首页 > 最新文献

bioRxiv (Cold Spring Harbor Laboratory)最新文献

英文 中文
Impact of central carbon metabolism bypasses on the production of beta-carotene inYarrowa lipolytica 中心碳代谢旁路对多脂叶蛙β -胡萝卜素产生的影响
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.10.566616
Tadej Markuš, Mladen Soldat, Vasilka Magdevska, Jaka Horvat, Martin Kavšček, Gregor Kosec, Štefan Fujs, Uroš Petrovič
Yarrowia lipolytica is an oleaginous yeast with ever growing popularity in the metabolic engineering circles. It is well known for its ability to accommodate a high carbon flux through acetyl-CoA and is being extensively studied for production of chemicals derived from it. We investigated the effects of modifying the upstream metabolism leading to acetyl-CoA on beta-carotene production, including its titer, yield, and content. We examined the pyruvate and the phosphoketolase bypass, both of which are stoichiometrically favorable for the production of acetyl-CoA and beta-carotene. Additionally, we examined a set of genes involved in the carnitine shuttle. We constructed a set of parental strains derived from the Y. lipolytica YB-392 wild-type strain, each with a different capacity for beta-carotene production, and introduced genes for the metabolic bypasses in each of the constructed parental strains. Subsequently, we subjected these constructed strains to a series of fermentation experiments. We discovered that altering the upstream metabolism in most cases led to a decrease in performance for production of beta-carotene. Most notably, a set of genes used for the pyruvate bypass ( YlPDC2 , YlALD5 , and YlACS1 ) and the phosphoketolase bypass ( LmXPK and CkPTA ) resulted in the reduction of more than 30%. Our findings contribute to our understanding of Y. lipolytica 's metabolic capacity and suggest that production of beta-carotene is most likely not limited solely by the acetyl-CoA supply. We also highlight a complex nature of engineering Y. lipolytica , as most of the results from studies using a different strain background did not align with our findings.
脂解耶氏酵母是一种产油酵母,在代谢工程界越来越受欢迎。众所周知,它具有通过乙酰辅酶a调节高碳通量的能力,目前正在对其衍生化学品的生产进行广泛研究。我们研究了修饰上游代谢导致乙酰辅酶a对β -胡萝卜素生产的影响,包括其滴度、产量和含量。我们检查了丙酮酸和磷酸酮醇酶旁路,它们都有利于乙酰辅酶a和β -胡萝卜素的产生。此外,我们检查了一组与肉碱穿梭有关的基因。我们构建了一组由脂肪瘤YB-392野生型菌株衍生的亲本菌株,每个亲本菌株具有不同的β -胡萝卜素生产能力,并在每个构建的亲本菌株中引入了代谢旁路的基因。随后,我们对这些构建的菌株进行了一系列的发酵实验。我们发现,在大多数情况下,改变上游代谢会导致β -胡萝卜素生产性能的下降。最值得注意的是,一组用于丙酮酸旁路(YlPDC2, YlALD5和YlACS1)和磷酸酮醇酶旁路(LmXPK和CkPTA)的基因导致了超过30%的减少。我们的发现有助于我们理解解脂y菌的代谢能力,并表明β -胡萝卜素的产生很可能不仅仅受乙酰辅酶a供应的限制。我们还强调了工程脂肪瘤的复杂性,因为使用不同菌株背景的大多数研究结果与我们的发现不一致。
{"title":"Impact of central carbon metabolism bypasses on the production of beta-carotene in<i>Yarrowa lipolytica</i>","authors":"Tadej Markuš, Mladen Soldat, Vasilka Magdevska, Jaka Horvat, Martin Kavšček, Gregor Kosec, Štefan Fujs, Uroš Petrovič","doi":"10.1101/2023.11.10.566616","DOIUrl":"https://doi.org/10.1101/2023.11.10.566616","url":null,"abstract":"Yarrowia lipolytica is an oleaginous yeast with ever growing popularity in the metabolic engineering circles. It is well known for its ability to accommodate a high carbon flux through acetyl-CoA and is being extensively studied for production of chemicals derived from it. We investigated the effects of modifying the upstream metabolism leading to acetyl-CoA on beta-carotene production, including its titer, yield, and content. We examined the pyruvate and the phosphoketolase bypass, both of which are stoichiometrically favorable for the production of acetyl-CoA and beta-carotene. Additionally, we examined a set of genes involved in the carnitine shuttle. We constructed a set of parental strains derived from the Y. lipolytica YB-392 wild-type strain, each with a different capacity for beta-carotene production, and introduced genes for the metabolic bypasses in each of the constructed parental strains. Subsequently, we subjected these constructed strains to a series of fermentation experiments. We discovered that altering the upstream metabolism in most cases led to a decrease in performance for production of beta-carotene. Most notably, a set of genes used for the pyruvate bypass ( YlPDC2 , YlALD5 , and YlACS1 ) and the phosphoketolase bypass ( LmXPK and CkPTA ) resulted in the reduction of more than 30%. Our findings contribute to our understanding of Y. lipolytica 's metabolic capacity and suggest that production of beta-carotene is most likely not limited solely by the acetyl-CoA supply. We also highlight a complex nature of engineering Y. lipolytica , as most of the results from studies using a different strain background did not align with our findings.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"37 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant pathogenic fungi hijack phosphate starvation signaling with conserved enzymatic effectors 植物病原真菌利用保守的酶效应物劫持磷酸盐饥饿信号
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.14.566975
Carl L McCombe, Alex Wegner, Chenie S. Zamora, Florencia Casanova, Shouvik Aditya, Julian R Greenwood, Louisa Wirtz, Samuel de Paula, Eleanor England, Sascha Shang, Daniel J Ericsson, Ely Oliveira-Garcia, Simon J Williams, Ulrich Schaffrath
Phosphate availability modulates plant immune function and regulates interactions with beneficial, phosphate-providing, microbes. Here, we describe the hijacking of plant phosphate sensing by a family of Nudix hydrolase effectors from pathogenic Magnaporthe oryzae and Colletotrichum fungi. Structural and enzymatic analyses of the Nudix effector family demonstrate that they selectively hydrolyze inositol pyrophosphates, a molecule used by plants to monitor phosphate status and regulate starvation responses. In M. oryzae , gene deletion and complementation experiments reveal that the enzymatic activity of a Nudix effector significantly contributes to pathogen virulence. Further, we show that this conserved effector protein family induces phosphate starvation signaling in plants. Our study elucidates a molecular mechanism, utilized by multiple phytopathogenic fungi, that manipulates the highly conserved plant phosphate sensing pathway to exacerbate disease.
