Pub Date : 2023-01-01Epub Date: 2022-08-22DOI: 10.34172/bi.2022.24142
Nahid Moradi, Saeid Kaviani, Mina Soufizomorrod, Simzar Hosseinzadeh, Masoud Soleimani
Introduction: This study focused on preparing a multiscale three-dimensional (3D) scaffold using tricalcium phosphate nanoparticles (triCaPNPs) in a substrate of poly(acrylic acid) (PAA) polymer for controlled release of exosomes in bone tissue engineering.
Methods: A scaffold was fabricated with a material mixture containing acrylic acid (AA) monomer, N,N'-methylenebisacrylamide (MBAA), ammonium persulfate (APS), sodium bicarbonate (SBC), and triCaPNPs called composite scaffold (PAA/triCaPNPs) via cross-linking and freeze-drying methods. The synthesis process was easy and without complex multi-steps. Through mimicking the hybrid (organic-inorganic) structure of the bone matrix, we here chose triCaPNPs for incorporation into the PAA polymer. After assessing the physicochemical properties of the scaffold, the interaction of the scaffold with human umbilical cord mesenchymal stem cells (UC-MSCs) such as attachment, proliferation, and differentiation to osteoblast cells was evaluated. In addition, we used DiI-labeled exosomes to verify the exosome entrapment and release from the scaffold.
Results: The polymerization reaction of 3D scaffold was successful. Based on results of physicochemical properties, the presence of nanoparticles in the composite scaffold enhanced the mechanical stiffness, boosted the porosity with a larger pore size range, and offered better hydrophilicity, all of which would contribute to greater cell penetration, proliferation, and then better bone differentiation. In addition, our results indicated that our scaffold could take up and release exosomes, where the exosomes released from it could significantly enhance the osteogenic commitment of UC-MSCs.
Conclusion: The current research is the first study fabricating a multiscale scaffold using triCaPNPs in the substrate of PPA polymer using a cross-linker and freeze-drying process. This scaffold could mimic the nanoscale structure and chemical combination of native bone minerals. In addition, our results suggest that the PAA/triCaPNPs scaffold could be beneficial to achieve controlled exosome release for exosome-based therapy in bone tissue engineering.
{"title":"Preparation of poly(acrylic acid)/tricalcium phosphate nanoparticles scaffold: Characterization and releasing UC-MSCs derived exosomes for bone differentiation.","authors":"Nahid Moradi, Saeid Kaviani, Mina Soufizomorrod, Simzar Hosseinzadeh, Masoud Soleimani","doi":"10.34172/bi.2022.24142","DOIUrl":"https://doi.org/10.34172/bi.2022.24142","url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>This study focused on preparing a multiscale three-dimensional (3D) scaffold using tricalcium phosphate nanoparticles (triCaPNPs) in a substrate of poly(acrylic acid) (PAA) polymer for controlled release of exosomes in bone tissue engineering.</p><p><strong>Methods: </strong>A scaffold was fabricated with a material mixture containing acrylic acid (AA) monomer, N,N'-methylenebisacrylamide (MBAA), ammonium persulfate (APS), sodium bicarbonate (SBC), and triCaPNPs called composite scaffold (PAA/triCaPNPs) via cross-linking and freeze-drying methods. The synthesis process was easy and without complex multi-steps. Through mimicking the hybrid (organic-inorganic) structure of the bone matrix, we here chose triCaPNPs for incorporation into the PAA polymer. After assessing the physicochemical properties of the scaffold, the interaction of the scaffold with human umbilical cord mesenchymal stem cells (UC-MSCs) such as attachment, proliferation, and differentiation to osteoblast cells was evaluated. In addition, we used DiI-labeled exosomes to verify the exosome entrapment and release from the scaffold.</p><p><strong>Results: </strong>The polymerization reaction of 3D scaffold was successful. Based on results of physicochemical properties, the presence of nanoparticles in the composite scaffold enhanced the mechanical stiffness, boosted the porosity with a larger pore size range, and offered better hydrophilicity, all of which would contribute to greater cell penetration, proliferation, and then better bone differentiation. In addition, our results indicated that our scaffold could take up and release exosomes, where the exosomes released from it could significantly enhance the osteogenic commitment of UC-MSCs.</p><p><strong>Conclusion: </strong>The current research is the first study fabricating a multiscale scaffold using triCaPNPs in the substrate of PPA polymer using a cross-linker and freeze-drying process. This scaffold could mimic the nanoscale structure and chemical combination of native bone minerals. In addition, our results suggest that the PAA/triCaPNPs scaffold could be beneficial to achieve controlled exosome release for exosome-based therapy in bone tissue engineering.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 5","pages":"425-438"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/e1/bi-13-425.PMC10509736.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41155518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Breast cancer, as the most common malignancy among women, is shown to have a high mortality rate and resistance to chemotherapy. Research has shown the possible inhibitory role of Mesenchymal stem cells in curing cancer. Thus, the present work used human amniotic fluid mesenchymal stem cell-conditioned medium (hAFMSCs-CM) as an apoptotic reagent on the human MCF-7 breast cancer cell line.
