首页 > 最新文献

Open Mathematics最新文献

英文 中文
Average value of the divisor class numbers of real cubic function fields 实三次函数场除数类数的平均值
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2024-01-08 DOI: 10.1515/math-2023-0160
Yoonjin Lee, Jungyun Lee, Jinjoo Yoo
We compute an asymptotic formula for the divisor class numbers of <jats:italic>real</jats:italic> cubic function fields <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0160_eq_001.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>K</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mroot> <m:mrow> <m:mi>m</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:mroot> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{K}_{m}=kleft(sqrt[3]{m})</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0160_eq_002.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi mathvariant="double-struck">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{{mathbb{F}}}_{q}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a finite field with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0160_eq_003.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>q</m:mi> </m:math> <jats:tex-math>q</jats:tex-math> </jats:alternatives> </jats:inline-formula> elements, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0160_eq_004.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>q</m:mi> <m:mo>≡</m:mo> <m:mn>1</m:mn> <m:mspace width="0.3em" /> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mrow> <m:mi>mod</m:mi> </m:mrow> <m:mspace width="0.3em" /> <m:mn>3</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>qequiv 1hspace{0.3em}left(mathrm{mod}hspace{0.3em}3)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0160_eq_005.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>k</m:mi> <m:mo>≔</m:mo> <m:msub> <m:mrow> <m:mi mathvariant="double-struck">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>k:= {{mathbb{F}}}_{q}left(T)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the rational function field, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0160_eq_006.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>m</m:mi> <m:mo>∈</m:mo> <m:msub> <m:mrow> <m:mi mathvariant="double-struck">F</m:mi> </m:mrow> <m:mrow> <m:mi>q</m:mi> </m
我们计算了实三次函数域 K m = k ( m 3 ) {K}_{m}=kleft(sqrt[3]{m}) 的因子类数的渐近公式,其中 F q {{mathbb{F}}}_{q} 是具有 q q 个元素的有限域,q ≡ 1 ( mod 3 ) qequiv 1hspace{0.3em}left(mathrm{mod}hspace{0.3em}3) , k ≔ F q ( T ) k:= {{mathbb{F}}}_{q}left(T) 是有理函数域,并且 m ∈ F q [ T ] min {{mathbb{F}}}_{q}left[T] 是无立方多项式;在这种情况下,m m 的阶数可以被 3 整除。为了计算渐近公式,我们要找到 ∣ L ( s , χ ) ∣ 2 {| Lleft(s. chi )| }^^ 的平均值、当 χ chi 经过 F q [ T ] {{mathbb{F}}}_{q}left[T] 的原始立方偶数 Dirichlet 字符时,在 s = 1 s=1 处求值,其中 L ( s , χ ) Lleft(s,chi ) 是相关的 Dirichlet L L - 函数。
{"title":"Average value of the divisor class numbers of real cubic function fields","authors":"Yoonjin Lee, Jungyun Lee, Jinjoo Yoo","doi":"10.1515/math-2023-0160","DOIUrl":"https://doi.org/10.1515/math-2023-0160","url":null,"abstract":"We compute an asymptotic formula for the divisor class numbers of &lt;jats:italic&gt;real&lt;/jats:italic&gt; cubic function fields &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_001.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi&gt;K&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;m&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mo&gt;=&lt;/m:mo&gt; &lt;m:mi&gt;k&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mroot&gt; &lt;m:mrow&gt; &lt;m:mi&gt;m&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mn&gt;3&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;/m:mroot&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;{K}_{m}=kleft(sqrt[3]{m})&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, where &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_002.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;F&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;{{mathbb{F}}}_{q}&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is a finite field with &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_003.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;q&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; elements, &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_004.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;m:mo&gt;≡&lt;/m:mo&gt; &lt;m:mn&gt;1&lt;/m:mn&gt; &lt;m:mspace width=\"0.3em\" /&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;mod&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mspace width=\"0.3em\" /&gt; &lt;m:mn&gt;3&lt;/m:mn&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;qequiv 1hspace{0.3em}left(mathrm{mod}hspace{0.3em}3)&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_005.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;k&lt;/m:mi&gt; &lt;m:mo&gt;≔&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;F&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msub&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;T&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;k:= {{mathbb{F}}}_{q}left(T)&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; is the rational function field, and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0160_eq_006.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;m&lt;/m:mi&gt; &lt;m:mo&gt;∈&lt;/m:mo&gt; &lt;m:msub&gt; &lt;m:mrow&gt; &lt;m:mi mathvariant=\"double-struck\"&gt;F&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;q&lt;/m:mi&gt; &lt;/m","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"20 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quasi-boundary value regularization method for the spherically symmetric backward heat conduction problem 球对称后向热传导问题的准边界值正则化方法
