Pub Date : 2023-10-01Epub Date: 2023-06-05DOI: 10.1089/soro.2022.0134
Shoujie Li, Linqi Ye, Haixin Yu, Xianghui Yin, Chongkun Xia, Wenbo Ding, Xueqian Wang, Bin Liang
Humans can feel and grasp efficiently in the dark through tactile feedback, whereas it is still a challenging task for robots. In this research, we create a novel soft gripper named JamTac, which has high-resolution tactile perception, a large detection surface, and integrated sensing-grasping capability that can search and grasp in low-visibility environments. The gripper combines granular jamming and visuotactile perception technologies. Using the principle of refractive index matching, a refraction-free liquid-particle rationing scheme is developed, which makes the gripper itself to be an excellent tactile sensor without breaking its original grasping capability. We simultaneously acquire color and depth information inside the gripper, making it possible to sense the shape, texture, hardness, and contact force with high resolution. Experimental results demonstrate that JamTac can be a promising tool to search and grasp in situations when vision is not available.
{"title":"JamTac: A Tactile Jamming Gripper for Searching and Grasping in Low-Visibility Environments.","authors":"Shoujie Li, Linqi Ye, Haixin Yu, Xianghui Yin, Chongkun Xia, Wenbo Ding, Xueqian Wang, Bin Liang","doi":"10.1089/soro.2022.0134","DOIUrl":"10.1089/soro.2022.0134","url":null,"abstract":"<p><p>Humans can feel and grasp efficiently in the dark through tactile feedback, whereas it is still a challenging task for robots. In this research, we create a novel soft gripper named JamTac, which has high-resolution tactile perception, a large detection surface, and integrated sensing-grasping capability that can search and grasp in low-visibility environments. The gripper combines granular jamming and visuotactile perception technologies. Using the principle of refractive index matching, a refraction-free liquid-particle rationing scheme is developed, which makes the gripper itself to be an excellent tactile sensor without breaking its original grasping capability. We simultaneously acquire color and depth information inside the gripper, making it possible to sense the shape, texture, hardness, and contact force with high resolution. Experimental results demonstrate that JamTac can be a promising tool to search and grasp in situations when vision is not available.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"988-1000"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9951404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-03-28DOI: 10.1089/soro.2022.0162
Dengpeng Huang, Sigrid Leyendecker
In this work, a simulation model for the optimal control of dielectric elastomer actuated flexible multibody dynamics systems is presented. The dielectric elastomer actuator (DEA) behaves like a flexible artificial muscle in soft robotics. It is modeled as an electromechanically coupled geometrically exact beam, where the electric charges serve as control variables. The DEA-beam is integrated as an actuator into multibody systems consisting of rigid and flexible components. The model also represents contact interaction via unilateral constraints between the beam actuator and, for example, a rigid body during the grasping process of a soft robot. With a mathematically concise and physically representative formulation, a reduced free energy function is developed for the electromechanically coupled beam. In the optimal control problem, an objective function is minimized while the electromechanically coupled dynamic balance equations for the multibody system have to be fulfilled together with the complementarity conditions for the contact and boundary conditions. The optimal control problem is solved via a direct transcription method, transforming it into a constrained nonlinear optimization problem. The electromechanically coupled geometrically exact beam is firstly semidiscretized with one-dimensional finite elements and then the multibody dynamics is temporally discretized with a variational integrator leading to the discrete Euler-Lagrange equations, which are further reduced with the null space projection. The discrete Euler-Lagrange equations and the boundary conditions serve as equality constraints, whereas the contact constraints are treated as inequality constraints in the optimization of the discretized objective. The constrained optimization problem is solved using the Interior Point Optimizer solver. The effectiveness of the developed model is demonstrated by three numerical examples, including a cantilever beam, a soft robotic worm, and a soft robotic grasper.