Methods: Conditioned medium (CM) was prepared from hAFMSCs. After treating MCF-7 cells with CM, a number of analytical procedures (MTT, real-time PCR, western blot, and flow cytometry) were recruited to evaluate the cell viability, Bax and Bcl-2 gene expression, P53 protein expression, and apoptosis, respectively. Human fibroblast cells (Hu02) were used as the negative control. In addition, an integrated approach to meta-analysis was performed.
Results: The MCF-7 cells' viability was decreased significantly after 24 hours (P < 0.0001) and 72 hours (P < 0.05) of treatment. Compared with the control cells, Bax gene's mRNA expression increased and Bcl-2's mRNA expression decreased considerably after treating for 24 hours with 80% hAFMSCs-CM (P = 0.0012, P < 0.0001, respectively); an increasing pattern in P53 protein expression could also be observed. The flow cytometry analysis indicated apoptosis. Results from literature mining and the integrated meta-analysis showed that hAFMSCs-CM is able to activate a molecular network where Bcl2 downregulation stands in harmony with the upregulation of P53, EIF5A, DDB2, and Bax, leading to the activation of apoptosis.
Conclusion: Our finding demonstrated that hAFMSCs-CM presents apoptotic effect on MCF-7 cells; therefore, the application of hAFMSCs-CM, as a therapeutic reagent, can suppress breast cancer cells' viabilities and induce apoptosis.
导读:乳腺癌是妇女中最常见的恶性肿瘤,具有高死亡率和化疗耐药的特点。研究表明间充质干细胞在治疗癌症方面可能具有抑制作用。因此,本研究使用人羊水间充质干细胞条件培养基(hAFMSCs-CM)作为人MCF-7乳腺癌细胞系的凋亡试剂。方法:从hAFMSCs制备条件培养基(CM)。用CM处理MCF-7细胞后,采用MTT、real-time PCR、western blot和流式细胞术等多种分析方法分别评估细胞活力、Bax和Bcl-2基因表达、P53蛋白表达和凋亡情况。以人成纤维细胞(Hu02)为阴性对照。此外,采用综合方法进行meta分析。结果:24h后MCF-7细胞活力明显降低(P P P = 0.0012, P)结论:hAFMSCs-CM对MCF-7细胞有凋亡作用;因此,应用hAFMSCs-CM作为治疗试剂,可以抑制乳腺癌细胞的生存能力,诱导细胞凋亡。
{"title":"Apoptotic effects of human amniotic fluid mesenchymal stem cells conditioned medium on human MCF-7 breast cancer cell line.","authors":"Roghiyeh Pashaei-Asl, Maryam Pashaiasl, Esmaeil Ebrahimie, Maryam Lale Ataei, Maliheh Paknejad","doi":"10.34172/bi.2022.23813","DOIUrl":"https://doi.org/10.34172/bi.2022.23813","url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>Breast cancer, as the most common malignancy among women, is shown to have a high mortality rate and resistance to chemotherapy. Research has shown the possible inhibitory role of Mesenchymal stem cells in curing cancer. Thus, the present work used human amniotic fluid mesenchymal stem cell-conditioned medium (hAFMSCs-CM) as an apoptotic reagent on the human MCF-7 breast cancer cell line.</p><p><strong>Methods: </strong>Conditioned medium (CM) was prepared from hAFMSCs. After treating MCF-7 cells with CM, a number of analytical procedures (MTT, real-time PCR, western blot, and flow cytometry) were recruited to evaluate the cell viability, Bax and Bcl-2 gene expression, P53 protein expression, and apoptosis, respectively. Human fibroblast cells (Hu02) were used as the negative control. In addition, an integrated approach to meta-analysis was performed.</p><p><strong>Results: </strong>The MCF-7 cells' viability was decreased significantly after 24 hours (<i>P</i> < 0.0001) and 72 hours (<i>P</i> < 0.05) of treatment. Compared with the control cells, Bax gene's mRNA expression increased and Bcl-2's mRNA expression decreased considerably after treating for 24 hours with 80% hAFMSCs-CM (<i>P</i> = 0.0012, <i>P</i> < 0.0001, respectively); an increasing pattern in P53 protein expression could also be observed. The flow cytometry analysis indicated apoptosis. Results from literature mining and the integrated meta-analysis showed that hAFMSCs-CM is able to activate a molecular network where Bcl2 downregulation stands in harmony with the upregulation of P53, EIF5A, DDB2, and Bax, leading to the activation of apoptosis.</p><p><strong>Conclusion: </strong>Our finding demonstrated that hAFMSCs-CM presents apoptotic effect on MCF-7 cells; therefore, the application of hAFMSCs-CM, as a therapeutic reagent, can suppress breast cancer cells' viabilities and induce apoptosis.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 3","pages":"191-206"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0b/4b/bi-13-191.PMC10329748.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9814698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Sepsis-mediated acute lung injury (ALI) is a critical clinical condition. Artesunate (AS) is a sesquiterpene lactone endoperoxide that was discovered in Artemisia annua, which is a traditional Chinese herb. AS has a broad set of biological and pharmacological actions; however, its protective effect on lipopolysaccharide (LPS)-induced ALI remains unclear.