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2024-01-08 DOI: 10.1515/math-2023-0171
Wei Cheng, Yi-Liang Liu
In this article, we investigate a spherically symmetric backward heat conduction problem, starting from the final temperature. This problem is severely ill posed: the solution (if it exists) does not depend continuously on the final data. A conditional stability result of its solution is given. Further, we propose a quasi-boundary value regularization method to solve this ill-posed problem. Two Hölder type error estimates between the approximate solution and its exact solution are obtained under an a priori and an a posteriori regularization parameter choice rule, respectively.
在本文中,我们研究了一个从最终温度出发的球面对称后向热传导问题。这个问题的问题严重不足:解(如果存在的话)并不连续依赖于最终数据。我们给出了其解的条件稳定性结果。此外,我们还提出了一种准边界值正则化方法来解决这个问题。在先验正则化参数选择规则和后验正则化参数选择规则下,分别得到了近似解和精确解之间的两个赫尔德型误差估计值。
{"title":"A quasi-boundary value regularization method for the spherically symmetric backward heat conduction problem","authors":"Wei Cheng, Yi-Liang Liu","doi":"10.1515/math-2023-0171","DOIUrl":"https://doi.org/10.1515/math-2023-0171","url":null,"abstract":"In this article, we investigate a spherically symmetric backward heat conduction problem, starting from the final temperature. This problem is severely ill posed: the solution (if it exists) does not depend continuously on the final data. A conditional stability result of its solution is given. Further, we propose a quasi-boundary value regularization method to solve this ill-posed problem. Two Hölder type error estimates between the approximate solution and its exact solution are obtained under an <jats:italic>a priori</jats:italic> and an <jats:italic>a posteriori</jats:italic> regularization parameter choice rule, respectively.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"61 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structure fault tolerance of burnt pancake networks 烧饼网络的结构容错性
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2024-01-08 DOI: 10.1515/math-2023-0154
Huifen Ge, Chengfu Ye, Shumin Zhang
One of the symbolic parameters to measure the fault tolerance of a network is its connectivity. The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0154_eq_001.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-structure connectivity and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0154_eq_002.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-substructure connectivity extend the classical connectivity and are more practical. For a graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0154_eq_003.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> and its connected subgraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0154_eq_004.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0154_eq_005.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-structure connectivity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0154_eq_006.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>κ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo>;</m:mo> <m:mspace width="0.33em" /> <m:mi>H</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>kappa left(G;hspace{0.33em}H)</jats:tex-math> </jats:alternatives> </jats:inline-formula> (resp. <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0154_eq_007.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>H</m:mi> </m:math> <jats:tex-math>H</jats:tex-math> </jats:alternatives> </jats:inline-formula>-substructure connectivity <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_math-2023-0154_eq_008.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msup> <m:mrow> <m:mi>κ</m:mi> </m:mrow> <m:mrow> <m:mi>s</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo>
网络连通性是衡量网络容错性的符号参数之一。H H -结构连通性和 H H -子结构连通性是经典连通性的扩展,更加实用。对于一个图 G 和它的连通子图 H H,G 的 H H -结构连通性 κ ( G ; H ) kappa left(G;hspace{0.33em}H)(或者 H H -子结构连通性 κ s ( G ; H ) {kappa }^{s}left(G;hspace{0.33em}H) )G G 的最小子图集的心数,使得该集的每个元素都与 G G 中的 H H 同构(即该集的每个元素都与 H H 的连通子图同构),其顶点移除断开 G G 的连通性。本文将研究 n n 维烧饼网络 BP n {{rm{BP}}_{n} 中每个 H∈ { K 1 , K 1 , 1 , ... , K 1 , n - 1 , P 4 , ... , P 7 , C 8 } 的 H H 结构连通性和 H H 子结构连通性。} Hleft{{K}_{1},{K}_{1,1},ldots ,{K}_{1,n-1},{P}_{4},ldots ,{P}_{7},{C}_{8}right} .