{"title":"Optimal Control of Dielectric Elastomer Actuated Multibody Dynamical Systems.","authors":"Dengpeng Huang, Sigrid Leyendecker","doi":"10.1089/soro.2022.0162","DOIUrl":"10.1089/soro.2022.0162","url":null,"abstract":"<p><p>In this work, a simulation model for the optimal control of dielectric elastomer actuated flexible multibody dynamics systems is presented. The dielectric elastomer actuator (DEA) behaves like a flexible artificial muscle in soft robotics. It is modeled as an electromechanically coupled geometrically exact beam, where the electric charges serve as control variables. The DEA-beam is integrated as an actuator into multibody systems consisting of rigid and flexible components. The model also represents contact interaction via unilateral constraints between the beam actuator and, for example, a rigid body during the grasping process of a soft robot. With a mathematically concise and physically representative formulation, a reduced free energy function is developed for the electromechanically coupled beam. In the optimal control problem, an objective function is minimized while the electromechanically coupled dynamic balance equations for the multibody system have to be fulfilled together with the complementarity conditions for the contact and boundary conditions. The optimal control problem is solved via a direct transcription method, transforming it into a constrained nonlinear optimization problem. The electromechanically coupled geometrically exact beam is firstly semidiscretized with one-dimensional finite elements and then the multibody dynamics is temporally discretized with a variational integrator leading to the discrete Euler-Lagrange equations, which are further reduced with the null space projection. The discrete Euler-Lagrange equations and the boundary conditions serve as equality constraints, whereas the contact constraints are treated as inequality constraints in the optimization of the discretized objective. The constrained optimization problem is solved using the Interior Point Optimizer solver. The effectiveness of the developed model is demonstrated by three numerical examples, including a cantilever beam, a soft robotic worm, and a soft robotic grasper.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"897-911"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9246996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-04-19DOI: 10.1089/soro.2022.0070
Xiaohui Pei, Guimin Chen
Soft robots have received a great deal of attention from both academia and industry due to their unprecedented adaptability in unstructured environment and extreme dexterity for complicated operations. Due to the strong coupling between the material nonlinearity due to hyperelasticity and the geometric nonlinearity due to large deflections, modeling of soft robots is highly dependent on commercial finite element software packages. An approach that is accurate and fast, and whose implementation is open to designers, is in great need. Considering that the constitutive relation of the hyperelastic materials is commonly expressed by its energy density function, we present an energy-based kinetostatic modeling approach in which the deflection of a soft robot is formulated as a minimization problem of its total potential energy. A fixed Hessian matrix of strain energy is proposed and adopted in the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which significantly improves its efficiency for solving the minimization problem of soft robots without sacrificing prediction accuracy. The simplicity of the approach leads to an implementation of MATLAB with only 99-line codes, which provides an easy-to-use tool for designers who are designing and optimizing the structures of soft robots. The efficiency of the proposed approach for predicting kinetostatic behaviors of soft robots is demonstrated by seven pneumatic-driven and cable-driven soft robots. The capability of the approach for capturing buckling behaviors in soft robots is also demonstrated. The energy-minimization approach, as well as the MATLAB implementation, could be easily tailored to fulfill various tasks, including design, optimization, and control of soft robots.
{"title":"Kinetostatic Modeling of Soft Robots: Energy-Minimization Approach and 99-Line MATLAB Implementation.","authors":"Xiaohui Pei, Guimin Chen","doi":"10.1089/soro.2022.0070","DOIUrl":"10.1089/soro.2022.0070","url":null,"abstract":"<p><p>Soft robots have received a great deal of attention from both academia and industry due to their unprecedented adaptability in unstructured environment and extreme dexterity for complicated operations. Due to the strong coupling between the material nonlinearity due to hyperelasticity and the geometric nonlinearity due to large deflections, modeling of soft robots is highly dependent on commercial finite element software packages. An approach that is accurate and fast, and whose implementation is open to designers, is in great need. Considering that the constitutive relation of the hyperelastic materials is commonly expressed by its energy density function, we present an energy-based kinetostatic modeling approach in which the deflection of a soft robot is formulated as a minimization problem of its total potential energy. A fixed Hessian matrix of strain energy is proposed and adopted in the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which significantly improves its efficiency for solving the minimization problem of soft robots without sacrificing prediction accuracy. The simplicity of the approach leads to an implementation of MATLAB with only 99-line codes, which provides an easy-to-use tool for designers who are designing and optimizing the structures of soft robots. The efficiency of the proposed approach for predicting kinetostatic behaviors of soft robots is demonstrated by seven pneumatic-driven and cable-driven soft robots. The capability of the approach for capturing buckling behaviors in soft robots is also demonstrated. The energy-minimization approach, as well as the MATLAB implementation, could be easily tailored to fulfill various tasks, including design, optimization, and control of soft robots.