problems. The combination of multiple strategies can effectively improve the performance of the algorithm. The source code of the EHAOMPA is publicly available at https://github.com/WangShuang92/EHAOMPA.
本研究利用海洋捕食者算法(MPA)开发了一种名为 EHAOMPA 的 Aquila 优化器(AO)改进版。MPA 是一种最新的、性能良好的优化器,具有独特的内存节省和 FADs 机制。与此同时,它也存在各种缺陷,如全局搜索不足、收敛迟缓和局部最优停滞。而 AO 具有强大的全局探索能力、快速的收敛速度和较高的搜索效率。因此,所提出的 EHAOMPA 旨在补充 AO 和 MPA 的不足,同时带来新的特点。具体来说,在探索阶段加入了基于代表的狩猎技术,以增强种群多样性。同时,在开发阶段引入了基于随机对立的学习(ROBL),以防止优化器停留在局部最优状态。本研究测试了 EHAOMPA 在 23 个标准数学基准函数、CEC2017 测试套件中的 29 个复杂测试函数、6 个受限工业工程设计问题以及针对 COVID-19 CT 图像检测问题的 CNN 参数优化上的性能。EHAOMPA 与现有的四种优化算法进行了比较,在数值和实际问题上都取得了最佳性能。与其他方法相比,测试函数结果表明 EHAOMPA 具有更强的全局搜索能力、更高的收敛速度、更高的精度以及更强的避免局部最优的能力。在实际问题中取得的优异实验结果表明,所开发的 EHAOMPA 在解决实际优化问题方面具有巨大潜力。多种策略的结合可以有效提高算法的性能。EHAOMPA 的源代码可在 https://github.com/WangShuang92/EHAOMPA 公开获取。
{"title":"Boosting Aquila Optimizer by Marine Predators Algorithm for Combinatorial Optimization","authors":"Shuang Wang, Heming Jia, A. Hussien, L. Abualigah, Guanjun Lin, Hongwei Wei, Zhenheng Lin, K. G. Dhal","doi":"10.1093/jcde/qwae004","DOIUrl":"https://doi.org/10.1093/jcde/qwae004","url":null,"abstract":"\u0000 In this study, an improved version of Aquila Optimizer (AO) known as EHAOMPA has been developed by using the Marine Predators Algorithm (MPA). MPA is a recent and well-behaved optimizer with a unique memory saving and FADs mechanism. At the same time, it suffers from various defects such as inadequate global search, sluggish convergence, and stagnation of local optima. However, AO has contented robust global exploration capability, fast convergence speed, and high search efficiency. Thus, the proposed EHAOMPA aims to complement the shortcomings of AO and MPA while bringing new features. Specifically, the representative-based hunting technique is incorporated into the exploration stage to enhance population diversity. At the same time, random opposition-based learning (ROBL) is introduced into the exploitation stage to prevent the optimizer from sticking to local optima. This study tests the performance of EHAOMPA's on twenty-three standard mathematical benchmark functions, 29 complex test functions from the CEC2017 test suite, six constrained industrial engineering design problems, and a CNN-hyperparameter optimization for COVID-19 CT-image detection problem. EHAOMPA is compared with four existing optimization algorithm types, achieving the best performance on both numerical and practical issues. Compared to other methods, the test function results demonstrate that EHAOMPA exhibits a more potent global search capability, a higher convergence rate, increased accuracy, and an improved ability to avoid local optima. The excellent experimental results in practical problems indicate that the developed EHAOMPA has great potential in solving real-world optimization problems. The combination of multiple strategies can effectively improve the performance of the algorithm. The source code of the EHAOMPA is publicly available at https://github.com/WangShuang92/EHAOMPA.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139526759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new approach for solving global optimization and engineering problems based on modified Sea Horse Optimizer 基于改进型海马优化器的全局优化和工程问题解决新方法
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2024-01-03 DOI: 10.1093/jcde/qwae001
Fatma A Hashim, Reham R. Mostafa, Ruba Abu Khurma, R. Qaddoura, P. A. Castillo
Sea Horse Optimizer (SHO) is a noteworthy metaheuristic algorithm that emulates various intelligent behaviors exhibited by sea horses, encompassing feeding patterns, male reproductive strategies, and intricate movement patterns. To mimic the nuanced locomotion of sea horses, SHO integrates the logarithmic helical equation and Levy flight, effectively incorporating both random movements with substantial step sizes and refined local exploitation. Additionally, the utilization of Brownian motion facilitates a more comprehensive exploration of the search space. This study introduces a robust and high-performance variant of the SHO algorithm named mSHO. The enhancement primarily focuses on bolstering SHO's exploitation capabilities by replacing its original method with an innovative local search