磷酸盐可利用性调节植物免疫功能并调节与有益的、提供磷酸盐的微生物的相互作用。在这里,我们描述了来自致病性稻瘟病菌和炭疽菌的Nudix水解酶效应家族劫持植物的磷酸盐感知。Nudix效应家族的结构和酶分析表明,它们选择性地水解肌醇焦磷酸,肌醇焦磷酸是植物用来监测磷酸盐状态和调节饥饿反应的分子。在m.o ryzae中,基因缺失和互补实验表明,Nudix效应物的酶活性对病原体的毒力有显著影响。此外,我们发现这个保守的效应蛋白家族在植物中诱导磷酸盐饥饿信号。我们的研究阐明了多种植物致病真菌利用的一种分子机制,该机制操纵高度保守的植物磷酸盐敏感途径来加剧疾病。
{"title":"Plant pathogenic fungi hijack phosphate starvation signaling with conserved enzymatic effectors","authors":"Carl L McCombe, Alex Wegner, Chenie S. Zamora, Florencia Casanova, Shouvik Aditya, Julian R Greenwood, Louisa Wirtz, Samuel de Paula, Eleanor England, Sascha Shang, Daniel J Ericsson, Ely Oliveira-Garcia, Simon J Williams, Ulrich Schaffrath","doi":"10.1101/2023.11.14.566975","DOIUrl":"https://doi.org/10.1101/2023.11.14.566975","url":null,"abstract":"Phosphate availability modulates plant immune function and regulates interactions with beneficial, phosphate-providing, microbes. Here, we describe the hijacking of plant phosphate sensing by a family of Nudix hydrolase effectors from pathogenic Magnaporthe oryzae and Colletotrichum fungi. Structural and enzymatic analyses of the Nudix effector family demonstrate that they selectively hydrolyze inositol pyrophosphates, a molecule used by plants to monitor phosphate status and regulate starvation responses. In M. oryzae , gene deletion and complementation experiments reveal that the enzymatic activity of a Nudix effector significantly contributes to pathogen virulence. Further, we show that this conserved effector protein family induces phosphate starvation signaling in plants. Our study elucidates a molecular mechanism, utilized by multiple phytopathogenic fungi, that manipulates the highly conserved plant phosphate sensing pathway to exacerbate disease.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"36 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quick and effective approximation of in silico saturation mutagenesis experiments with first-order Taylor expansion 用一阶泰勒展开快速有效地逼近硅饱和诱变实验
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.10.566588
Alexander Sasse, Maria Chikina, Sara Mostafavi
To understand the decision process of genomic sequence-to-function models, various explainable AI algorithms have been proposed. These methods determine the importance of each nucleotide in a given input sequence to the model's predictions, and enable discovery of cis regulatory motif grammar for gene regulation. The most commonly applied method is in silico saturation mutagenesis (ISM) because its per-nucleotide importance scores can be intuitively understood as the computational counterpart to in vivo saturation mutagenesis experiments. While ISM is highly interpretable, it is computationally challenging to perform, because it requires computing three forward passes for every nucleotide in the given input sequence; these computations add up when analyzing a large number of sequences, and become prohibitive as the length of the input sequences and size of the model grows. Here, we show how to use the first-order Taylor approximation for ISM, which reduces its computation cost to a single forward pass for an input sequence, placing its scalability on equal footing with gradient-based approximation methods such as "gradient-times-input". We show that the Taylor ISM (TISM) approximation is robust across different model ablations, random initializations, training parameters, and data set sizes. We use our theoretical derivation to connect ISM with the gradient values and show how this approximation is related to a recently suggested correction of the model's gradients.
为了理解基因组序列到功能模型的决策过程,人们提出了各种可解释的人工智能算法。这些方法确定了给定输入序列中每个核苷酸对模型预测的重要性,并能够发现基因调控的顺式调控基序语法。最常用的方法是硅饱和诱变(ISM),因为它的每核苷酸重要性评分可以直观地理解为体内饱和诱变实验的计算对应。虽然ISM是高度可解释性的,但它在计算上很难执行,因为它需要为给定输入序列中的每个核苷酸计算三次正向传递;当分析大量序列时,这些计算加起来,并且随着输入序列的长度和模型大小的增长而变得令人望而却步。在这里,我们展示了如何使用ISM的一阶泰勒近似,它将输入序列的计算成本降低到单个前向传递,将其可扩展性与基于梯度的近似方法(如“梯度-时间-输入”)置于同等地位。我们证明了Taylor ISM (TISM)近似在不同的模型衰减、随机初始化、训练参数和数据集大小上都是鲁棒的。我们使用我们的理论推导将ISM与梯度值联系起来,并展示了这种近似是如何与最近建议的模型梯度修正相关联的。
{"title":"Quick and effective approximation of in silico saturation mutagenesis experiments with first-order Taylor expansion","authors":"Alexander Sasse, Maria Chikina, Sara Mostafavi","doi":"10.1101/2023.11.10.566588","DOIUrl":"https://doi.org/10.1101/2023.11.10.566588","url":null,"abstract":"To understand the decision process of genomic sequence-to-function models, various explainable AI algorithms have been proposed. These methods determine the importance of each nucleotide in a given input sequence to the model's predictions, and enable discovery of cis regulatory motif grammar for gene regulation. The most commonly applied method is in silico saturation mutagenesis (ISM) because its per-nucleotide importance scores can be intuitively understood as the computational counterpart to in vivo saturation mutagenesis experiments. While ISM is highly interpretable, it is computationally challenging to perform, because it requires computing three forward passes for every nucleotide in the given input sequence; these computations add up when analyzing a large number of sequences, and become prohibitive as the length of the input sequences and size of the model grows. Here, we show how to use the first-order Taylor approximation for ISM, which reduces its computation cost to a single forward pass for an input sequence, placing its scalability on equal footing with gradient-based approximation methods such as \"gradient-times-input\". We show that the Taylor ISM (TISM) approximation is robust across different model ablations, random initializations, training parameters, and data set sizes. We use our theoretical derivation to connect ISM with the gradient values and show how this approximation is related to a recently suggested correction of the model's gradients.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"36 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic reprogramming screen identifies SRSF1 as rejuvenation factor 转录组重编程筛选鉴定SRSF1为返老还童因子
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.13.566787
Alexandru M Plesa, Sascha Jung, Helen H Wang, Fawad Omar, Michael Shadpour, David Choy Buentello, Maria C Perez-Matos, Naftali Horwitz, George Cai, Zhen-Kai Ngian, Carol V de Magalhaes, Amy J Wagers, William B Mair, Antonio del Sol Mesa, George M Church
Aging is a complex process that manifests through the time-dependent functional decline of a biological system. Age-related changes in epigenetic and transcriptomic profiles have been successfully used to measure the aging process 1,2 . Moreover, modulating gene regulatory networks through interventions such as the induction of the Yamanaka factors has been shown to reverse aging signatures and improve cell function 3,4 . However, this intervention has safety and efficacy limitations for in vivo rejuvenation 5,6 , underscoring the need for identifying novel age reversal factors. Here, we discovered SRSF1 as a new rejuvenation factor that can improve cellular function in vitro and in vivo . Using a cDNA overexpression screen with a transcriptomic readout we identified that SRSF1 induction reprograms the cell transcriptome towards a younger state. Furthermore, we observed beneficial changes in senescence, proteasome function, collagen production, and ROS stress upon SRSF1 overexpression. Lastly, we showed that SRSF1 can improve wound healing in vitro and in vivo and is linked to organismal longevity. Our study provides a proof of concept for using transcriptomic reprogramming screens in the discovery of age reversal interventions and identifies SRSF1 as a promising target for cellular rejuvenation.
