Pub Date : 2018-11-13DOI: 10.1186/s40101-018-0186-6
Junko Hasegawa, Hideki Suzuki, Taro Yamauchi
Background: Although the benefits of physical activity are well-known, levels of physical inactivity are increasing in many countries. Physical activity, particularly for preventive care of the elderly, must be encouraged. The level of physical activity undertaken by people is influenced by season; however, little is known about seasonal fluctuations of physical activity and its relation to muscle strength/mass. Consequently, we clarified the association between physical activity levels and muscle strength/skeletal muscle mass during non-snowy and snowy seasons in northern Japan.
Methods: Participants were community-dwelling elderly people aged 65 years or older living in Tobetsu, northern Japan. A 30-s chair-stand test (CS-30) and body composition measurements using bioelectrical impedance analysis were conducted prior to physical activity measurement using a three-dimensional acceleration sensor in both non-snowy and snowy seasons. Daily steps for the non-snowy and snowy seasons were compared using Welch's t test. The association between the CS-30/skeletal muscle index and daily steps in both seasons was estimated by fitting multiple linear regression models, with age and sex as covariates.
Results: Average daily step counts were significantly lower during the snowy season, compared to the non-snowy season (P < .01). The CS-30 in the snowy season alone was significantly associated with daily step counts. Multiple linear regression analyses results revealed that, for the same muscle strength in both seasons, the daily step counts during the snowy season were fewer than those during the non-snowy season.
Conclusions: The muscle strength required to perform adequate physical activity depended on season. This study obtained basic knowledge to ensure health promotion for elderly people living in snowy-cold regions.
{"title":"Impact of season on the association between muscle strength/volume and physical activity among community-dwelling elderly people living in snowy-cold regions.","authors":"Junko Hasegawa, Hideki Suzuki, Taro Yamauchi","doi":"10.1186/s40101-018-0186-6","DOIUrl":"https://doi.org/10.1186/s40101-018-0186-6","url":null,"abstract":"<p><strong>Background: </strong>Although the benefits of physical activity are well-known, levels of physical inactivity are increasing in many countries. Physical activity, particularly for preventive care of the elderly, must be encouraged. The level of physical activity undertaken by people is influenced by season; however, little is known about seasonal fluctuations of physical activity and its relation to muscle strength/mass. Consequently, we clarified the association between physical activity levels and muscle strength/skeletal muscle mass during non-snowy and snowy seasons in northern Japan.</p><p><strong>Methods: </strong>Participants were community-dwelling elderly people aged 65 years or older living in Tobetsu, northern Japan. A 30-s chair-stand test (CS-30) and body composition measurements using bioelectrical impedance analysis were conducted prior to physical activity measurement using a three-dimensional acceleration sensor in both non-snowy and snowy seasons. Daily steps for the non-snowy and snowy seasons were compared using Welch's t test. The association between the CS-30/skeletal muscle index and daily steps in both seasons was estimated by fitting multiple linear regression models, with age and sex as covariates.</p><p><strong>Results: </strong>Average daily step counts were significantly lower during the snowy season, compared to the non-snowy season (P < .01). The CS-30 in the snowy season alone was significantly associated with daily step counts. Multiple linear regression analyses results revealed that, for the same muscle strength in both seasons, the daily step counts during the snowy season were fewer than those during the non-snowy season.</p><p><strong>Conclusions: </strong>The muscle strength required to perform adequate physical activity depended on season. This study obtained basic knowledge to ensure health promotion for elderly people living in snowy-cold regions.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"37 1","pages":"25"},"PeriodicalIF":3.1,"publicationDate":"2018-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-018-0186-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36675411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-29DOI: 10.1186/s40101-018-0184-8
Yuki Nishimura, Yuki Ikeda, Shigekazu Higuchi
Background: Previous studies have demonstrated the importance of the inhibition of automatic imitation in social interactions. Additionally, cognitive traits are known to vary among individuals. According to the empathizing-systemizing (E-S) model, personality can be quantified by empathizing and systemizing drives in causal cognition. Since inhibition of automatic imitation is strongly related to social cognition, the level of inhibition may be explained by personal cognitive traits. Thus, the current study tested whether cognitive traits, measured based on the E-S model, correlated with levels of automatic imitation inhibition.
Methods: The empathizing-systemizing quotient (EQ-SQ) questionnaire was used to assess cognitive traits. Behavioral and electroencephalogram data were acquired during the imitation inhibition task. In addition to reaction time, based on signal detection theory, task sensitivity and response bias were calculated from reaction data. As a physiological measure of automatic imitation, mu rhythm power suppression was calculated from electroencephalogram data. Congruency effects for reaction time and electroencephalogram measures were calculated by subtracting congruent trials from incongruent trails.
Results: Correlation analyses between cognitive traits and task measures were conducted. There was a negative correlation found between EQ score and the behavioral index reflecting task performance. Moreover, a negative correlation was found between SQ score and the congruency effect on mu suppression.
Conclusions: Participants with higher EQ scored relatively lower in inhibiting their responses. Conversely, high SQ participants showed successful inhibition of mu suppression. The imitative tendency may disturb the inhibition of response. The correlation between SQ and mu index suggests the involvement of domain-general information processing on imitation inhibition; however, further research is required to determine this. Since different correlations were found for behavioral and physiological measures, these measures may reflect different steps of information processing for successful task execution. Through correlational analysis, a possible relation was identified between the inhibiting process of automatic imitation and personal cognitive styles on social interactions.