strategy encompassing three distinct steps: a neighborhood-based local search, a global non-neighbor-based search, and a method involving circumnavigation of the existing search region. These techniques improve mSHO algorithm's search capabilities, allowing it to navigate the search space and converge toward optimal solutions efficiently. To evaluate the efficacy of the mSHO algorithm, comprehensive assessments are conducted across both the CEC2020 benchmark functions and nine distinct engineering problems. A meticulous comparison is drawn against nine metaheuristic algorithms to validate the achieved outcomes. Statistical tests, including Wilcoxon's rank-sum and Friedman's tests, are aptly applied to discern noteworthy differences among the compared algorithms. Empirical findings consistently underscore the exceptional performance of mSHO across diverse benchmark functions, reinforcing its prowess in solving complex optimization problems. Furthermore, the robustness of mSHO endures even as the dimensions of optimization challenges expand, signifying its unwavering efficacy in navigating complex search spaces. The comprehensive results distinctly establish the supremacy and efficiency of the mSHO method as an exemplary tool for tackling an array of optimization quandaries. The results show that the proposed mSHO algorithm has a total rank of 1 for CEC’2020 test functions. In contrast, the mSHO achieved the best value for the engineering problems, recording a value of 0.012665, 2993.634, 0.01266, 1.724967, 263.8915, 0.032255, 58507.14, 1.339956, and 0.23524 for the pressure vessel design, speed reducer design, tension/compression spring, welded beam design, three-bar truss engineering design, industrial refrigeration system, multi-Product batch plant, cantilever beam problem, multiple disc clutch brake problems, respectively. Source codes of mSHO are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/135882-improved-sea-horse-algorithm.
海马优化算法(SHO)是一种值得关注的元启发式算法,它模仿了海马的各种智能行为,包括进食模式、雄性繁殖策略和复杂的运动模式。为了模仿海马细致入微的运动方式,SHO 将对数螺旋方程和列维飞行整合在一起,有效地将步长较大的随机运动和精细的局部利用结合在一起。此外,布朗运动的利用还有助于对搜索空间进行更全面的探索。本研究介绍了一种名为 mSHO 的 SHO 算法的稳健和高性能变体。这种改进主要集中在增强 SHO 的开发能力上,方法是用一种创新的局部搜索策略取代其原始方法,该策略包括三个不同的步骤:基于邻域的局部搜索、基于非邻域的全局搜索以及涉及现有搜索区域环绕的方法。这些技术提高了 mSHO 算法的搜索能力,使其能够在搜索空间中导航,并高效地收敛到最优解。为了评估 mSHO 算法的功效,我们对 CEC2020 基准函数和九个不同的工程问题进行了全面评估。与九种元启发式算法进行了细致的比较,以验证所取得的成果。统计检验(包括 Wilcoxon 秩和检验和 Friedman 检验)被恰当地应用于识别比较算法之间值得注意的差异。实证研究结果一致强调了 mSHO 在各种基准函数中的卓越性能,从而增强了其解决复杂优化问题的能力。此外,即使优化挑战的维度不断扩大,mSHO 的鲁棒性也能经久不衰,这表明它在驾驭复杂搜索空间方面具有坚定不移的功效。综合结果明确地证明了 mSHO 方法的优越性和高效性,是解决一系列优化难题的典范工具。结果表明,所提出的 mSHO 算法在 CEC 的 2020 个测试函数中的总排名为 1。相比之下,mSHO 在工程问题上取得了最佳值,在压力容器设计中分别记录了 0.012665、2993.634、0.01266、1.724967、263.8915、0.032255、58507.14、1.339956 和 0.分别为压力容器设计、减速机设计、拉伸/压缩弹簧、焊接梁设计、三杆桁架工程设计、工业制冷系统、多产品配料厂、悬臂梁问题、多盘离合器制动器问题。mSHO 的源代码可在 https://www.mathworks.com/matlabcentral/fileexchange/135882-improved-sea-horse-algorithm 公开获取。
{"title":"A new approach for solving global optimization and engineering problems based on modified Sea Horse Optimizer","authors":"Fatma A Hashim, Reham R. Mostafa, Ruba Abu Khurma, R. Qaddoura, P. A. Castillo","doi":"10.1093/jcde/qwae001","DOIUrl":"https://doi.org/10.1093/jcde/qwae001","url":null,"abstract":"\u0000 Sea Horse Optimizer (SHO) is a noteworthy metaheuristic algorithm that emulates various intelligent behaviors exhibited by sea horses, encompassing feeding patterns, male reproductive strategies, and intricate movement patterns. To mimic the nuanced locomotion of sea horses, SHO integrates the logarithmic helical equation and Levy flight, effectively incorporating both random movements with substantial step sizes and refined local exploitation. Additionally, the utilization of Brownian motion facilitates a more comprehensive exploration of the search space. This study introduces a robust and high-performance variant of the SHO algorithm named mSHO. The enhancement primarily focuses on bolstering SHO's exploitation capabilities by replacing its original method with an innovative local search strategy encompassing three distinct steps: a neighborhood-based local search, a global non-neighbor-based search, and a method involving circumnavigation of the existing search region. These techniques improve