衰老是一个复杂的过程,表现为生物系统随时间变化的功能衰退。表观遗传和转录组谱的年龄相关变化已成功用于测量衰老过程1,2。此外,通过干预(如诱导Yamanaka因子)调节基因调控网络已被证明可以逆转衰老特征并改善细胞功能3,4。然而,这种干预在体内返老还老方面存在安全性和有效性限制5,6,强调需要确定新的年龄逆转因素。在这里,我们发现SRSF1是一种新的年轻化因子,可以在体外和体内改善细胞功能。利用cDNA过表达筛选和转录组读数,我们发现SRSF1诱导将细胞转录组重编程为更年轻的状态。此外,我们观察到SRSF1过表达对衰老、蛋白酶体功能、胶原生成和ROS应激的有益变化。最后,我们发现SRSF1可以促进体外和体内伤口愈合,并与生物体寿命有关。我们的研究为使用转录组重编程筛选发现年龄逆转干预提供了概念证明,并确定SRSF1是细胞年轻化的有希望的靶标。
{"title":"Transcriptomic reprogramming screen identifies SRSF1 as rejuvenation factor","authors":"Alexandru M Plesa, Sascha Jung, Helen H Wang, Fawad Omar, Michael Shadpour, David Choy Buentello, Maria C Perez-Matos, Naftali Horwitz, George Cai, Zhen-Kai Ngian, Carol V de Magalhaes, Amy J Wagers, William B Mair, Antonio del Sol Mesa, George M Church","doi":"10.1101/2023.11.13.566787","DOIUrl":"https://doi.org/10.1101/2023.11.13.566787","url":null,"abstract":"Aging is a complex process that manifests through the time-dependent functional decline of a biological system. Age-related changes in epigenetic and transcriptomic profiles have been successfully used to measure the aging process 1,2 . Moreover, modulating gene regulatory networks through interventions such as the induction of the Yamanaka factors has been shown to reverse aging signatures and improve cell function 3,4 . However, this intervention has safety and efficacy limitations for in vivo rejuvenation 5,6 , underscoring the need for identifying novel age reversal factors. Here, we discovered SRSF1 as a new rejuvenation factor that can improve cellular function in vitro and in vivo . Using a cDNA overexpression screen with a transcriptomic readout we identified that SRSF1 induction reprograms the cell transcriptome towards a younger state. Furthermore, we observed beneficial changes in senescence, proteasome function, collagen production, and ROS stress upon SRSF1 overexpression. Lastly, we showed that SRSF1 can improve wound healing in vitro and in vivo and is linked to organismal longevity. Our study provides a proof of concept for using transcriptomic reprogramming screens in the discovery of age reversal interventions and identifies SRSF1 as a promising target for cellular rejuvenation.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"45 21","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134902666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring priority and year effects on plant diversity, productivity and vertical root distribution: first insights from a grassland field experiment 探索植物多样性、生产力和垂直根系分布的优先级和年份效应:来自草地田间试验的初步见解
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.14.566982
Ines Maria Alonso-Crespo, Vicky M. Temperton, Andreas Fichtner, Thomas Niemeyer, Michael Schloter, Benjamin M. Delory
1) The order of arrival of plant species during community assembly can affect how species interact with each other. These so-called priority effects can have strong implications for the structure and functioning of plant communities. However, the extent to which the strength, direction, and persistence of priority effects are modulated by weather conditions during plant establishment ("year effects") is not well known. 2) Here we present the first results from a long-term field experiment (POEM: PriOrity Effects Mechanisms) initiated in 2020 in Northern Germany to test how plant functional group (PFG) order of arrival and the year of initiation of an experiment interactively affect the structure and functioning of nutrient-poor dry acidic grasslands, both above and belowground. To do this, we established the same experiment, manipulating the order of arrival of forbs, grasses and legumes on the same site, but in different years. 3) We found that time since establishment was a stronger driver of plant community composition than PFG order of arrival and year of initiation. These three factors interactively affected plant species diversity, with the effect of PFG order of arrival on plant species richness depending on time since establishment. Year of initiation, not PFG order of arrival, was the strongest driver of aboveground community productivity. Although we did not find any effect of PFG order of arrival on root productivity, it had a strong impact on the vertical distribution of roots. Communities where grasses were sown first rooted more shallowly than communities in which forbs or legumes were sown first. 4) Synthesis: Our results demonstrate that plant order of arrival and year effects jointly affect plant diversity and species composition, with time since establishment also playing an important role. While year effects were more important than plant order of arrival in modulating aboveground biomass production in our nutrient-poor grassland, we showed that plant order of arrival can strongly affect the vertical distribution of roots, with communities in which forbs or legumes were sown first rooting deeper than grasses-first communities. These results suggest that a deeper understanding of priority and year effects is needed to better predict restoration outcomes.