Methods: LPS-mediated ALI was induced in rats through bronchial LPS inhalation. Then NR8383 cells were treated with LPS to establish an in vitro model. Further, we administered different AS doses in vivo and in vitro.
Results: AS administration significantly decreased LPS-mediated pulmonary cell death and inhibited pulmonary neutrophil infiltration. Additionally, AS administration increased SIRT1 expression in pulmonary sections. Administration of a biological antagonist or shRNA-induced reduction of SIRT1 expression significantly inhibited the protective effect of AS against LPS-induced cellular injury, pulmonary dysfunction, neutrophil infiltration, and apoptosis. This demonstrates that enhanced SIRT1 expression is crucially involved in the observed protective effects.
Conclusion: Our findings could suggest the use of AS for treating lung disorders through a mechanism involving SIRT1 expression.
{"title":"Artesunate reduces sepsis-mediated acute lung injury in a SIRT1-dependent manner.","authors":"Zhaohui Liu, Yanli Meng, Yu Miao, Lili Yu, Qiannan Yu","doi":"10.34172/bi.2023.23585","DOIUrl":"https://doi.org/10.34172/bi.2023.23585","url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>Sepsis-mediated acute lung injury (ALI) is a critical clinical condition. Artesunate (AS) is a sesquiterpene lactone endoperoxide that was discovered in Artemisia annua, which is a traditional Chinese herb. AS has a broad set of biological and pharmacological actions; however, its protective effect on lipopolysaccharide (LPS)-induced ALI remains unclear.</p><p><strong>Methods: </strong>LPS-mediated ALI was induced in rats through bronchial LPS inhalation. Then NR8383 cells were treated with LPS to establish an in vitro model. Further, we administered different AS doses in vivo and in vitro.</p><p><strong>Results: </strong>AS administration significantly decreased LPS-mediated pulmonary cell death and inhibited pulmonary neutrophil infiltration. Additionally, AS administration increased SIRT1 expression in pulmonary sections. Administration of a biological antagonist or shRNA-induced reduction of SIRT1 expression significantly inhibited the protective effect of AS against LPS-induced cellular injury, pulmonary dysfunction, neutrophil infiltration, and apoptosis. This demonstrates that enhanced SIRT1 expression is crucially involved in the observed protective effects.</p><p><strong>Conclusion: </strong>Our findings could suggest the use of AS for treating lung disorders through a mechanism involving SIRT1 expression.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 3","pages":"219-228"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/52/7d/bi-13-219.PMC10329753.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9814700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: The CSF1R gene encodes the receptor for colony-stimulating factor-1, the macrophage, and monocyte-specific growth factor. Mutations in this gene cause hereditary diffuse leukoencephalopathy with spheroids (HDLS) with autosomal dominant inheritance and BANDDOS (Brain Abnormalities, Neurodegeneration, and Dysosteosclerosis) with autosomal recessive inheritance.
Methods: Targeted gene sequencing was performed on the genomic DNA samples of the deceased patient and a fetus along with ten healthy members of his family to identify the disease-causing mutation. Bioinformatics tools were used to study the mutation effect on protein function and structure. To predict the effect of the mutation on the protein, various bioinformatics tools were applied.
Results: A novel homozygous variant was identified in the gene CSF1R, c.2498C>T; p.T833M in exon 19, in the index patient and the fetus. Furthermore, some family members were heterozygous for this variant, while they had not any symptoms of the disease. In silico analysis indicated this variant has a detrimental effect on CSF1R. It is conserved among humans and other similar species. The variant is located within the functionally essential PTK domain of the receptor. However, no structural damage was introduced by this substitution.
Conclusion: In conclusion, regarding the inheritance pattern in the family and clinical manifestations in the index patient, we propose that the mentioned variant in the CSF1R gene may cause BANDDOS.