mSHO algorithm's search capabilities, allowing it to navigate the search space and converge toward optimal solutions efficiently. To evaluate the efficacy of the mSHO algorithm, comprehensive assessments are conducted across both the CEC2020 benchmark functions and nine distinct engineering problems. A meticulous comparison is drawn against nine metaheuristic algorithms to validate the achieved outcomes. Statistical tests, including Wilcoxon's rank-sum and Friedman's tests, are aptly applied to discern noteworthy differences among the compared algorithms. Empirical findings consistently underscore the exceptional performance of mSHO across diverse benchmark functions, reinforcing its prowess in solving complex optimization problems. Furthermore, the robustness of mSHO endures even as the dimensions of optimization challenges expand, signifying its unwavering efficacy in navigating complex search spaces. The comprehensive results distinctly establish the supremacy and efficiency of the mSHO method as an exemplary tool for tackling an array of optimization quandaries. The results show that the proposed mSHO algorithm has a total rank of 1 for CEC’2020 test functions. In contrast, the mSHO achieved the best value for the engineering problems, recording a value of 0.012665, 2993.634, 0.01266, 1.724967, 263.8915, 0.032255, 58507.14, 1.339956, and 0.23524 for the pressure vessel design, speed reducer design, tension/compression spring, welded beam design, three-bar truss engineering design, industrial refrigeration system, multi-Product batch plant, cantilever beam problem, multiple disc clutch brake problems, respectively. Source codes of mSHO are publicly available at https://www.mathworks.com/matlabcentral/fileexchange/135882-improved-sea-horse-algorithm.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Study on Ship Hull Form Transformation Using Convolutional Autoencoder 使用卷积自动编码器进行船体形态转换的研究
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2024-01-03 DOI: 10.1093/jcde/qwad111
Jeongbeom Seo, Dayeon Kim, Inwon Lee
The optimal ship hull form in contemporary design practice primarily consists of three parts: hull form modification, performance prediction, and optimization. Hull form modification is a crucial step to affect optimization efficiency because the baseline hull form is varied to search for performance improvements. The conventional hull form modification methods mainly rely on human decisions and intervention. As a direct expression of the 3-D hull form, the lines are not appropriate for machine learning techniques. This is because they do not explicitly express a meaningful performance metric despite their relatively large data dimension. To solve this problem and develop a novel machine-based hull form design technique, an autoencoder, which is a dimensional reduction technique based on an artificial neural network, was created in this study. Specifically, a convolutional autoencoder was designed; firstly, a convolutional neural network (CNN) preprocessor was used to effectively train the offsets, which are the half-width coordinate values on the hull surface, to extract feature maps. Secondly, the stacked encoder compressed the feature maps into an optimal lower-dimensional-latent vector. Finally, a transposed convolution layer restored the dimension of the lines. In this study, 21 250 hull forms belonging to three different ship types of containership, LNG carrier, and tanker, were used as training data. To describe the hull form in more detail, each was divided into several zones, which were then input into the CNN preprocessor separately. After the training, a low-dimensional manifold consisting of the components of the latent vector was derived to represent the distinctive hull form features of the three ship types considered. The autoencoder technique was then combined with another novel approach of the surrogate model to form an objective function neural network. Further combination with the deterministic particle swarm optimization (DPSO) method led to a successful hull form optimization example. In summary, the present convolutional autoencoder has demonstrated its significance within the machine learning-based design process for ship hull forms.