1)植物物种在群落聚集过程中的到达顺序会影响物种之间的相互作用。这些所谓的优先效应可能对植物群落的结构和功能有很强的影响。然而,在植物建立期间,优先效应的强度、方向和持续程度受天气条件的调节(“年效应”)尚不清楚。2)本文介绍了2020年在德国北部启动的一项长期田间试验(POEM: PriOrity Effects Mechanisms)的初步结果,该试验旨在测试植物功能群(PFG)的到达顺序和开始试验的年份如何相互作用影响营养贫乏的干旱酸性草地的结构和功能,包括地上和地下。为了做到这一点,我们建立了同样的实验,在不同的年份对同一地点的牧草、禾本科和豆科植物的到达顺序进行控制。3)建立时间对植物群落组成的影响大于PFG到达顺序和起始年份。这3个因子对植物物种多样性的影响是相互作用的,自建立以来,PFG到达顺序对植物物种丰富度的影响随时间的变化而变化。萌发年份,而非PFG到达顺序,是地上群落生产力的最大驱动力。虽然我们没有发现PFG到达顺序对根系生产力的影响,但它对根系的垂直分布有很强的影响。首先播种牧草的群落比首先播种牧草或豆科植物的群落扎根更浅。4)综合:植物到达顺序和年份效应共同影响植物多样性和物种组成,建立时间也起重要作用。在养分匮乏的草地上,虽然年效应比植物到达顺序对地上生物量的调节更重要,但我们发现植物到达顺序对根系的垂直分布有强烈的影响,先播种草本或豆科植物的群落比先播种草的群落生根更深。这些结果表明,为了更好地预测恢复结果,需要更深入地了解优先级和年份效应。
{"title":"Exploring priority and year effects on plant diversity, productivity and vertical root distribution: first insights from a grassland field experiment","authors":"Ines Maria Alonso-Crespo, Vicky M. Temperton, Andreas Fichtner, Thomas Niemeyer, Michael Schloter, Benjamin M. Delory","doi":"10.1101/2023.11.14.566982","DOIUrl":"https://doi.org/10.1101/2023.11.14.566982","url":null,"abstract":"1) The order of arrival of plant species during community assembly can affect how species interact with each other. These so-called priority effects can have strong implications for the structure and functioning of plant communities. However, the extent to which the strength, direction, and persistence of priority effects are modulated by weather conditions during plant establishment (\"year effects\") is not well known. 2) Here we present the first results from a long-term field experiment (POEM: PriOrity Effects Mechanisms) initiated in 2020 in Northern Germany to test how plant functional group (PFG) order of arrival and the year of initiation of an experiment interactively affect the structure and functioning of nutrient-poor dry acidic grasslands, both above and belowground. To do this, we established the same experiment, manipulating the order of arrival of forbs, grasses and legumes on the same site, but in different years. 3) We found that time since establishment was a stronger driver of plant community composition than PFG order of arrival and year of initiation. These three factors interactively affected plant species diversity, with the effect of PFG order of arrival on plant species richness depending on time since establishment. Year of initiation, not PFG order of arrival, was the strongest driver of aboveground community productivity. Although we did not find any effect of PFG order of arrival on root productivity, it had a strong impact on the vertical distribution of roots. Communities where grasses were sown first rooted more shallowly than communities in which forbs or legumes were sown first. 4) Synthesis: Our results demonstrate that plant order of arrival and year effects jointly affect plant diversity and species composition, with time since establishment also playing an important role. While year effects were more important than plant order of arrival in modulating aboveground biomass production in our nutrient-poor grassland, we showed that plant order of arrival can strongly affect the vertical distribution of roots, with communities in which forbs or legumes were sown first rooting deeper than grasses-first communities. These results suggest that a deeper understanding of priority and year effects is needed to better predict restoration outcomes.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"40 13","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A NRF2/beta3-adrenoreceptor axis drives a sustained antioxidant and metabolic rewiring through the pentose-phosphate pathway to alleviate cardiac stress NRF2/ β -肾上腺素受体轴通过戊糖-磷酸盐途径驱动持续的抗氧化和代谢重新布线,以减轻心脏压力
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.10.564735
Lauriane Michel, Hrag Esfahani, Roxane Verdoy, Delphine de Mulder, Jerome Ambroise, Veronique Roelants, Bertrand Bouchard, Jerome Savary, Joseph Dewulf, Thomas Doumont, Caroline Bouzin, Vincent Haufroid, Joost J.F.P. Luiken, Miranda Nabben, Michael Singleton, Luc Bertrand, Matthieu Ruiz, Christine Des Rosiers, Jean-Luc Balligand
Background: Cardiac beta3-adrenergic receptors (beta3AR) are upregulated in diseased hearts and mediate antithetic effects to those of beta1AR and beta2AR. Beta3AR agonists were recently shown to protect from myocardial remodeling in preclinical studies and to improve systolic function in patients with severe heart failure. The underlying mechanisms, however, remain elusive. Methods: To dissect functional, transcriptional and metabolic effects, hearts and isolated ventricular myocytes from mice harboring a moderate, cardiac-specific expression of a human ADRB3 transgene (beta3AR-Tg) and subjected to transverse aortic constriction (TAC) were assessed using echocardiography, RNAseq, PET scan, metabolomics, seahorse and metabolic flux analysis. Subsequently, signaling and metabolic pathways were investigated further in vivo in beta3AR-Tg and in vitro in neonatal rat ventricular myocytes adenovirally infected to express beta3AR and subjected to neurohormonal stress. These results were completed with an analysis of single nucleus RNAseq data from human cardiac myocytes from heart failure patients. Results: Compared with WT littermate, beta3AR-Tg mice were protected from hypertrophy after transaortic constriction (TAC), while systolic function was preserved. Beta3AR-expressing hearts displayed enhanced myocardial glucose uptake under stress in absence of increased lactate levels. Instead, metabolomic and metabolic flux analyses in stressed hearts revealed an increase in intermediates of the Pentose-Phosphate Pathway (PPP) in beta3AR-Tg, an alternative route of glucose utilization, paralleled with increased transcript levels of NADPH-producing and rate-limiting enzymes of the PPP, without fueling the hexosamine metabolism. The ensuing increased content of NADPH and of reduced glutathione decreased myocyte oxidant stress, while downstream oxidative metabolism assessed by oxygen consumption was preserved with higher glucose oxidation in beta3AR-Tg post-TAC compared to WT, together with increased mitochondrial biogenesis. Unbiased transcriptomics and pathway analysis identified NRF2 (NFE2L2) as upstream transcription factor which was functionally verified in beta3AR- expressing cardiac myocytes where its translocation and nuclear activity was dependent on beta3AR activation of nitric-oxide synthase (NOS) NO production. Conclusion: Moderate expression of cardiac beta3AR, at levels observed in human cardiac myocardium, exerts antioxidant effects through activation of the PPP and NRF2 pathway, thereby preserving myocardial oxidative metabolism, function and integrity under pathophysiological stress.