{"title":"Homozygous mutation in <i>CSF1R</i> causes brain abnormalities, neurodegeneration, and dysosteosclerosis (BANDDOS).","authors":"Hossein Daghagh, Haniyeh Rahbar Kafshboran, Yousef Daneshmandpour, Maryam Nasiri Aghdam, Shahrzad Talebian, Jafar Nouri Nojadeh, Hamid Hamzeiy, Saskia Biskup, Ebrahim Sakhinia","doi":"10.34172/bi.2022.23528","DOIUrl":"https://doi.org/10.34172/bi.2022.23528","url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>The <i>CSF1R</i> gene encodes the receptor for colony-stimulating factor-1, the macrophage, and monocyte-specific growth factor. Mutations in this gene cause hereditary diffuse leukoencephalopathy with spheroids (HDLS) with autosomal dominant inheritance and BANDDOS (Brain Abnormalities, Neurodegeneration, and Dysosteosclerosis) with autosomal recessive inheritance.</p><p><strong>Methods: </strong>Targeted gene sequencing was performed on the genomic DNA samples of the deceased patient and a fetus along with ten healthy members of his family to identify the disease-causing mutation. Bioinformatics tools were used to study the mutation effect on protein function and structure. To predict the effect of the mutation on the protein, various bioinformatics tools were applied.</p><p><strong>Results: </strong>A novel homozygous variant was identified in the gene <i>CSF1R</i>, c.2498C>T; p.T833M in exon 19, in the index patient and the fetus. Furthermore, some family members were heterozygous for this variant, while they had not any symptoms of the disease. In silico analysis indicated this variant has a detrimental effect on CSF1R. It is conserved among humans and other similar species. The variant is located within the functionally essential PTK domain of the receptor. However, no structural damage was introduced by this substitution.</p><p><strong>Conclusion: </strong>In conclusion, regarding the inheritance pattern in the family and clinical manifestations in the index patient, we propose that the mentioned variant in the <i>CSF1R</i> gene may cause BANDDOS.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 3","pages":"183-190"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/06/bi-13-183.PMC10329754.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9814702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The delivery of chemotherapies to brain tumors faces the difficult task of crossing the blood-brain barrier (BBB).1-4 The brain capillary endothelial cells (BCECs) along with other cell lines, such as astrocytes and pericytes, form the BBB. This highly selective semipermeable barrier separates the blood from the brain parenchyma. The BBB controls the movement of drug molecules in a selective manner5 and maintains central nervous system (CNS) homeostasis. Depending on the properties of drugs such as their hydrophilic-lipophilic balance (HLB), some can cross the BBB through passive diffusion.6 However, this approach alone has not led to successful drug developments due to low net diffusion rates and systemic toxicity. Although the use of nanomedicine has been proposed to overcome these drawbacks, many recent studies still rely on the so-called 'enhanced permeability and retention (EPR)' effect though there is a realization in the field of drug delivery that EPR effect may not be sufficient for successful drug delivery to brain tumors. Since, compared to many other solid tumors, brain tumors pose additional challenges such as more restrictive blood-tumor barrier as well as the well-developed lymphatic drainage, the selection of functional moieties on the nanocarriers under consideration must be carried out with care to propose better solutions to this challenge.
{"title":"Dual-targeting of brain tumors with nanovesicles.","authors":"Nazanin Kianinejad, Young Min Kwon","doi":"10.34172/bi.2022.26321","DOIUrl":"https://doi.org/10.34172/bi.2022.26321","url":null,"abstract":"<p><p>The delivery of chemotherapies to brain tumors faces the difficult task of crossing the blood-brain barrier (BBB).<sup>1-4</sup> The brain capillary endothelial cells (BCECs) along with other cell lines, such as astrocytes and pericytes, form the BBB. This highly selective semipermeable barrier separates the blood from the brain parenchyma. The BBB controls the movement of drug molecules in a selective manner<sup>5</sup> and maintains central nervous system (CNS) homeostasis. Depending on the properties of drugs such as their hydrophilic-lipophilic balance (HLB), some can cross the BBB through passive diffusion.<sup>6</sup> However, this approach alone has not led to successful drug developments due to low net diffusion rates and systemic toxicity. Although the use of nanomedicine has been proposed to overcome these drawbacks, many recent studies still rely on the so-called 'enhanced permeability and retention (EPR)' effect though there is a realization in the field of drug delivery that EPR effect may not be sufficient for successful drug delivery to brain tumors. Since, compared to many other solid tumors, brain tumors pose additional challenges such as more restrictive blood-tumor barrier as well as the well-developed lymphatic drainage, the selection of functional moieties on the nanocarriers under consideration must be carried out with care to propose better solutions to this challenge.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 1","pages":"1-3"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/5e/bi-13-1.PMC9923813.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10767207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Here, the interaction behavior between propyl acridones (PA) and calf thymus DNA (ct-DNA) has been investigated to attain the features of the binding behavior of PA with ct-DNA, which includes specific binding sites, modes, and constants. Furthermore, the effects of PA on the conformation of ct-DNA seem to be quite significant for comprehending the medicine's mechanism of action and pharmacokinetics. Methods: The project was accomplished through means of absorbance studies, fluorescence spectroscopy, circular dichroism, viscosity measurement, thermal melting, and molecular modeling techniques. Results: The intercalation of PA has been suggested by fluorescence quenching and viscosity measurements results while the thermal melting and circular dichroism studies have confirmed the thermal stabilization and conformational changes that seem to be associated with the binding. The binding constants of ct-DNA-PA complex, in the absence and presence of EMF, have been evaluated to be 6.19 × 104 M-1 and 2.95 × 104 M-1 at 298 K, respectively. In the absence of EMF, the ∆H0 and ∆S0 values that occur in the interaction process of PA with ct-DNA have been measured to be -11.81 kJ.mol-1 and 51.01 J.mol-1K-1, while in the presence of EMF they were observed to be -23.34 kJ.mol-1 and 7.49 J.mol-1K-1, respectively. These numbers indicate the involvement of multiple non-covalent interactions in the binding procedure. In a parallel study, DNA-PA interactions have been monitored by molecular dynamics simulations; their results have demonstrated DNA stability with increasing concentrations of PA, as well as calculated bindings of theoretical ΔG0. Conclusion: The complex formation between PA and ct-DNA has been investigated in the presence and absence of EMF through the multi spectroscopic techniques and MD simulation. These findings have been observed to be parallel to the results of KI and NaCl quenching studies, as well as the competitive displacement with EB and AO. According to thermodynamic parameters, electrostatic interactions stand as the main energy that binds PA to ct-DNA. Regarding the cases that involve the Tm of ct-DNA, EMF has proved to increase the stability of binding between PA and ct-DNA.