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"972-987"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9440723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft robots equipped with multifunctionalities have been increasingly needed for secure, adaptive, and autonomous functioning in unknown and unpredictable environments. Robotic stacking is a promising solution to increase the functional diversity of soft robots, which are required for safe human-machine interactions and adapting in unstructured environments. However, most existing multifunctional soft robots have a limited number of functions or have not fully shown the superiority of the robotic stacking method. In this study, we present a novel robotic stacking strategy, Netting-Rolling-Splicing (NRS) stacking, based on a dimensional raising method via 2D-to-3D rolling-and-splicing of netted stackable pneumatic artificial muscles to quickly and efficiently fabricate multifunctional soft robots based on the same, simple, and cost-effective elements. To demonstrate it, we developed a TriUnit robot that can crawl 0.46 ± 0.022 body length per second (BL/s) and climb 0.11 BL/s, and can carry a 3 kg payload while climbing. Also, the TriUnit can be used to achieve novel omnidirectional pipe climbing including rotating climbing, and conduct bionic swallowing-and-regurgitating, multi-degree-of-freedom manipulation based on their multimodal combinations. Apart from these, steady rolling, with a speed of 0.19 BL/s, can be achieved by using a pentagon unit. Furthermore, we applied the TriUnit pipe climbing robot in panoramic shooting and cargo transferring to demonstrate the robot's adaptability for different tasks. The NRS stacking-driven soft robot here has demonstrated the best overall performance among existing stackable soft robots, representing a new and effective way for building multifunctional and multimodal soft robots in a cost-effective and efficient way.
{"title":"Multifunctional Soft Stackable Robots by Netting-Rolling-Splicing Pneumatic Artificial Muscles.","authors":"Qinghua Guan, Liwu Liu, Jian Sun, Jiale Wang, Jianglong Guo, Yanju Liu, Jinsong Leng","doi":"10.1089/soro.2022.0104","DOIUrl":"10.1089/soro.2022.0104","url":null,"abstract":"Soft robots equipped with multifunctionalities have been increasingly needed for secure, adaptive, and autonomous functioning in unknown and unpredictable environments. Robotic stacking is a promising solution to increase the functional diversity of soft robots, which are required for safe human-machine interactions and adapting in unstructured environments. However, most existing multifunctional soft robots have a limited number of functions or have not fully shown the superiority of the robotic stacking method. In this study, we present a novel robotic stacking strategy, Netting-Rolling-Splicing (NRS) stacking, based on a dimensional raising method via 2D-to-3D rolling-and-splicing of netted stackable pneumatic artificial muscles to quickly and efficiently fabricate multifunctional soft robots based on the same, simple, and cost-effective elements. To demonstrate it, we developed a TriUnit robot that can crawl 0.46 ± 0.022 body length per second (BL/s) and climb 0.11 BL/s, and can carry a 3 kg payload while climbing. Also, the TriUnit can be used to achieve novel omnidirectional pipe climbing including rotating climbing, and conduct bionic swallowing-and-regurgitating, multi-degree-of-freedom manipulation based on their multimodal combinations. Apart from these, steady rolling, with a speed of 0.19 BL/s, can be achieved by using a pentagon unit. Furthermore, we applied the TriUnit pipe climbing robot in panoramic shooting and cargo transferring to demonstrate the robot's adaptability for different tasks. The NRS stacking-driven soft robot here has demonstrated the best overall performance among existing stackable soft robots, representing a new and effective way for building multifunctional and multimodal soft robots in a cost-effective and efficient way.","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1001-1014"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9388912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-06-19DOI: 10.1089/soro.2022.0140
Xiang Li, Ze Wu, Bingjue Li, Youqiang Xing, Peng Huang, Lei Liu
Predictable bending deformation, high cycle stability, and multimode complex motion have always been the goals pursued in the field of flexible robots. In this study, inspired by the delicate structure and humidity response characteristics of Selaginella lepidophylla, a new multilevel assisted assembly strategy was developed to construct MXene-CoFe2O4 (MXCFO) flexible actuators with different concentration gradients, to achieve predictable bending deformation and multi-stimulus cooperative control of the actuators, revealing the intrinsic link between the gradient change and the bending deformation ability of the actuator. The thickness of the actuator shows uniformity compared with the common layer-by-layer assembly strategy. And, the bionic gradient structured actuator shows high cycle stability, and it maintains excellent interlayer bonding after bending 100 times. The flexible robots designed based on the predictable bending deformation and the multi-stimulus cooperative response characteristics of the actuator initially realize conceptual models of humidity monitoring, climbing, grasping, cargo transportation, and drug delivery. The designed bionic gradient structure and unbound multi-stimulus cooperative control strategy may show great potential in the design and development of robots in the future.