背景:心脏β -肾上腺素能受体(β - 3ar)在患病心脏中表达上调,并介导与β - 1ar和β - 2ar的拮抗作用。最近在临床前研究中显示,β 3ar激动剂可以防止心肌重塑,并改善严重心力衰竭患者的收缩功能。然而,潜在的机制仍然难以捉摸。方法:通过超声心动图、RNAseq、PET扫描、代谢组学、海马和代谢通量分析,对中度表达人ADRB3基因(beta3AR-Tg)并经历主动脉横缩(TAC)的小鼠心脏和离体心室肌细胞进行评估,以解剖功能、转录和代谢效应。随后,进一步研究了β 3ar - tg在体内和体外在腺病毒感染表达β 3ar并承受神经激素应激的新生大鼠心室肌细胞中的信号传导和代谢途径。这些结果是通过对心力衰竭患者心肌细胞单核rna - eq数据的分析完成的。结果:与WT同窝小鼠相比,β 3ar - tg小鼠经主动脉收缩(TAC)后肥厚得到保护,收缩功能得到保留。在没有乳酸水平升高的情况下,表达beta3ar的心脏在应激下表现出心肌葡萄糖摄取增强。相反,应激心脏的代谢组学和代谢通量分析显示,β 3ar - tg中的戊糖-磷酸途径(PPP)中间体增加,这是葡萄糖利用的另一种途径,与nadph产生和PPP限速酶的转录水平增加平行,而不促进己糖代谢。随后,NADPH和还原型谷胱甘肽含量的增加降低了心肌细胞的氧化应激,而与WT相比,tac后β 3ar - tg中葡萄糖氧化水平较高,下游氧化代谢得到了保存,线粒体生物发生也有所增加。无偏倚转录组学和通路分析发现NRF2 (NFE2L2)是上游转录因子,在表达beta3AR的心肌细胞中得到功能验证,其易位和核活性依赖于beta3AR对一氧化氮合成酶(NOS) NO生成的激活。结论:在人心肌中观察到的水平下,适度表达心肌β 3ar通过激活PPP和NRF2通路发挥抗氧化作用,从而在病理生理应激下保持心肌氧化代谢、功能和完整性。
{"title":"A NRF2/beta3-adrenoreceptor axis drives a sustained antioxidant and metabolic rewiring through the pentose-phosphate pathway to alleviate cardiac stress","authors":"Lauriane Michel, Hrag Esfahani, Roxane Verdoy, Delphine de Mulder, Jerome Ambroise, Veronique Roelants, Bertrand Bouchard, Jerome Savary, Joseph Dewulf, Thomas Doumont, Caroline Bouzin, Vincent Haufroid, Joost J.F.P. Luiken, Miranda Nabben, Michael Singleton, Luc Bertrand, Matthieu Ruiz, Christine Des Rosiers, Jean-Luc Balligand","doi":"10.1101/2023.11.10.564735","DOIUrl":"https://doi.org/10.1101/2023.11.10.564735","url":null,"abstract":"Background: Cardiac beta3-adrenergic receptors (beta3AR) are upregulated in diseased hearts and mediate antithetic effects to those of beta1AR and beta2AR. Beta3AR agonists were recently shown to protect from myocardial remodeling in preclinical studies and to improve systolic function in patients with severe heart failure. The underlying mechanisms, however, remain elusive. Methods: To dissect functional, transcriptional and metabolic effects, hearts and isolated ventricular myocytes from mice harboring a moderate, cardiac-specific expression of a human ADRB3 transgene (beta3AR-Tg) and subjected to transverse aortic constriction (TAC) were assessed using echocardiography, RNAseq, PET scan, metabolomics, seahorse and metabolic flux analysis. Subsequently, signaling and metabolic pathways were investigated further in vivo in beta3AR-Tg and in vitro in neonatal rat ventricular myocytes adenovirally infected to express beta3AR and subjected to neurohormonal stress. These results were completed with an analysis of single nucleus RNAseq data from human cardiac myocytes from heart failure patients. Results: Compared with WT littermate, beta3AR-Tg mice were protected from hypertrophy after transaortic constriction (TAC), while systolic function was preserved. Beta3AR-expressing hearts displayed enhanced myocardial glucose uptake under stress in absence of increased lactate levels. Instead, metabolomic and metabolic flux analyses in stressed hearts revealed an increase in intermediates of the Pentose-Phosphate Pathway (PPP) in beta3AR-Tg, an alternative route of glucose utilization, paralleled with increased transcript levels of NADPH-producing and rate-limiting enzymes of the PPP, without fueling the hexosamine metabolism. The ensuing increased content of NADPH and of reduced glutathione decreased myocyte oxidant stress, while downstream oxidative metabolism assessed by oxygen consumption was preserved with higher glucose oxidation in beta3AR-Tg post-TAC compared to WT, together with increased mitochondrial biogenesis. Unbiased transcriptomics and pathway analysis identified NRF2 (NFE2L2) as upstream transcription factor which was functionally verified in beta3AR- expressing cardiac myocytes where its translocation and nuclear activity was dependent on beta3AR activation of nitric-oxide synthase (NOS) NO production. Conclusion: Moderate expression of cardiac beta3AR, at levels observed in human cardiac myocardium, exerts antioxidant effects through activation of the PPP and NRF2 pathway, thereby preserving myocardial oxidative metabolism, function and integrity under pathophysiological stress.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134957568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cingulate cortex facilitates auditory perception under challenging listening conditions 扣带皮层在具有挑战性的听力条件下促进听觉感知
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.10.566668
Kelsey L. Anbuhl, Marielisa Diez Castro, Nikki A. Lee, Vivian S. Lee, Dan H. Sanes
We often exert greater cognitive resources (i.e., listening effort) to understand speech under challenging acoustic conditions. This mechanism can be overwhelmed in those with hearing loss, resulting in cognitive fatigue in adults, and potentially impeding language acquisition in children. However, the neural mechanisms that support listening effort are uncertain. Evidence from human studies suggest that the cingulate cortex is engaged under difficult listening conditions, and may exert top-down modulation of the auditory cortex (AC). Here, we asked whether the gerbil cingulate cortex (Cg) sends anatomical projections to the AC that facilitate perceptual performance. To model challenging listening conditions, we used a sound discrimination task in which stimulus parameters were presented in either Easy or Hard blocks (i.e., long or short stimulus duration, respectively). Gerbils achieved statistically identical psychometric performance in Easy and Hard blocks. Anatomical tracing experiments revealed a strong, descending projection from layer 2/3 of the Cg1 subregion of the cingulate cortex to superficial and deep layers of primary and dorsal AC. To determine whether Cg improves task performance under challenging conditions, we bilaterally infused muscimol to inactivate Cg1, and found that psychometric thresholds were degraded for only Hard blocks. To test whether the Cg-to-AC projection facilitates task performance, we chemogenetically inactivated these inputs and found that performance was only degraded during Hard blocks. Taken together, the results reveal a descending cortical pathway that facilitates perceptual performance during challenging listening conditions.