当代设计实践中的最佳船体形式主要包括三个部分:船体形式修改、性能预测和优化。船体形式修改是影响优化效率的关键步骤,因为要改变基线船体形式以寻求性能改进。传统的船体形状修改方法主要依赖于人为决策和干预。作为三维船体形式的直接表达方式,线条并不适合机器学习技术。这是因为,尽管数据维度相对较大,但它们并不能明确表达有意义的性能指标。为解决这一问题并开发一种基于机器的新型船体外形设计技术,本研究创建了一种自动编码器,这是一种基于人工神经网络的降维技术。具体来说,设计了一种卷积自动编码器;首先,使用卷积神经网络(CNN)预处理器有效地训练偏移量(即船体表面的半宽坐标值),以提取特征图。其次,堆叠编码器将特征图压缩成最佳的低维拉特向量。最后,转置卷积层恢复了线条的维度。在这项研究中,21 250 个船体形状被用作训练数据,它们分别属于集装箱船、液化天然气运输船和油轮这三种不同类型的船舶。为了更详细地描述船体形态,每个船体形态都被划分为若干区域,然后分别输入 CNN 预处理器。训练结束后,得到了一个由潜在向量分量组成的低维流形,以表示所考虑的三种船型的独特船体形态特征。然后,将自动编码器技术与代用模型的另一种新方法相结合,形成目标函数神经网络。进一步与确定性粒子群优化(DPSO)方法相结合,成功地实现了船体形状优化。总之,目前的卷积自动编码器已经证明了其在基于机器学习的船体设计过程中的重要性。
{"title":"A Study on Ship Hull Form Transformation Using Convolutional Autoencoder","authors":"Jeongbeom Seo, Dayeon Kim, Inwon Lee","doi":"10.1093/jcde/qwad111","DOIUrl":"https://doi.org/10.1093/jcde/qwad111","url":null,"abstract":"\u0000 The optimal ship hull form in contemporary design practice primarily consists of three parts: hull form modification, performance prediction, and optimization. Hull form modification is a crucial step to affect optimization efficiency because the baseline hull form is varied to search for performance improvements. The conventional hull form modification methods mainly rely on human decisions and intervention. As a direct expression of the 3-D hull form, the lines are not appropriate for machine learning techniques. This is because they do not explicitly express a meaningful performance metric despite their relatively large data dimension. To solve this problem and develop a novel machine-based hull form design technique, an autoencoder, which is a dimensional reduction technique based on an artificial neural network, was created in this study. Specifically, a convolutional autoencoder was designed; firstly, a convolutional neural network (CNN) preprocessor was used to effectively train the offsets, which are the half-width coordinate values on the hull surface, to extract feature maps. Secondly, the stacked encoder compressed the feature maps into an optimal lower-dimensional-latent vector. Finally, a transposed convolution layer restored the dimension of the lines. In this study, 21 250 hull forms belonging to three different ship types of containership, LNG carrier, and tanker, were used as training data. To describe the hull form in more detail, each was divided into several zones, which were then input into the CNN preprocessor separately. After the training, a low-dimensional manifold consisting of the components of the latent vector was derived to represent the distinctive hull form features of the three ship types considered. The autoencoder technique was then combined with another novel approach of the surrogate model to form an objective function neural network. Further combination with the deterministic particle swarm optimization (DPSO) method led to a successful hull form optimization example. In summary, the present convolutional autoencoder has demonstrated its significance within the machine learning-based design process for ship hull forms.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139388176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-strategy enhanced kernel search optimization and its application in economic emission dispatch problems 多策略增强型内核搜索优化及其在经济排放调度问题中的应用
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2023-12-18 DOI: 10.1093/jcde/qwad110
Ruyi Dong, Yanan Liu, Siwen Wang, A. Heidari, Mingjing Wang, Yi Chen, Shuihua Wang, Huiling Chen, Yu-dong Zhang