{"title":"Multi spectroscopic and molecular simulation studies of propyl acridone binding to calf thymus DNA in the presence of electromagnetic force.","authors":"Atena Sharifi-Rad, Zeinab Amiri-Tehranizadeh, Atiye Talebi, Niknaz Nosrati, Morvarid Medalian, Mahtab Pejhan, Nazanin Hamzkanloo, Mohammad Reza Saberi, Parisa Mokaberi, Jamshidkhan Chamani","doi":"10.34172/bi.2022.23592","DOIUrl":"https://doi.org/10.34172/bi.2022.23592","url":null,"abstract":"<p><p><i><b>Introduction:</b> </i> Here, the interaction behavior between propyl acridones (PA) and calf thymus DNA (ct-DNA) has been investigated to attain the features of the binding behavior of PA with ct-DNA, which includes specific binding sites, modes, and constants. Furthermore, the effects of PA on the conformation of ct-DNA seem to be quite significant for comprehending the medicine's mechanism of action and pharmacokinetics. <i><b>Methods:</b> </i> The project was accomplished through means of absorbance studies, fluorescence spectroscopy, circular dichroism, viscosity measurement, thermal melting, and molecular modeling techniques. <i><b>Results:</b> </i> The intercalation of PA has been suggested by fluorescence quenching and viscosity measurements results while the thermal melting and circular dichroism studies have confirmed the thermal stabilization and conformational changes that seem to be associated with the binding. The binding constants of ct-DNA-PA complex, in the absence and presence of EMF, have been evaluated to be 6.19 × 10<sup>4</sup> M<sup>-1</sup> and 2.95 × 10<sup>4</sup> M<sup>-1</sup> at 298 K, respectively. In the absence of EMF, the ∆H<sup>0</sup> and ∆S<sup>0</sup> values that occur in the interaction process of PA with ct-DNA have been measured to be -11.81 kJ.mol<sup>-1</sup> and 51.01 J.mol<sup>-1</sup>K<sup>-1</sup>, while in the presence of EMF they were observed to be -23.34 kJ.mol<sup>-1</sup> and 7.49 J.mol<sup>-1</sup>K<sup>-1</sup>, respectively. These numbers indicate the involvement of multiple non-covalent interactions in the binding procedure. In a parallel study, DNA-PA interactions have been monitored by molecular dynamics simulations; their results have demonstrated DNA stability with increasing concentrations of PA, as well as calculated bindings of theoretical ΔG<sup>0</sup>. <i><b>Conclusion:</b> </i> The complex formation between PA and ct-DNA has been investigated in the presence and absence of EMF through the multi spectroscopic techniques and MD simulation. These findings have been observed to be parallel to the results of KI and NaCl quenching studies, as well as the competitive displacement with EB and AO. According to thermodynamic parameters, electrostatic interactions stand as the main energy that binds PA to ct-DNA. Regarding the cases that involve the T<sub>m</sub> of ct-DNA, EMF has proved to increase the stability of binding between PA and ct-DNA.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 1","pages":"5-16"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/99/c3/bi-13-5.PMC9923809.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9314947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Treatment of critical-sized bone defects is challenging. Tissue engineering as a state-of-the-art method has been concerned with treating these non-self-healing bone defects. Here, we studied the potentials of new three-dimensional nanofibrous scaffolds (3DNS) with and without human adipose mesenchymal stem cells (ADSCs) for reconstructing rat critical-sized calvarial defects (CSCD). Methods: Scaffolds were made from 1- polytetrafluoroethylene (PTFE), and polyvinyl alcohol (PVA) (PTFE/ PVA group), and 2- PTFE, PVA, and graphene oxide (GO) nanoparticle (PTFE/ PVA/GO group) and seeded by ADSCs and incubated in osteogenic media (OM). The expression of key osteogenic proteins including Runt-related transcription factor 2 (Runx2), collagen type Iα (COL Iα), osteocalcin (OCN), and osteonectin (ON) at days 14 and 21 of culture were evaluated by western blot and immunocytochemistry methods. Next, 40 selected rats were assigned to five groups (n=8) to create CSCD which will be filled by scaffolds or cell-containing scaffolds. The groups were denominated as the following order: Control (empty defects), PTFE/PVA (PTFE/PVA scaffolds implant), PTFE/PVA/GO (PTFE/PVA/GO scaffolds implant), PTFE/PVA/Cell group (PTFE/PVA scaffolds containing ADSCs implant), and PTFE/PVA/GO/Cell group (PTFE/PVA/GO scaffolds containing ADSCs implant). Six and 12 weeks after implantation, the animals were sacrificed and bone regeneration was evaluated using computerized tomography (CT), and hematoxylin-eosin (H&E) staining. Results: Based on the in-vitro study, expression of