{"title":"The structure fault tolerance of burnt pancake networks","authors":"Huifen Ge, Chengfu Ye, Shumin Zhang","doi":"10.1515/math-2023-0154","DOIUrl":"https://doi.org/10.1515/math-2023-0154","url":null,"abstract":"One of the symbolic parameters to measure the fault tolerance of a network is its connectivity. The &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_001.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;H&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-structure connectivity and &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_002.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;H&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-substructure connectivity extend the classical connectivity and are more practical. For a graph &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_003.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;G&lt;/m:mi&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;G&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; and its connected subgraph &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_004.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;H&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;, the &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_005.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;H&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-structure connectivity &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_006.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;κ&lt;/m:mi&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt; &lt;m:mrow&gt; &lt;m:mi&gt;G&lt;/m:mi&gt; &lt;m:mo&gt;;&lt;/m:mo&gt; &lt;m:mspace width=\"0.33em\" /&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mo&gt;)&lt;/m:mo&gt; &lt;/m:mrow&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;kappa left(G;hspace{0.33em}H)&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt; (resp. &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_007.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:mi&gt;H&lt;/m:mi&gt; &lt;/m:math&gt; &lt;jats:tex-math&gt;H&lt;/jats:tex-math&gt; &lt;/jats:alternatives&gt; &lt;/jats:inline-formula&gt;-substructure connectivity &lt;jats:inline-formula&gt; &lt;jats:alternatives&gt; &lt;jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0154_eq_008.png\" /&gt; &lt;m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;m:msup&gt; &lt;m:mrow&gt; &lt;m:mi&gt;κ&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;m:mrow&gt; &lt;m:mi&gt;s&lt;/m:mi&gt; &lt;/m:mrow&gt; &lt;/m:msup&gt; &lt;m:mrow&gt; &lt;m:mo&gt;(&lt;/m:mo&gt;","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some estimates for commutators of sharp maximal function on the p-adic Lebesgue spaces p-adic Lebesgue 空间上尖锐最大函数换元的一些估计值
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2024-01-08 DOI: 10.1515/math-2023-0168
Jianglong Wu, Yunpeng Chang
In this article, the main aim is to consider the boundedness of the nonlinear commutator of p p -adic sharp maximal operator p {{mathcal{ {mathcal M} }}}_{p}^{sharp } with symbols belonging to the p p -adic Lipschitz spaces in the context of the p p -adic version of (variable) Lebesgue spaces, by which some new characterizations of the Lipschitz spaces are obtained in the p p -adic field context.