在具有挑战性的声学条件下,我们经常使用更多的认知资源(即听力努力)来理解语音。这种机制在听力损失的人身上可能会被淹没,导致成年人的认知疲劳,并可能阻碍儿童的语言习得。然而,支持倾听努力的神经机制是不确定的。来自人类研究的证据表明,扣带皮层在困难的听力条件下参与,并可能对听觉皮层(AC)施加自上而下的调节。在这里,我们询问沙鼠扣带皮层(Cg)是否向AC发送了促进感知表现的解剖投影。为了模拟具有挑战性的听力条件,我们使用了一个声音识别任务,其中刺激参数分为简单或困难块(即分别为长或短刺激持续时间)。沙鼠在简单和困难的积木中取得了统计上相同的心理测试成绩。解剖追踪实验显示,从扣带皮层Cg1亚区2/3层到初级和背侧AC的浅层和深层有一个强烈的下降投影。为了确定Cg是否能在具有挑战性的条件下提高任务表现,我们双侧注入muscimol来灭活Cg1,并发现心理测量阈值仅在硬块中降低。为了测试Cg-to-AC投射是否促进了任务性能,我们从化学上停用了这些输入,发现性能仅在Hard block期间下降。综上所述,研究结果揭示了在具有挑战性的听力条件下,大脑皮层有一条下行通路促进了感知表现。
{"title":"Cingulate cortex facilitates auditory perception under challenging listening conditions","authors":"Kelsey L. Anbuhl, Marielisa Diez Castro, Nikki A. Lee, Vivian S. Lee, Dan H. Sanes","doi":"10.1101/2023.11.10.566668","DOIUrl":"https://doi.org/10.1101/2023.11.10.566668","url":null,"abstract":"We often exert greater cognitive resources (i.e., listening effort) to understand speech under challenging acoustic conditions. This mechanism can be overwhelmed in those with hearing loss, resulting in cognitive fatigue in adults, and potentially impeding language acquisition in children. However, the neural mechanisms that support listening effort are uncertain. Evidence from human studies suggest that the cingulate cortex is engaged under difficult listening conditions, and may exert top-down modulation of the auditory cortex (AC). Here, we asked whether the gerbil cingulate cortex (Cg) sends anatomical projections to the AC that facilitate perceptual performance. To model challenging listening conditions, we used a sound discrimination task in which stimulus parameters were presented in either Easy or Hard blocks (i.e., long or short stimulus duration, respectively). Gerbils achieved statistically identical psychometric performance in Easy and Hard blocks. Anatomical tracing experiments revealed a strong, descending projection from layer 2/3 of the Cg1 subregion of the cingulate cortex to superficial and deep layers of primary and dorsal AC. To determine whether Cg improves task performance under challenging conditions, we bilaterally infused muscimol to inactivate Cg1, and found that psychometric thresholds were degraded for only Hard blocks. To test whether the Cg-to-AC projection facilitates task performance, we chemogenetically inactivated these inputs and found that performance was only degraded during Hard blocks. Taken together, the results reveal a descending cortical pathway that facilitates perceptual performance during challenging listening conditions.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"38 21","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134953449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acetylcholine esterase of Drosophila melanogaster: a laboratory model to explore applications of insecticide susceptibility gene drives 黑腹果蝇乙酰胆碱酯酶:一个探索杀虫剂敏感性基因驱动应用的实验室模型
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.10.566664
Natalia Hernandes, Mollyann Xiaomeng Qi, Soumitra Bhide, Courtney Brown, Benjamin J Camm, Simon W Baxter, Charles Robin
BACKGROUND: One of the proposed applications of gene drives has been to revert pesticide resistant mutations back to the ancestral susceptible state. Insecticides that have become ineffective because of the rise of resistance could have reinvigorated utility and be used to suppress pest populations again, perhaps at lower application doses. RESULTS: We have created a laboratory model for susceptibility gene drives that replaces field-selected resistant variants of the acetylcholine esterase (Ace) locus of Drosophila melanogaster with ancestral susceptible variants. We constructed a CRISPR/Cas9 homing drive and found that homing occurred in many genetic backgrounds with varying efficiencies. While the drive itself could not be homozygosed, it converted resistant alleles into susceptible ones and produced recessive lethal alleles that could suppress populations. Our studies provided evidence for two distinct classes of Gene Drive Resistance (GDR): rather than being mediated by the conventional Non-Homologous End-joining (NHEJ) pathway, one seemed to involve short homologous repair and the other was defined by genetic background. Additionally, we used simulations to explore a distinct application of susceptibility drives; the use of chemicals to prevent the spread of synthetic gene drives into protected areas. CONCLUSIONS: Insecticide susceptibility gene drives could be useful tools to control pest insects however problems associated with particularities of the target loci and GDR will need to be overcome for them to be effective. Furthermore, realistic patterns of pest dispersal and high insecticide exposure rates would be required if susceptibility were to be useful as safety-switch to prevent the unwanted spread of gene drives.