The Kernel Search Optimizer (KSO) is a recent metaheuristic optimization algorithm that has been proposed in recent years. The KSO is based on kernel theory, eliminating the need for hyper-parameter adjustments, and demonstrating excellent global search capabilities. However, the original KSO exhibits insufficient accuracy in local search, and there is a high probability that it may fail to achieve local optimization in complex tasks. Therefore, this paper proposes a Multi-Strategy Enhanced Kernel Search Optimizer (MSKSO) to enhance the local search ability of the KSO. The MSKSO combines several control strategies, including chaotic initialization, chaotic local search mechanisms, the High-Altitude Walk Strategy (HWS), and the Levy Flight (LF), to effectively balance exploration and exploitation. The MSKSO is compared with ten well-known algorithms on fifty benchmark test functions to validate its performance, including single-peak, multi-peak, separable variable, and non-separable variable functions. Additionally, the MSKSO is applied to two real engineering economic emission dispatch (EED) problems in power systems. Experimental results demonstrate that the performance of the MSKSO nearly optimizes that of other well-known algorithms and achieves favorable results on the EED problem. These case studies verify that the MSKSO outperforms other algorithms and can serve as an effective optimization tool.
核搜索优化器(KSO)是近年来提出的一种元启发式优化算法。KSO 以核理论为基础,无需调整超参数,具有出色的全局搜索能力。然而,原始 KSO 在局部搜索方面表现出的精度不足,在复杂任务中很有可能无法实现局部优化。因此,本文提出了多策略增强内核搜索优化器(MSKSO),以增强 KSO 的局部搜索能力。MSKSO 结合了多种控制策略,包括混沌初始化、混沌局部搜索机制、高空行走策略(HWS)和列维飞行(LF),从而有效地平衡了探索和利用。MSKSO 与十种著名算法在五十个基准测试函数上进行了比较,以验证其性能,包括单峰、多峰、可分离变量和不可分离变量函数。此外,还将 MSKSO 应用于电力系统中的两个实际工程经济排放调度 (EED) 问题。实验结果表明,MSKSO 的性能几乎优化了其他著名算法,并在 EED 问题上取得了良好的结果。这些案例研究验证了 MSKSO 的性能优于其他算法,可以作为一种有效的优化工具。
{"title":"Multi-strategy enhanced kernel search optimization and its application in economic emission dispatch problems","authors":"Ruyi Dong, Yanan Liu, Siwen Wang, A. Heidari, Mingjing Wang, Yi Chen, Shuihua Wang, Huiling Chen, Yu-dong Zhang","doi":"10.1093/jcde/qwad110","DOIUrl":"https://doi.org/10.1093/jcde/qwad110","url":null,"abstract":"The Kernel Search Optimizer (KSO) is a recent metaheuristic optimization algorithm that has been proposed in recent years. The KSO is based on kernel theory, eliminating the need for hyper-parameter adjustments, and demonstrating excellent global search capabilities. However, the original KSO exhibits insufficient accuracy in local search, and there is a high probability that it may fail to achieve local optimization in complex tasks. Therefore, this paper proposes a Multi-Strategy Enhanced Kernel Search Optimizer (MSKSO) to enhance the local search ability of the KSO. The MSKSO combines several control strategies, including chaotic initialization, chaotic local search mechanisms, the High-Altitude Walk Strategy (HWS), and the Levy Flight (LF), to effectively balance exploration and exploitation. The MSKSO is compared with ten well-known algorithms on fifty benchmark test functions to validate its performance, including single-peak, multi-peak, separable variable, and non-separable variable functions. Additionally, the MSKSO is applied to two real engineering economic emission dispatch (EED) problems in power systems. Experimental results demonstrate that the performance of the MSKSO nearly optimizes that of other well-known algorithms and achieves favorable results on the EED problem. These case studies verify that the MSKSO outperforms other algorithms and can serve as an effective optimization tool.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139174429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BRepGAT: Graph neural network to segment machining feature faces in a B-rep model BRepGAT:在 B-rep 模型中分割加工特征面的图神经网络