本文的主要目的是考虑 p p -adic 尖锐最大算子 ℳ p ♯ {{mathcal{ {mathcal M}}}_{p}^{sharp } 的非线性换向器的有界性。}}}_{p}^{sharp },符号属于 p p -adic Lipschitz 空间的(可变)Lebesgue 空间的 p p -adic 版本,通过这些符号,可以得到 p p -adic 场背景下 Lipschitz 空间的一些新特征。
{"title":"Some estimates for commutators of sharp maximal function on the p-adic Lebesgue spaces","authors":"Jianglong Wu, Yunpeng Chang","doi":"10.1515/math-2023-0168","DOIUrl":"https://doi.org/10.1515/math-2023-0168","url":null,"abstract":"In this article, the main aim is to consider the boundedness of the nonlinear commutator of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0168_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula>-adic sharp maximal operator <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0168_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"script\">ℳ</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>♯</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{{mathcal{ {mathcal M} }}}_{p}^{sharp }</jats:tex-math> </jats:alternatives> </jats:inline-formula> with symbols belonging to the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0168_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula>-adic Lipschitz spaces in the context of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0168_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula>-adic version of (variable) Lebesgue spaces, by which some new characterizations of the Lipschitz spaces are obtained in the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0168_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>p</m:mi> </m:math> <jats:tex-math>p</jats:tex-math> </jats:alternatives> </jats:inline-formula>-adic field context.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A digital Jordan surface theorem with respect to a graph connectedness 关于图形连通性的数字乔丹曲面定理
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2024-01-06 DOI: 10.1515/math-2023-0172
Josef Šlapal
After introducing a graph connectedness induced by a given set of paths of the same length, we focus on the 2-adjacency graph on the digital line Z {mathbb{Z}} with a certain set of paths of length n n for every positive integer n n . The connectedness in the strong product of three copies of the graph is used to define digital Jordan surfaces. These are obtained as polyhedral surfaces bounding the polyhedra that can be face-to-face tiled with digital tetrahedra.
在介绍了由一组长度相同的给定路径所诱导的图连通性之后,我们将重点放在数字线 Z {mathbb{Z}} 上的 2-相接图上,对于每一个正整数 n n,该图具有一组长度为 n n 的路径。图的三个副本的强积中的连通性被用来定义数字乔丹曲面。这些曲面作为多面体的边界,可以与数字四面体面对面平铺。
{"title":"A digital Jordan surface theorem with respect to a graph connectedness","authors":"Josef Šlapal","doi":"10.1515/math-2023-0172","DOIUrl":"https://doi.org/10.1515/math-2023-0172","url":null,"abstract":"After introducing a graph connectedness induced by a given set of paths of the same length, we focus on the 2-adjacency graph on the digital line <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0172_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"double-struck\">Z</m:mi> </m:math> <jats:tex-math>{mathbb{Z}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with a certain set of paths of length <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0172_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula> for every positive integer <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0172_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The connectedness in the strong product of three copies of the graph is used to define digital Jordan surfaces. These are obtained as polyhedral surfaces bounding the polyhedra that can be face-to-face tiled with digital tetrahedra.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"54 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139375970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A preconditioned iterative method for coupled fractional partial differential equation in European option pricing 欧式期权定价中耦合分式偏微分方程的预条件迭代法
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2024-01-03 DOI: 10.1515/math-2023-0169
Shuang Wu, Lot-Kei Chou, Xu Chen, Siu-Long Lei
Recently, regime-switching option pricing based on fractional diffusion models has been used, which explains many significant empirical facts about financial markets better. There are many methods to solve the problem, but to the best of our knowledge, effective preconditioners for the second-order schemes have not been proposed. Thus, in this article, an implicit numerical scheme is developed for a regime-switching European option pricing problem under a multi-state tempered fractional model. The scheme is proven to be unconditionally stable and converges quadratically in space and linearly in time. Besides, the resulting linear system is solved using an iterative method, and a preconditioner is proposed to accelerate the rate of convergence. The preconditioner is constructed through circulant approximations to the Toeplitz blocks due to the coefficient matrix, which is is a block matrix with Toeplitz blocks. The spectral analysis of the preconditioned matrix is given, which demonstrates that the spectrum of the preconditioned matrix is clustered around 1. Numerical examples show the efficiency of the proposed method, and an empirical study is also provided.