背景:基因驱动的应用之一是将农药抗性突变恢复到祖先的易感状态。由于抗药性上升而变得无效的杀虫剂本可以重新发挥效用,并再次用于抑制害虫种群,也许使用剂量较低。结果:我们建立了一个易感基因驱动的实验室模型,用祖先的易感变异取代黑腹果蝇乙酰胆碱酯酶(Ace)位点的田间选择抗性变异。我们构建了CRISPR/Cas9归巢驱动,发现归巢发生在许多遗传背景中,效率各不相同。虽然驱动本身不能纯合,但它将抗性等位基因转化为易感等位基因,并产生可以抑制种群的隐性致死等位基因。我们的研究为两种不同类型的基因驱动抗性(GDR)提供了证据:一种似乎涉及短同源修复,而不是由传统的非同源末端连接(NHEJ)途径介导,另一种则由遗传背景定义。此外,我们使用模拟来探索磁化率驱动的独特应用;使用化学物质防止合成基因驱动扩散到保护区。结论:杀虫剂易感基因驱动可能是控制害虫的有用工具,但需要克服与目标基因座和GDR的特殊性相关的问题才能有效。此外,如果要使易感性成为防止基因驱动的不必要传播的安全开关,就需要害虫扩散的现实模式和较高的杀虫剂暴露率。
{"title":"Acetylcholine esterase of Drosophila melanogaster: a laboratory model to explore applications of insecticide susceptibility gene drives","authors":"Natalia Hernandes, Mollyann Xiaomeng Qi, Soumitra Bhide, Courtney Brown, Benjamin J Camm, Simon W Baxter, Charles Robin","doi":"10.1101/2023.11.10.566664","DOIUrl":"https://doi.org/10.1101/2023.11.10.566664","url":null,"abstract":"BACKGROUND: One of the proposed applications of gene drives has been to revert pesticide resistant mutations back to the ancestral susceptible state. Insecticides that have become ineffective because of the rise of resistance could have reinvigorated utility and be used to suppress pest populations again, perhaps at lower application doses. RESULTS: We have created a laboratory model for susceptibility gene drives that replaces field-selected resistant variants of the acetylcholine esterase (Ace) locus of Drosophila melanogaster with ancestral susceptible variants. We constructed a CRISPR/Cas9 homing drive and found that homing occurred in many genetic backgrounds with varying efficiencies. While the drive itself could not be homozygosed, it converted resistant alleles into susceptible ones and produced recessive lethal alleles that could suppress populations. Our studies provided evidence for two distinct classes of Gene Drive Resistance (GDR): rather than being mediated by the conventional Non-Homologous End-joining (NHEJ) pathway, one seemed to involve short homologous repair and the other was defined by genetic background. Additionally, we used simulations to explore a distinct application of susceptibility drives; the use of chemicals to prevent the spread of synthetic gene drives into protected areas. CONCLUSIONS: Insecticide susceptibility gene drives could be useful tools to control pest insects however problems associated with particularities of the target loci and GDR will need to be overcome for them to be effective. Furthermore, realistic patterns of pest dispersal and high insecticide exposure rates would be required if susceptibility were to be useful as safety-switch to prevent the unwanted spread of gene drives.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"49 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134991308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 and its ORF3a, E and M viroporins activate inflammasome in human macrophages and induce of IL-1α in pulmonary epithelial and endothelial cells SARS-CoV-2及其病毒蛋白ORF3a、E和M激活人巨噬细胞炎性小体,诱导肺上皮和内皮细胞IL-1α的表达
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.13.566917
Magdalena Abrozek-Latecka, Piotr Kozlowski, Grazyna Hoser, Magdalena Bandyszewska, Karolina Hanusek, Dominika Nowis, Jakub Golab, Malgorzata Grzanka, Agnieszka Piekielko-Witkowska, Luise Schulz, Franziska Hornung, Stefanie Deinhardt-Emmer, Ewa Kozlowska, Tomasz Skirecki
Inflammasome assembly is a potent mechanism responsible for the host protection against pathogens, including viruses. When compromised, it can allow viral replication, while when disrupted, it can perpetuate pathological responses by IL-1 signaling and pyroptotic cell death. SARS-CoV-2 infection was shown to activate inflammasome in the lungs of COVID-19 patients, however, potential mechanisms responsible for this response are not fully elucidated. In this study, we investigated the effects of ORF3a, E and M SARS-CoV-2 viroporins in the inflammasome activation in major populations of alveolar sentinel cells: macrophages, epithelial and endothelial cells. We demonstrated that each viroporin is capable of activation of the inflammasome in macrophages to trigger cell death and IL-1α release from epithelial and endothelial cells. Small molecule NLRP3 inflammasome inhibitors reduced IL-1 release but weakly affected the pyroptosis. Importantly, we discovered that while SARS-CoV-2 could not infect the pulmonary microvascular endothelial cells it induced IL-1α and IL-33 release. Together, these findings highlight the essential role of macrophages as the major inflammasome-activating cell population in the lungs and point to endothelial cell expressed IL-1α as a potential novel component driving the pulmonary immunothromobosis in COVID-19.
炎性小体组装是一种有效的机制,负责宿主对病原体,包括病毒的保护。当受到损害时,它可以允许病毒复制,而当被破坏时,它可以通过IL-1信号传导和热噬细胞死亡使病理反应永续。研究显示,SARS-CoV-2感染可激活COVID-19患者肺部的炎性体,然而,导致这种反应的潜在机制尚未完全阐明。在这项研究中,我们研究了ORF3a、E和M SARS-CoV-2病毒孔蛋白在肺泡前哨细胞(巨噬细胞、上皮细胞和内皮细胞)主要群体的炎性体激活中的作用。我们证明了每种病毒蛋白都能够激活巨噬细胞中的炎性体,从而触发细胞死亡和上皮细胞和内皮细胞释放IL-1α。小分子NLRP3炎性体抑制剂可降低IL-1的释放,但对焦亡的影响较弱。重要的是,我们发现SARS-CoV-2虽然不能感染肺微血管内皮细胞,但可以诱导IL-1α和IL-33的释放。总之,这些发现突出了巨噬细胞作为肺中主要炎症小体激活细胞群的重要作用,并指出内皮细胞表达IL-1α是驱动COVID-19肺免疫血栓形成的潜在新成分。
{"title":"SARS-CoV-2 and its ORF3a, E and M viroporins activate inflammasome in human macrophages and induce of IL-1α in pulmonary epithelial and endothelial cells","authors":"Magdalena Abrozek-Latecka, Piotr Kozlowski, Grazyna Hoser, Magdalena Bandyszewska, Karolina Hanusek, Dominika Nowis, Jakub Golab, Malgorzata Grzanka, Agnieszka Piekielko-Witkowska, Luise Schulz, Franziska Hornung, Stefanie Deinhardt-Emmer, Ewa Kozlowska, Tomasz Skirecki","doi":"10.1101/2023.11.13.566917","DOIUrl":"https://doi.org/10.1101/2023.11.13.566917","url":null,"abstract":"Inflammasome assembly is a potent mechanism responsible for the host protection against pathogens, including viruses. When compromised, it can allow viral replication, while when disrupted, it can perpetuate pathological responses by IL-1 signaling and pyroptotic cell death. SARS-CoV-2 infection was shown to activate inflammasome in the lungs of COVID-19 patients, however, potential mechanisms responsible for this response are not fully elucidated. In this study, we investigated the effects of ORF3a, E and M SARS-CoV-2 viroporins in the inflammasome activation in major populations of alveolar sentinel cells: macrophages, epithelial and endothelial cells. We demonstrated that each viroporin is capable of activation of the inflammasome in macrophages to trigger cell death and IL-1α release from epithelial and endothelial cells. Small molecule NLRP3 inflammasome inhibitors reduced IL-1 release but weakly affected the pyroptosis. Importantly, we discovered that while SARS-CoV-2 could not infect the pulmonary microvascular endothelial cells it induced IL-1α and IL-33 release. Together, these findings highlight the essential role of macrophages as the major inflammasome-activating cell population in the lungs and point to endothelial cell expressed IL-1α as a potential novel component driving the pulmonary immunothromobosis in COVID-19.