bone-related proteins in ADSCs seeded on PTFE/PVA/GO scaffolds were significantly higher than PTFE/PVA scaffolds and TCPS (P<0.05). Based on the in-vivo study, bone regeneration in CSCD were filled with PTFE/PVA/GO scaffolds containing ADSCs were significantly higher than PTFE/PVA scaffolds containing ADSCs (P<0.05). CSCD filled with cell-seeded scaffolds showed higher bone regeneration in comparison with CSCD filled with scaffolds only (P<0.05). Conclusion: The data provided evidence showing new freeze-dried nanofibrous scaffolds formed from hydrophobic (PTFE) and hydrophilic (PVA) polymers with and without GO provide a suitable environment for ADSCs due to the expression of bone-related proteins. ADSCs and GO in the implanted scaffolds had a distinct effect on the bone regeneration process in this in-vivo study.
{"title":"Repairing rat calvarial defects by adipose mesenchymal stem cells and novel freeze-dried three-dimensional nanofibrous scaffolds.","authors":"Maryam Sadat Khoramgah, Hossein Ghanbarian, Javad Ranjbari, Nilufar Ebrahimi, Fatemeh Sadat Tabatabaei Mirakabad, Navid Ahmady Roozbahany, Hojjat Allah Abbaszadeh, Simzar Hosseinzadeh","doi":"10.34172/bi.2021.23711","DOIUrl":"https://doi.org/10.34172/bi.2021.23711","url":null,"abstract":"<p><p><b><i>Introduction:</i> </b> Treatment of critical-sized bone defects is challenging. Tissue engineering as a state-of-the-art method has been concerned with treating these non-self-healing bone defects. Here, we studied the potentials of new three-dimensional nanofibrous scaffolds (3DNS) with and without human adipose mesenchymal stem cells (ADSCs) for reconstructing rat critical-sized calvarial defects (CSCD). <i><b>Methods:</b> </i> Scaffolds were made from 1- polytetrafluoroethylene (PTFE), and polyvinyl alcohol (PVA) (PTFE/ PVA group), and 2- PTFE, PVA, and graphene oxide (GO) nanoparticle (PTFE/ PVA/GO group) and seeded by ADSCs and incubated in osteogenic media (OM). The expression of key osteogenic proteins including Runt-related transcription factor 2 (Runx2), collagen type Iα (COL Iα), osteocalcin (OCN), and osteonectin (ON) at days 14 and 21 of culture were evaluated by western blot and immunocytochemistry methods. Next, 40 selected rats were assigned to five groups (n=8) to create CSCD which will be filled by scaffolds or cell-containing scaffolds. The groups were denominated as the following order: Control (empty defects), PTFE/PVA (PTFE/PVA scaffolds implant), PTFE/PVA/GO (PTFE/PVA/GO scaffolds implant), PTFE/PVA/Cell group (PTFE/PVA scaffolds containing ADSCs implant), and PTFE/PVA/GO/Cell group (PTFE/PVA/GO scaffolds containing ADSCs implant). Six and 12 weeks after implantation, the animals were sacrificed and bone regeneration was evaluated using computerized tomography (CT), and hematoxylin-eosin (H&E) staining. <i><b>Results:</b> </i> Based on the in-vitro study, expression of bone-related proteins in ADSCs seeded on PTFE/PVA/GO scaffolds were significantly higher than PTFE/PVA scaffolds and TCPS (<i>P</i><0.05). Based on the in-vivo study, bone regeneration in CSCD were filled with PTFE/PVA/GO scaffolds containing ADSCs were significantly higher than PTFE/PVA scaffolds containing ADSCs (<i>P</i><0.05). CSCD filled with cell-seeded scaffolds showed higher bone regeneration in comparison with CSCD filled with scaffolds only (<i>P</i><0.05). <i><b>Conclusion:</b> </i> The data provided evidence showing new freeze-dried nanofibrous scaffolds formed from hydrophobic (PTFE) and hydrophilic (PVA) polymers with and without GO provide a suitable environment for ADSCs due to the expression of bone-related proteins. ADSCs and GO in the implanted scaffolds had a distinct effect on the bone regeneration process in this in-vivo study.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 1","pages":"31-42"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/52/1c/bi-13-31.PMC9923815.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9329402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2023-03-01DOI: 10.34172/bi.2023.23515
Raghdah S Bawadud, Mayson H Alkhatib