最近,基于分数扩散模型的制度转换期权定价得到了应用,它能更好地解释金融市场的许多重要经验事实。解决该问题的方法有很多,但就我们所知,尚未提出有效的二阶方案预处理。因此,本文针对多状态节制分式模型下的制度切换欧式期权定价问题,开发了一种隐式数值方案。该方案被证明是无条件稳定的,并且在空间上呈二次收敛,在时间上呈线性收敛。此外,还使用迭代法求解了所得到的线性系统,并提出了一个加速收敛速度的前置条件器。由于系数矩阵是一个带有 Toeplitz 块的块矩阵,因此通过对 Toeplitz 块的环状近似来构建预处理器。给出了预处理矩阵的频谱分析,结果表明预处理矩阵的频谱集中在 1 附近。数值示例显示了所提方法的效率,并提供了实证研究。
{"title":"A preconditioned iterative method for coupled fractional partial differential equation in European option pricing","authors":"Shuang Wu, Lot-Kei Chou, Xu Chen, Siu-Long Lei","doi":"10.1515/math-2023-0169","DOIUrl":"https://doi.org/10.1515/math-2023-0169","url":null,"abstract":"Recently, regime-switching option pricing based on fractional diffusion models has been used, which explains many significant empirical facts about financial markets better. There are many methods to solve the problem, but to the best of our knowledge, effective preconditioners for the second-order schemes have not been proposed. Thus, in this article, an implicit numerical scheme is developed for a regime-switching European option pricing problem under a multi-state tempered fractional model. The scheme is proven to be unconditionally stable and converges quadratically in space and linearly in time. Besides, the resulting linear system is solved using an iterative method, and a preconditioner is proposed to accelerate the rate of convergence. The preconditioner is constructed through circulant approximations to the Toeplitz blocks due to the coefficient matrix, which is is a block matrix with Toeplitz blocks. The spectral analysis of the preconditioned matrix is given, which demonstrates that the spectrum of the preconditioned matrix is clustered around 1. Numerical examples show the efficiency of the proposed method, and an empirical study is also provided.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"30 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a blow-up criterion for solution of 3D fractional Navier-Stokes-Coriolis equations in Lei-Lin-Gevrey spaces 论 Lei-Lin-Gevrey 空间中三维分数纳维-斯托克斯-科里奥利方程求解的吹胀准则
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2024-01-02 DOI: 10.1515/math-2023-0170
Xiaochun Sun, Gaoting Xu, Yulian Wu
In this article, we researched the existence of the solution to the fractional Navier-Stokes equations with the Coriolis force under initial data, which belong to the Lei-Lin-Gevrey spaces. Moreover, we showed a blow-up criterion, i.e., when the maximal time of existence T * {T}^{* } is finite, we proved that the norm of this same solution, in a specific Lei-Lin-Gevrey space, goes to infinity, as time tends to the maximal time of its existence.