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"49 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134991312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A transcriptomic dataset for investigating the Arabidopsis Unfolded Protein Response under chronic, proteotoxic endoplasmic reticulum stress 研究慢性蛋白质毒性内质网应激下拟南芥未折叠蛋白反应的转录组学数据集
Pub Date : 2023-11-14 DOI: 10.1101/2023.11.12.566746
Amelie Ducloy, Marianne Azzopardi, Caroline Ivsic, Gwendal Cueff, Delphine Sourdeval, Delphine Charif, Jean-Luc Cacas
The Unfolded Protein Response (UPR) is a retrograde, ER-to-nucleus, signalling pathway which is conserved across kingdoms. In plants, it contributes to development, reproduction, immunity and tolerance to abiotic stress. This RNA sequencing dataset was produced from 14-day-old Arabidopsis thaliana seedlings challenged by tunicamycin (Tm), an antibiotic inhibiting Asn-linked glycosylation in the endoplasmic reticulum (ER), causing an ER stress and eventually activating the UPR. Wild-type (WT) and a double mutant deficient for two main actors of the UPR (INOSITOL-REQUIRING ENZYME 1A and INOSITOL-REQUIRING ENZYME 1B) were used as genetic backgrounds in our experimental setup, allowing to distinguish among differentially-expressed genes (DEGs) which ones are dependent on or independent on IRE1s. Also, shoots and roots were harvested separately to determine organ-specific transcriptomic responses to Tm. Library and sequencing were performed using DNBseq technology by the Beijing Genomics Institute. Reads were mapped and quantified against the Arabidopsis genome. Differentially-expressed genes were identified using Rflomics upon filtering and normalization by the Trimmed Mean of M-value (TMM) method. While the genotype effect was weak under mock conditions (with a total of 182 DEGs in shoots and 195 DEGs in roots), the tunicamycin effect on each genotype was characterized by several hundred of DEGs in both shoots and roots. Among these genes, 872 and 563 genes were statistically up- and down-regulated in the shoot tissues of the double mutant when compared to those of WT, respectively. In roots of Tm-challenged seedlings, 425 and 439 genes were significantly up- and down-regulated in mutants with respect to WT. We believe that our dataset could be reused for investigating any biological questions linked to ER homeostasis and its role in plant physiology.
未折叠蛋白反应(UPR)是一种逆行的ER-to-nucleus信号通路,在多个王国中都是保守的。在植物中,它有助于发育、繁殖、免疫和对非生物胁迫的耐受性。该RNA测序数据集来自14日龄拟南芥幼苗,这些幼苗受到tunicamycin (Tm)的刺激,tunicamycin (Tm)是一种抑制内质网(ER)中Asn-linked糖基化的抗生素,导致内质网应激并最终激活UPR。在我们的实验设置中,使用野生型(WT)和双突变体缺乏UPR的两个主要参与者(INOSITOL-REQUIRING ENZYME 1A和INOSITOL-REQUIRING ENZYME 1B)作为遗传背景,以便区分依赖或独立于IRE1s的差异表达基因(deg)。此外,茎和根分别收获,以确定对Tm的器官特异性转录组反应。文库和测序采用北京基因组研究所DNBseq技术。对拟南芥基因组的Reads进行了定位和定量。差异表达基因经筛选和归一化后,采用Rflomics方法进行鉴定。虽然在模拟条件下基因型效应较弱(芽中有182个deg,根中有195个deg),但tunicamycin对每个基因型的影响在芽和根中都有数百个deg。其中,与WT相比,双突变体茎部组织中872个基因和563个基因分别有统计学上的上调和下调。在受tm胁迫的幼苗根系中,425和439个基因在突变体中与WT相关的显著上调和下调。我们相信我们的数据集可以重复用于研究与内质网稳态及其在植物生理学中的作用相关的任何生物学问题。
{"title":"A transcriptomic dataset for investigating the Arabidopsis Unfolded Protein Response under chronic, proteotoxic endoplasmic reticulum stress","authors":"Amelie Ducloy, Marianne Azzopardi, Caroline Ivsic, Gwendal Cueff, Delphine Sourdeval, Delphine Charif, Jean-Luc Cacas","doi":"10.1101/2023.11.12.566746","DOIUrl":"https://doi.org/10.1101/2023.11.12.566746","url":null,"abstract":"The Unfolded Protein Response (UPR) is a retrograde, ER-to-nucleus, signalling pathway which is conserved across kingdoms. In plants, it contributes to development, reproduction, immunity and tolerance to abiotic stress. This RNA sequencing dataset was produced from 14-day-old Arabidopsis thaliana seedlings challenged by tunicamycin (Tm), an antibiotic inhibiting Asn-linked glycosylation in the endoplasmic reticulum (ER), causing an ER stress and eventually activating the UPR. Wild-type (WT) and a double mutant deficient for two main actors of the UPR (INOSITOL-REQUIRING ENZYME 1A and INOSITOL-REQUIRING ENZYME 1B) were used as genetic backgrounds in our experimental setup, allowing to distinguish among differentially-expressed genes (DEGs) which ones are dependent on or independent on IRE1s. Also, shoots and roots were harvested separately to determine organ-specific transcriptomic responses to Tm. Library and sequencing were performed using DNBseq technology by the Beijing Genomics Institute. Reads were mapped and quantified against the Arabidopsis genome. Differentially-expressed genes were identified using Rflomics upon filtering and normalization by the Trimmed Mean of M-value (TMM) method. While the genotype effect was weak under mock conditions (with a total of 182 DEGs in shoots and 195 DEGs in roots), the tunicamycin effect on each genotype was characterized by several hundred of DEGs in both shoots and roots. Among these genes, 872 and 563 genes were statistically up- and down-regulated in the shoot tissues of the double mutant when compared to those of WT, respectively. In roots of Tm-challenged seedlings, 425 and 439 genes were significantly up- and down-regulated in mutants with respect to WT. We believe that our dataset could be reused for investigating any biological questions linked to ER homeostasis and its role in plant physiology.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"45 21","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134991747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
bioRxiv (Cold Spring Harbor Laboratory)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1