Introduction: The approach for drug delivery has impressively developed with the emergence of nanosuspension, particularly the targeted nanoemulsions (NEs). It can potentially improve the bioavailability of drugs, enhancing their therapeutic efficiency. This study aims to examine the potential role of NE as a delivery system for the combination of docetaxel (DTX), a microtubule-targeting agent, and thymoquinone (TQ) in the treatment of human ductal carcinoma cells T47D. Methods: NEs were synthesized by ultra-sonication and characterized physically by dynamic light scattering (DLS). A sulforhodamine B assay was performed to evaluate cytotoxicity, and a flow cytometry analysis for cell cycle, apoptosis, autophagy, and cancer stem cell evaluations. A quantitative polymerase chain reaction further assessed the epithelial-mesenchymal transition gene expirations of SNAIL-1, ZEB-1, and TWIST-1. Results: The optimal sizes of blank-NEs and NE-DTX+TQ were found at 117.3 ± 8 nm and 373 ± 6.8 nm, respectively. The synergistic effect of the NE-DTX+TQ formulation significantly inhibited the in vitro proliferation of T47D cells. It caused a significant increase in apoptosis, accompanied by the stimulation of autophagy. Moreover, this formulation arrested T47D cells at the G2/M phase, promoted the reduction of the breast cancer stem cell (BCSC) population, and repressed the expression of TWIST-1 and ZEB-1. Conclusion: Co-delivery of NE-DTX+TQ may probably inhibit the proliferation of T47D via the induction of apoptosis and autophagy pathways and impede the migration by reducing the BCSC population and downregulating TWIST-1 expression to decrease the epithelial-to-mesenchymal transition (EMT) of breast cancer cells. Therefore, the study suggests the NE-DTX+TQ formula as a potential approach to inhibit breast cancer growth and metastasis.
{"title":"Growth and invasion inhibition of T47D ductal carcinoma cells by the association of docetaxel with a bioactive agent in neutral nanosuspension.","authors":"Raghdah S Bawadud, Mayson H Alkhatib","doi":"10.34172/bi.2023.23515","DOIUrl":"10.34172/bi.2023.23515","url":null,"abstract":"<p><p><i><b>Introduction:</b></i> The approach for drug delivery has impressively developed with the emergence of nanosuspension, particularly the targeted nanoemulsions (NEs). It can potentially improve the bioavailability of drugs, enhancing their therapeutic efficiency. This study aims to examine the potential role of NE as a delivery system for the combination of docetaxel (DTX), a microtubule-targeting agent, and thymoquinone (TQ) in the treatment of human ductal carcinoma cells T47D. <i><b>Methods:</b></i> NEs were synthesized by ultra-sonication and characterized physically by dynamic light scattering (DLS). A sulforhodamine B assay was performed to evaluate cytotoxicity, and a flow cytometry analysis for cell cycle, apoptosis, autophagy, and cancer stem cell evaluations. A quantitative polymerase chain reaction further assessed the epithelial-mesenchymal transition gene expirations of SNAIL-1, ZEB-1, and TWIST-1. <i><b>Results:</b></i> The optimal sizes of blank-NEs and NE-DTX+TQ were found at 117.3 ± 8 nm and 373 ± 6.8 nm, respectively. The synergistic effect of the NE-DTX+TQ formulation significantly inhibited the <i>in vitro</i> proliferation of T47D cells. It caused a significant increase in apoptosis, accompanied by the stimulation of autophagy. Moreover, this formulation arrested T47D cells at the G<sub>2</sub>/M phase, promoted the reduction of the breast cancer stem cell (BCSC) population, and repressed the expression of TWIST-1 and ZEB-1. <i><b>Conclusion:</b></i> Co-delivery of NE-DTX+TQ may probably inhibit the proliferation of T47D via the induction of apoptosis and autophagy pathways and impede the migration by reducing the BCSC population and downregulating TWIST-1 expression to decrease the epithelial-to-mesenchymal transition (EMT) of breast cancer cells. Therefore, the study suggests the NE-DTX+TQ formula as a potential approach to inhibit breast cancer growth and metastasis.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 2","pages":"145-157"},"PeriodicalIF":2.2,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3f/a8/bi-13-145.PMC10182446.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9485470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The implications of pharmacogenomics in oncology.","authors":"Jean J Latimer","doi":"10.34172/bi.2023.27686","DOIUrl":"https://doi.org/10.34172/bi.2023.27686","url":null,"abstract":"","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 3","pages":"181-182"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c0/22/bi-13-181.PMC10329749.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9816792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mina Yousefnezhad, Soodabeh Davaran, Mirzaagha Babazadeh, Abolfazl Akbarzadeh, Hamidreza Pazoki-Toroudi
Introduction: Drug repurposing is an effective strategy for identifying the use of approved drugs for new therapeutic purposes. This strategy has received particular attention in the development of cancer chemotherapy. Considering that a growing body of evidence suggesting the cholesterol-lowering drug ezetimibe (EZ) may prevent the progression of prostate cancer, we investigated the effect of EZ alone and in combination with doxorubicin (DOX) on prostate cancer treatment.