{"title":"<i>Selaginella lepidophylla</i>-Inspired Multi-Stimulus Cooperative Control MXene-Based Flexible Actuator.","authors":"Xiang Li, Ze Wu, Bingjue Li, Youqiang Xing, Peng Huang, Lei Liu","doi":"10.1089/soro.2022.0140","DOIUrl":"10.1089/soro.2022.0140","url":null,"abstract":"<p><p>Predictable bending deformation, high cycle stability, and multimode complex motion have always been the goals pursued in the field of flexible robots. In this study, inspired by the delicate structure and humidity response characteristics of <i>Selaginella lepidophylla</i>, a new multilevel assisted assembly strategy was developed to construct MXene-CoFe<sub>2</sub>O<sub>4</sub> (MXCFO) flexible actuators with different concentration gradients, to achieve predictable bending deformation and multi-stimulus cooperative control of the actuators, revealing the intrinsic link between the gradient change and the bending deformation ability of the actuator. The thickness of the actuator shows uniformity compared with the common layer-by-layer assembly strategy. And, the bionic gradient structured actuator shows high cycle stability, and it maintains excellent interlayer bonding after bending 100 times. The flexible robots designed based on the predictable bending deformation and the multi-stimulus cooperative response characteristics of the actuator initially realize conceptual models of humidity monitoring, climbing, grasping, cargo transportation, and drug delivery. The designed bionic gradient structure and unbound multi-stimulus cooperative control strategy may show great potential in the design and development of robots in the future.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"861-872"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9667350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-05-24DOI: 10.1089/soro.2022.0177
Shinya Aoi, Yuki Yabuuchi, Daiki Morozumi, Kota Okamoto, Mau Adachi, Kei Senda, Kazuo Tsuchiya
Legged robots have remarkable terrestrial mobility, but are susceptible to falling and leg malfunction during locomotion. The use of a large number of legs, as in centipedes, can overcome these problems, but it makes the body long and leads to many legs being constrained to contact with the ground to support the long body, which impedes maneuverability. A mechanism for maneuverable locomotion using a large number legs is thus desirable. However, controlling a long body with a large number of legs requires huge computational and energy costs. Inspired by agile locomotion in biological systems, this study proposes a control strategy for maneuverable and efficient locomotion of a myriapod robot based on dynamic instability. Specifically, our previous study made the body axis of a 12-legged robot flexible and showed that changing the body-axis flexibility produces pitchfork bifurcation. The bifurcation not only induces the dynamic instability of a straight walk but also a transition to a curved walk, whose curvature is controllable by the body-axis flexibility. This study incorporated a variable stiffness mechanism into the body axis and developed a simple control strategy based on the bifurcation characteristics. With this strategy, maneuverable and autonomous locomotion was achieved, as demonstrated by multiple robot experiments. Our approach does not directly control the movement of the body axis; instead, it controls body-axis flexibility, which significantly reduces computational and energy costs. This study provides a new design principle for maneuverable and efficient locomotion of myriapod robots.