IF 4.9 2区 工程技术 Q1 Mathematics Pub Date : 2023-11-28 DOI: 10.1093/jcde/qwad106
Jinwon Lee, Changmo Yeo, Sang-Uk Cheon, Jun Hwan Park, D. Mun
In recent years, there have been many studies using artificial intelligence to recognize machining features in 3D models in the CAD/CAM field. Most of these studies converted the original CAD data into images, point clouds, or voxels for recognition. This led to information loss during the conversion process, resulting in decreased recognition accuracy. In this paper, we propose a graph-based network called BRepGAT to segment faces in an original B-rep model containing machining features. We define descriptors that represent information about the faces and edges of the B-rep model from the perspective of feature recognition. These descriptors are extracted from the B-rep model and transformed into homogeneous graph data, which is then passed to graph networks. BRepGAT recognize machining features on a face-by-face based on the graph data input. Our experimental results using the MFCAD18++ dataset showed that BRepGAT achieved state-of-the-art recognition accuracy (99.1%). Furthermore, BRepGAT showed relatively robust performance on other datasets besides MFCAD18++.
近年来,在计算机辅助设计/制造(CAD/CAM)领域,有许多利用人工智能识别三维模型中加工特征的研究。这些研究大多将原始 CAD 数据转换为图像、点云或体素进行识别。这导致了转换过程中的信息丢失,从而降低了识别精度。在本文中,我们提出了一种名为 BRepGAT 的基于图的网络,用于分割包含加工特征的原始 B-rep 模型中的人脸。我们从特征识别的角度定义了描述符,这些描述符代表了 B-rep 模型中的面和边的信息。这些描述符从 B-rep 模型中提取并转换为同质图数据,然后传递给图网络。BRepGAT 根据输入的图数据逐面识别加工特征。我们使用 MFCAD18++ 数据集进行的实验结果表明,BRepGAT 达到了最先进的识别准确率(99.1%)。此外,BRepGAT 在 MFCAD18++ 之外的其他数据集上也表现出了相对稳健的性能。
{"title":"BRepGAT: Graph neural network to segment machining feature faces in a B-rep model","authors":"Jinwon Lee, Changmo Yeo, Sang-Uk Cheon, Jun Hwan Park, D. Mun","doi":"10.1093/jcde/qwad106","DOIUrl":"https://doi.org/10.1093/jcde/qwad106","url":null,"abstract":"In recent years, there have been many studies using artificial intelligence to recognize machining features in 3D models in the CAD/CAM field. Most of these studies converted the original CAD data into images, point clouds, or voxels for recognition. This led to information loss during the conversion process, resulting in decreased recognition accuracy. In this paper, we propose a graph-based network called BRepGAT to segment faces in an original B-rep model containing machining features. We define descriptors that represent information about the faces and edges of the B-rep model from the perspective of feature recognition. These descriptors are extracted from the B-rep model and transformed into homogeneous graph data, which is then passed to graph networks. BRepGAT recognize machining features on a face-by-face based on the graph data input. Our experimental results using the MFCAD18++ dataset showed that BRepGAT achieved state-of-the-art recognition accuracy (99.1%). Furthermore, BRepGAT showed relatively robust performance on other datasets besides MFCAD18++.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139216195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computational Design and Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1