Methods: In this study, DOX and EZ were encapsulated within a PCL-based biodegradable nanoparticle. The physicochemical properties of drug containing nanoparticle based on PCL-PEG-PCL triblock copolymer (PCEC) have been exactly determined. The encapsulation efficiency and release behavior of DOX and EZ were also studied at two different pHs and temperatures.
Results: The average size of nanoparticles (NPs) observed by field emission scanning electron microscopy (FE-SEM) was around 82±23.80 nm, 59.7±18.7 nm, and 67.6±23.8 nm for EZ@PCEC, DOX@PCEC, and DOX+EZ@PCEC NPs, respectively, which had a spherical morphology. In addition, DLS measurement showed a monomodal size distribution of around 319.9, 166.8, and 203 nm hydrodynamic diameters and negative zeta potential (-30.3, -6.14, and -43.8) mV for EZ@PCEC, DOX@PCEC, and DOX+EZ@PCEC NPs, respectively. The drugs were released from the NPs sustainably in a pH and temperature-dependent manner. Based on the MTT assay results, PCEC copolymer exhibited negligible cytotoxicity on the PC3 cell line. Therefore, PCEC was a biocompatible and suitable nano-vehicle for this study. The cytotoxicity of the DOX-EZ-loaded NPs on the PC3 cell line was higher than that of NPs loaded with single drugs. All the data confirmed the synergistic effect of EZ in combination with DOX as an anticancer drug. Furthermore, fluorescent microscopy and DAPI staining were performed to show the cellular uptake, and morphological changes-induced apoptosis of treated cells.
Conclusion: Overall, the data from the experiments represented the successful preparation of the nanocarriers with high encapsulation efficacy. The designed nanocarriers could serve as an ideal candidate for combination therapy of cancer. The results corroborated each other and presented successful EZ and DOX formulations containing PCEC NPs and their efficiency in treating prostate cancer.
{"title":"PCL-based nanoparticles for doxorubicin-ezetimibe co-delivery: A combination therapy for prostate cancer using a drug repurposing strategy.","authors":"Mina Yousefnezhad, Soodabeh Davaran, Mirzaagha Babazadeh, Abolfazl Akbarzadeh, Hamidreza Pazoki-Toroudi","doi":"10.34172/bi.2023.24252","DOIUrl":"https://doi.org/10.34172/bi.2023.24252","url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>Drug repurposing is an effective strategy for identifying the use of approved drugs for new therapeutic purposes. This strategy has received particular attention in the development of cancer chemotherapy. Considering that a growing body of evidence suggesting the cholesterol-lowering drug ezetimibe (EZ) may prevent the progression of prostate cancer, we investigated the effect of EZ alone and in combination with doxorubicin (DOX) on prostate cancer treatment.</p><p><strong>Methods: </strong>In this study, DOX and EZ were encapsulated within a PCL-based biodegradable nanoparticle. The physicochemical properties of drug containing nanoparticle based on PCL-PEG-PCL triblock copolymer (PCEC) have been exactly determined. The encapsulation efficiency and release behavior of DOX and EZ were also studied at two different pHs and temperatures.</p><p><strong>Results: </strong>The average size of nanoparticles (NPs) observed by field emission scanning electron microscopy (FE-SEM) was around 82±23.80 nm, 59.7±18.7 nm, and 67.6±23.8 nm for EZ@PCEC, DOX@PCEC, and DOX+EZ@PCEC NPs, respectively, which had a spherical morphology. In addition, DLS measurement showed a monomodal size distribution of around 319.9, 166.8, and 203 nm hydrodynamic diameters and negative zeta potential (-30.3, -6.14, and -43.8) mV for EZ@PCEC, DOX@PCEC, and DOX+EZ@PCEC NPs, respectively. The drugs were released from the NPs sustainably in a pH and temperature-dependent manner. Based on the MTT assay results, PCEC copolymer exhibited negligible cytotoxicity on the PC3 cell line. Therefore, PCEC was a biocompatible and suitable nano-vehicle for this study. The cytotoxicity of the DOX-EZ-loaded NPs on the PC3 cell line was higher than that of NPs loaded with single drugs. All the data confirmed the synergistic effect of EZ in combination with DOX as an anticancer drug. Furthermore, fluorescent microscopy and DAPI staining were performed to show the cellular uptake, and morphological changes-induced apoptosis of treated cells.</p><p><strong>Conclusion: </strong>Overall, the data from the experiments represented the successful preparation of the nanocarriers with high encapsulation efficacy. The designed nanocarriers could serve as an ideal candidate for combination therapy of cancer. The results corroborated each other and presented successful EZ and DOX formulations containing PCEC NPs and their efficiency in treating prostate cancer.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"13 3","pages":"241-253"},"PeriodicalIF":2.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b1/18/bi-13-241.PMC10329752.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9868847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}