{"title":"Maneuverable and Efficient Locomotion of a Myriapod Robot with Variable Body-Axis Flexibility via Instability and Bifurcation.","authors":"Shinya Aoi, Yuki Yabuuchi, Daiki Morozumi, Kota Okamoto, Mau Adachi, Kei Senda, Kazuo Tsuchiya","doi":"10.1089/soro.2022.0177","DOIUrl":"10.1089/soro.2022.0177","url":null,"abstract":"<p><p>Legged robots have remarkable terrestrial mobility, but are susceptible to falling and leg malfunction during locomotion. The use of a large number of legs, as in centipedes, can overcome these problems, but it makes the body long and leads to many legs being constrained to contact with the ground to support the long body, which impedes maneuverability. A mechanism for maneuverable locomotion using a large number legs is thus desirable. However, controlling a long body with a large number of legs requires huge computational and energy costs. Inspired by agile locomotion in biological systems, this study proposes a control strategy for maneuverable and efficient locomotion of a myriapod robot based on dynamic instability. Specifically, our previous study made the body axis of a 12-legged robot flexible and showed that changing the body-axis flexibility produces pitchfork bifurcation. The bifurcation not only induces the dynamic instability of a straight walk but also a transition to a curved walk, whose curvature is controllable by the body-axis flexibility. This study incorporated a variable stiffness mechanism into the body axis and developed a simple control strategy based on the bifurcation characteristics. With this strategy, maneuverable and autonomous locomotion was achieved, as demonstrated by multiple robot experiments. Our approach does not directly control the movement of the body axis; instead, it controls body-axis flexibility, which significantly reduces computational and energy costs. This study provides a new design principle for maneuverable and efficient locomotion of myriapod robots.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1028-1040"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9522847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-05-08DOI: 10.1089/soro.2021.0223
Sung-Sik Yun, Christian William Bundschu, Kyu-Jin Cho
Soft robotic wearables have emerged as an ergonomic alternative to rigid robotic wearables, commonly utilizing tension-based actuation systems. However, their soft structure's natural tendency to buckle limits their use for compression bearing applications. This study presents reinforced flexible shell (RFS) anchoring, a compliant, low-profile, ergonomic wearable platform capable of high compression resistance. RFS anchors are fabricated with soft and semirigid materials that typically buckle under compressive loads. Buckling is overcome using the wearer's leg as a support structure, reinforcing the shells with straps, and minimizing the space between the shells and the wearer's skin-enabling force transmission orders of magnitude larger. RFS anchoring performance was evaluated comparatively by examining the shift-deformation profiles of three identically designed braces fabricated with different materials: rigid, strapped RFS, and unstrapped RFS. The unstrapped RFS severely deformed before 200 N of force could be applied. The strapped RFS successfully supported 200 N of force and exhibited a nearly identical transient shift-deformation profile with the rigid brace condition. RFS anchoring technology was applied to a compression-resistant hybrid exosuit, Exo-Unloader, for knee osteoarthritis. Exo-Unloader utilizes a tendon-driven linear sliding actuation system that unloads the medial and lateral compartments of the knee. Exo-Unloader can deliver 200 N of unloading force without deforming, as indicted by its similar transient shift-deformation profile with a rigid unloader baseline. Although rigid braces effectively withstand and transmit high compressive loads, they lack compliance; RFS anchoring technology expands the application of soft and flexible materials to compression-based wearable assistive systems.
{"title":"A Hybrid Anchoring Technology Composed of Reinforced Flexible Shells for a Knee Unloading Exosuit.","authors":"Sung-Sik Yun, Christian William Bundschu, Kyu-Jin Cho","doi":"10.1089/soro.2021.0223","DOIUrl":"10.1089/soro.2021.0223","url":null,"abstract":"<p><p>Soft robotic wearables have emerged as an ergonomic alternative to rigid robotic wearables, commonly utilizing tension-based actuation systems. However, their soft structure's natural tendency to buckle limits their use for compression bearing applications. This study presents reinforced flexible shell (RFS) anchoring, a compliant, low-profile, ergonomic wearable platform capable of high compression resistance. RFS anchors are fabricated with soft and semirigid materials that typically buckle under compressive loads. Buckling is overcome using the wearer's leg as a support structure, reinforcing the shells with straps, and minimizing the space between the shells and the wearer's skin-enabling force transmission orders of magnitude larger. RFS anchoring performance was evaluated comparatively by examining the shift-deformation profiles of three identically designed braces fabricated with different materials: rigid, strapped RFS, and unstrapped RFS. The unstrapped RFS severely deformed before 200 N of force could be applied. The strapped RFS successfully supported 200 N of force and exhibited a nearly identical transient shift-deformation profile with the rigid brace condition. RFS anchoring technology was applied to a compression-resistant hybrid exosuit, Exo-Unloader, for knee osteoarthritis. Exo-Unloader utilizes a tendon-driven linear sliding actuation system that unloads the medial and lateral compartments of the knee. Exo-Unloader can deliver 200 N of unloading force without deforming, as indicted by its similar transient shift-deformation profile with a rigid unloader baseline. Although rigid braces effectively withstand and transmit high compressive loads, they lack compliance; RFS anchoring technology expands the application of soft and flexible materials to compression-based wearable assistive systems.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"873-883"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9800479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-03-28DOI: 10.1089/soro.2022.0075