在这篇文章中,我们研究了在初始数据下带科里奥利力的分数纳维-斯托克斯方程的解的存在性,它属于 Lei-Lin-Gevrey 空间。此外,我们还提出了一个炸毁准则,即当最大存在时间 T * {T}^{* } 有限时,我们证明了在特定的 Lei-Lin-Gevrey 空间中,随着时间趋向于最大存在时间,该同一解的常模会趋向于无穷大。
{"title":"On a blow-up criterion for solution of 3D fractional Navier-Stokes-Coriolis equations in Lei-Lin-Gevrey spaces","authors":"Xiaochun Sun, Gaoting Xu, Yulian Wu","doi":"10.1515/math-2023-0170","DOIUrl":"https://doi.org/10.1515/math-2023-0170","url":null,"abstract":"In this article, we researched the existence of the solution to the fractional Navier-Stokes equations with the Coriolis force under initial data, which belong to the Lei-Lin-Gevrey spaces. Moreover, we showed a blow-up criterion, i.e., when the maximal time of existence <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0170_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:math> <jats:tex-math>{T}^{* }</jats:tex-math> </jats:alternatives> </jats:inline-formula> is finite, we proved that the norm of this same solution, in a specific Lei-Lin-Gevrey space, goes to infinity, as time tends to the maximal time of its existence.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139083696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eigenfunctions in Finsler Gaussian solitons 芬斯勒高斯孤子的特征函数
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2024-01-02 DOI: 10.1515/math-2023-0167
Caiyun Liu, Songting Yin
Gaussian solitons are important examples in the theory of Riemannian measure space. In the first part, we explicitly characterize the first eigenfunctions of the drift Laplacian in a Gaussian shrinking soliton, which shows that apart from each coordinate function, other first eigenfunctions must involve exponential functions and the so-called error functions. Moreover, the second eigenfunctions are also described. In the second part, we discuss the corresponding issues in Finsler Gaussian shrinking solitons, which is a natural generalization of Gaussian shrinking solitons. For the first eigenfunction, we complement an example to show that if a coordinate function is a first eigenfunction, then the Finsler Gaussian shrinking soliton must be a Euclidean measure space. For the second eigenfunction, we give some necessary and sufficient conditions for these spaces to be Euclidean measure spaces.
高斯孤子是黎曼度量空间理论中的重要例子。在第一部分中,我们明确描述了高斯收缩孤子中漂移拉普拉奇的第一特征函数,这表明除了每个坐标函数外,其他第一特征函数必须涉及指数函数和所谓的误差函数。此外,还描述了第二特征函数。在第二部分,我们讨论了芬斯勒高斯收缩孤子的相应问题,它是高斯收缩孤子的自然概括。对于第一个特征函数,我们举例说明,如果坐标函数是第一个特征函数,那么芬斯勒高斯收缩孤子一定是欧几里得度量空间。对于第二个特征函数,我们给出了这些空间成为欧几里得度量空间的一些必要条件和充分条件。
{"title":"Eigenfunctions in Finsler Gaussian solitons","authors":"Caiyun Liu, Songting Yin","doi":"10.1515/math-2023-0167","DOIUrl":"https://doi.org/10.1515/math-2023-0167","url":null,"abstract":"Gaussian solitons are important examples in the theory of Riemannian measure space. In the first part, we explicitly characterize the first eigenfunctions of the drift Laplacian in a Gaussian shrinking soliton, which shows that apart from each coordinate function, other first eigenfunctions must involve exponential functions and the so-called error functions. Moreover, the second eigenfunctions are also described. In the second part, we discuss the corresponding issues in Finsler Gaussian shrinking solitons, which is a natural generalization of Gaussian shrinking solitons. For the first eigenfunction, we complement an example to show that if a coordinate function is a first eigenfunction, then the Finsler Gaussian shrinking soliton must be a Euclidean measure space. For the second eigenfunction, we give some necessary and sufficient conditions for these spaces to be Euclidean measure spaces.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"27 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139083705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient Legendre-Galerkin approximation for the fourth-order equation with singular potential and SSP boundary condition 具有奇异势能和 SSP 边界条件的四阶方程的高效 Legendre-Galerkin 近似方法
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2023-12-22 DOI: 10.1515/math-2023-0128
Shuimu Zou, Jun Zhang
In this article, we develop an efficient Legendre-Galerkin approximation based on a reduced-dimension scheme for the fourth-order equation with singular potential and simply supported plate (SSP) boundary conditions in a circular domain. First, we deduce the equivalent reduced-dimension scheme and essential pole condition associated with the original problem, based on which a class of weighted Sobolev spaces are defined and a weak formulation and its discrete scheme are also established for each reduced one-dimensional problem. Second, the existence and uniqueness of the weak solution and the approximation solutions are given using the Lax-Milgram theorem. Then, we construct a class of projection operators, give their approximation properties, and then prove the error estimates of the approximation solutions. In addition, we construct a set of effective basis functions in approximate space using orthogonal property of Legendre polynomials and derive the equivalent matrix form of the discrete scheme. Finally, a large number of numerical examples are performed, and the numerical results illustrate the validity and high accuracy of our algorithm.