Noah D Kohls, Roman Balak, Bryan P Ruddy, Yi Chen Mazumdar
To create fully-soft robots, fully-soft actuators are needed. Currently, soft rotary actuator topologies described in the literature exhibit low rotational speeds, which limit their applicability. In this work, we describe a novel, fully-soft synchronous rotary electromagnetic actuator and soft magnetic contact switch sensor concept. In this study, the actuator is constructed using gallium indium liquid metal conductors, compliant permanent magnetic composites, carbon black powders, and flexible polymers. The actuator also operates using low voltages (<20 V, ≤10 A), has a bandwidth of 10 Hz, a stall torque of 2.5-3 mN·m, and no-load speed of up to 4000 rpm. These values show that the actuator rotates at over two orders-of-magnitude higher speed with at least one order-of-magnitude higher output power than previously developed soft rotary actuators. This unique soft rotary motor is operated in a manner similar to traditional hard motors, but is also able to stretch and deform to enable new soft robot functions. To demonstrate fully-soft actuator application concepts, the motor is incorporated into a fully-soft air blower, fully-soft underwater propulsion system, fully-soft water pump, and squeeze-based sensor for a fully-soft fan. Hybrid hard and soft applications were also tested, including a geared robotic car, pneumatic actuator, and hydraulic pump. Overall, this work demonstrates how the fully-soft rotary electromagnetic actuator can bridge the gap between the capabilities of traditional hard motors and novel soft actuator concepts.
{"title":"Soft Electromagnetic Motor and Soft Magnetic Sensors for Synchronous Rotary Motion.","authors":"Noah D Kohls, Roman Balak, Bryan P Ruddy, Yi Chen Mazumdar","doi":"10.1089/soro.2022.0075","DOIUrl":"10.1089/soro.2022.0075","url":null,"abstract":"<p><p>To create fully-soft robots, fully-soft actuators are needed. Currently, soft rotary actuator topologies described in the literature exhibit low rotational speeds, which limit their applicability. In this work, we describe a novel, fully-soft synchronous rotary electromagnetic actuator and soft magnetic contact switch sensor concept. In this study, the actuator is constructed using gallium indium liquid metal conductors, compliant permanent magnetic composites, carbon black powders, and flexible polymers. The actuator also operates using low voltages (<20 V, ≤10 A), has a bandwidth of 10 Hz, a stall torque of 2.5-3 mN·m, and no-load speed of up to 4000 rpm. These values show that the actuator rotates at over two orders-of-magnitude higher speed with at least one order-of-magnitude higher output power than previously developed soft rotary actuators. This unique soft rotary motor is operated in a manner similar to traditional hard motors, but is also able to stretch and deform to enable new soft robot functions. To demonstrate fully-soft actuator application concepts, the motor is incorporated into a fully-soft air blower, fully-soft underwater propulsion system, fully-soft water pump, and squeeze-based sensor for a fully-soft fan. Hybrid hard and soft applications were also tested, including a geared robotic car, pneumatic actuator, and hydraulic pump. Overall, this work demonstrates how the fully-soft rotary electromagnetic actuator can bridge the gap between the capabilities of traditional hard motors and novel soft actuator concepts.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"912-922"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9282545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-05-04DOI: 10.1089/soro.2022.0179
Donghua Shen, Qi Zhang, Yali Han, Chunlei Tu, Xingsong Wang
Continuum robots have the advantages of agility and adaptability. However, existing continuum robots have limitations of low stiffness and complex motion modes, and the existing variable stiffness methods cannot achieve a wide range of stiffness changes and fast switching stiffness simultaneously. A continuum robot structure, switching stiffness method, and motion principle are proposed in this article. The continuum robot is made up of three segments connected in series. Each segment comprises multiple spherical joints connected in series, and the joints can be locked by their respective airbag. A valve controls each airbag, quickly switching the segment between rigidity and flexibility. The motion of the segments is driven by three cables that run through the robot. The segment steers only when it is unlocked. When a segment becomes locked, it acts as a rigid body. As a result, by locking and unlocking each segment in sequence, the cables can alternately drive all the segments. The stiffness variation and movement of the continuum robot were tested. The segment's stiffness varies from 36.89 to 1300.95 N/m and the stiffness switching time is 0.25-0.48 s. The time-sharing control mode of segment stiffness and motion is validated by establishing a specific test platform and a mathematical model. The continuum robot's flexibility is demonstrated by controlling the fast bending of different segments sequentially.