本文针对圆域中具有奇异势和简单支撑板(SSP)边界条件的四阶方程,开发了一种基于降维方案的高效 Legendre-Galerkin 近似方法。首先,我们推导出与原始问题相关的等效降维方案和基本极点条件,在此基础上定义了一类加权索波列夫空间,并为每个降维一维问题建立了弱公式及其离散方案。其次,利用 Lax-Milgram 定理给出了弱解和近似解的存在性和唯一性。然后,我们构建了一类投影算子,给出了它们的近似性质,并证明了近似解的误差估计。此外,我们还利用 Legendre 多项式的正交特性在近似空间中构建了一组有效基函数,并推导出离散方案的等效矩阵形式。最后,我们进行了大量的数值示例,数值结果说明了我们算法的有效性和高精确度。
{"title":"An efficient Legendre-Galerkin approximation for the fourth-order equation with singular potential and SSP boundary condition","authors":"Shuimu Zou, Jun Zhang","doi":"10.1515/math-2023-0128","DOIUrl":"https://doi.org/10.1515/math-2023-0128","url":null,"abstract":"In this article, we develop an efficient Legendre-Galerkin approximation based on a reduced-dimension scheme for the fourth-order equation with singular potential and simply supported plate (SSP) boundary conditions in a circular domain. First, we deduce the equivalent reduced-dimension scheme and essential pole condition associated with the original problem, based on which a class of weighted Sobolev spaces are defined and a weak formulation and its discrete scheme are also established for each reduced one-dimensional problem. Second, the existence and uniqueness of the weak solution and the approximation solutions are given using the Lax-Milgram theorem. Then, we construct a class of projection operators, give their approximation properties, and then prove the error estimates of the approximation solutions. In addition, we construct a set of effective basis functions in approximate space using orthogonal property of Legendre polynomials and derive the equivalent matrix form of the discrete scheme. Finally, a large number of numerical examples are performed, and the numerical results illustrate the validity and high accuracy of our algorithm.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"89 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New fractional integral inequalities via Euler's beta function 通过欧拉贝塔函数的新分数积分不等式
IF 1.7 4区 数学 Q1 MATHEMATICS Pub Date : 2023-12-22 DOI: 10.1515/math-2023-0163
Ohud Bulayhan Almutairi
In this article, we present new fractional integral inequalities via Euler’s beta function in terms of s s -convex mappings. We develop some new generalizations of fractional trapezoid- and midpoint-type inequalities using the class of differentiable s s -convexity. The results obtained in this study extended other related results reported in the literature.
在本文中,我们以 s s -凸映射为条件,通过欧拉的贝塔函数提出了新的分数积分不等式。我们利用可微 s s -凸性类,对分数梯形不等式和中点不等式进行了一些新的概括。本研究获得的结果扩展了文献中报道的其他相关结果。
{"title":"New fractional integral inequalities via Euler's beta function","authors":"Ohud Bulayhan Almutairi","doi":"10.1515/math-2023-0163","DOIUrl":"https://doi.org/10.1515/math-2023-0163","url":null,"abstract":"In this article, we present new fractional integral inequalities via Euler’s beta function in terms of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0163_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> </m:math> <jats:tex-math>s</jats:tex-math> </jats:alternatives> </jats:inline-formula>-convex mappings. We develop some new generalizations of fractional trapezoid- and midpoint-type inequalities using the class of differentiable <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0163_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>s</m:mi> </m:math> <jats:tex-math>s</jats:tex-math> </jats:alternatives> </jats:inline-formula>-convexity. The results obtained in this study extended other related results reported in the literature.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"15 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Open Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1