{"title":"Design and Development of a Continuum Robot with Switching-Stiffness.","authors":"Donghua Shen, Qi Zhang, Yali Han, Chunlei Tu, Xingsong Wang","doi":"10.1089/soro.2022.0179","DOIUrl":"10.1089/soro.2022.0179","url":null,"abstract":"<p><p>Continuum robots have the advantages of agility and adaptability. However, existing continuum robots have limitations of low stiffness and complex motion modes, and the existing variable stiffness methods cannot achieve a wide range of stiffness changes and fast switching stiffness simultaneously. A continuum robot structure, switching stiffness method, and motion principle are proposed in this article. The continuum robot is made up of three segments connected in series. Each segment comprises multiple spherical joints connected in series, and the joints can be locked by their respective airbag. A valve controls each airbag, quickly switching the segment between rigidity and flexibility. The motion of the segments is driven by three cables that run through the robot. The segment steers only when it is unlocked. When a segment becomes locked, it acts as a rigid body. As a result, by locking and unlocking each segment in sequence, the cables can alternately drive all the segments. The stiffness variation and movement of the continuum robot were tested. The segment's stiffness varies from 36.89 to 1300.95 N/m and the stiffness switching time is 0.25-0.48 s. The time-sharing control mode of segment stiffness and motion is validated by establishing a specific test platform and a mathematical model. The continuum robot's flexibility is demonstrated by controlling the fast bending of different segments sequentially.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1015-1027"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9464185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-04-26DOI: 10.1089/soro.2022.0148
Huan Wang, Bingtuan Gao, Anqing Hu, Jiahong He
A reconfigurable dexterous gripper is designed which can switch states, including rigidity and flexibility, for different application scenarios. Moreover, the stiffness of the fingers in the flexible state can also be tuned for different objects. Three fingers are connected to the revolute joints of the palm, and each finger has a reshape mechanism with a slider moving up and down to lock or release the fingertip joint. When the slider moves upward, the gripper works in the rigid state and the fingers are actuated by the servos. When the slider moves downward, the gripper works in the flexible state that the fingertip is supported by a spring, and the fingertip joint is rotated by an embedded motor with two group cables for tuning stiffness. This novel design provides the gripper with the advantages of high precision and strong load capacity of rigid grippers and shape adaptability and safety of soft grippers. The reconfigurable mechanism allows the gripper great versatility for grasping and manipulation, which facilitates the planning and execution of the motion of objects with different shapes and stiffness. We discuss the stiffness-tunable mechanism with different states, analyze the kinematic characteristics, and test the manipulator performance to investigate the application in rigid-flexible collaborative works. Experimental results show the practicability of this gripper under different requirements and the rationality of this proposed concept.
{"title":"A Variable Stiffness Gripper with Reconfigurable Finger Joint for Versatile Manipulations.","authors":"Huan Wang, Bingtuan Gao, Anqing Hu, Jiahong He","doi":"10.1089/soro.2022.0148","DOIUrl":"10.1089/soro.2022.0148","url":null,"abstract":"<p><p>A reconfigurable dexterous gripper is designed which can switch states, including rigidity and flexibility, for different application scenarios. Moreover, the stiffness of the fingers in the flexible state can also be tuned for different objects. Three fingers are connected to the revolute joints of the palm, and each finger has a reshape mechanism with a slider moving up and down to lock or release the fingertip joint. When the slider moves upward, the gripper works in the rigid state and the fingers are actuated by the servos. When the slider moves downward, the gripper works in the flexible state that the fingertip is supported by a spring, and the fingertip joint is rotated by an embedded motor with two group cables for tuning stiffness. This novel design provides the gripper with the advantages of high precision and strong load capacity of rigid grippers and shape adaptability and safety of soft grippers. The reconfigurable mechanism allows the gripper great versatility for grasping and manipulation, which facilitates the planning and execution of the motion of objects with different shapes and stiffness. We discuss the stiffness-tunable mechanism with different states, analyze the kinematic characteristics, and test the manipulator performance to investigate the application in rigid-flexible collaborative works. Experimental results show the practicability of this gripper under different requirements and the rationality of this proposed concept.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"1041-1054"},"PeriodicalIF":7.9,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9352508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}