{"title":"The relationship between inhibition of automatic imitation and personal cognitive styles.","authors":"Yuki Nishimura, Yuki Ikeda, Shigekazu Higuchi","doi":"10.1186/s40101-018-0184-8","DOIUrl":"https://doi.org/10.1186/s40101-018-0184-8","url":null,"abstract":"<p><strong>Background: </strong>Previous studies have demonstrated the importance of the inhibition of automatic imitation in social interactions. Additionally, cognitive traits are known to vary among individuals. According to the empathizing-systemizing (E-S) model, personality can be quantified by empathizing and systemizing drives in causal cognition. Since inhibition of automatic imitation is strongly related to social cognition, the level of inhibition may be explained by personal cognitive traits. Thus, the current study tested whether cognitive traits, measured based on the E-S model, correlated with levels of automatic imitation inhibition.</p><p><strong>Methods: </strong>The empathizing-systemizing quotient (EQ-SQ) questionnaire was used to assess cognitive traits. Behavioral and electroencephalogram data were acquired during the imitation inhibition task. In addition to reaction time, based on signal detection theory, task sensitivity and response bias were calculated from reaction data. As a physiological measure of automatic imitation, mu rhythm power suppression was calculated from electroencephalogram data. Congruency effects for reaction time and electroencephalogram measures were calculated by subtracting congruent trials from incongruent trails.</p><p><strong>Results: </strong>Correlation analyses between cognitive traits and task measures were conducted. There was a negative correlation found between EQ score and the behavioral index reflecting task performance. Moreover, a negative correlation was found between SQ score and the congruency effect on mu suppression.</p><p><strong>Conclusions: </strong>Participants with higher EQ scored relatively lower in inhibiting their responses. Conversely, high SQ participants showed successful inhibition of mu suppression. The imitative tendency may disturb the inhibition of response. The correlation between SQ and mu index suggests the involvement of domain-general information processing on imitation inhibition; however, further research is required to determine this. Since different correlations were found for behavioral and physiological measures, these measures may reflect different steps of information processing for successful task execution. Through correlational analysis, a possible relation was identified between the inhibiting process of automatic imitation and personal cognitive styles on social interactions.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"37 1","pages":"24"},"PeriodicalIF":3.1,"publicationDate":"2018-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-018-0184-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36673365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Bright light at night is known to suppress melatonin secretion. Novel photoreceptors named intrinsically photosensitive retinal ganglion cells (ipRGCs) are mainly responsible for projecting dark/bright information to the suprachiasmatic nucleus and thus regulating the circadian system. However, it has been shown that the amplitude of the electroretinogram of ipRGCs is considerably lower under flickering light at 100 Hz than at 1-5 Hz, suggesting that flickering light may also affect the circadian system. Therefore, in this study, we evaluated light-induced melatonin suppression under flickering and non-flickering light.
Methods: Twelve male participants between the ages of 20 and 23 years (mean ± S.D. = 21.6 ± 1.5 years) were exposed to three light conditions (dim, 100-Hz flickering, and non-flickering blue light) from 1:00 A.M. to 2:30 A.M., and saliva samples were obtained just before 1:00 A.M. and at 1:15, 1:30, 2:00, and 2:30 A.M.
Results: A repeated measures t test with Bonferroni correction showed that at 1:15 A.M., melatonin concentrations were significantly lower following exposure to non-flickering light compared with dim light, whereas there was no significant difference between the dim and 100-Hz flickering light conditions. By contrast, after 1:30 A.M., the mean melatonin concentrations were significantly lower under both 100-Hz flickering and non-flickering light than under dim light.
Conclusion: Although melatonin suppression rate tended to be lower under 100-Hz flickering light than under non-flickering light at the initial 15 min of the light exposure, the present study suggests that 100-Hz flickering light may have the same impact on melatonin secretion as non-flickering light.
{"title":"Suppression of salivary melatonin secretion under 100-Hz flickering and non-flickering blue light.","authors":"Tomoaki Kozaki, Yuki Hidaka, Jun-Ya Takakura, Yosuke Kusano","doi":"10.1186/s40101-018-0183-9","DOIUrl":"https://doi.org/10.1186/s40101-018-0183-9","url":null,"abstract":"<p><strong>Background: </strong>Bright light at night is known to suppress melatonin secretion. Novel photoreceptors named intrinsically photosensitive retinal ganglion cells (ipRGCs) are mainly responsible for projecting dark/bright information to the suprachiasmatic nucleus and thus regulating the circadian system. However, it has been shown that the amplitude of the electroretinogram of ipRGCs is considerably lower under flickering light at 100 Hz than at 1-5 Hz, suggesting that flickering light may also affect the circadian system. Therefore, in this study, we evaluated light-induced melatonin suppression under flickering and non-flickering light.</p><p><strong>Methods: </strong>Twelve male participants between the ages of 20 and 23 years (mean ± S.D. = 21.6 ± 1.5 years) were exposed to three light conditions (dim, 100-Hz flickering, and non-flickering blue light) from 1:00 A.M. to 2:30 A.M., and saliva samples were obtained just before 1:00 A.M. and at 1:15, 1:30, 2:00, and 2:30 A.M.</p><p><strong>Results: </strong>A repeated measures t test with Bonferroni correction showed that at 1:15 A.M., melatonin concentrations were significantly lower following exposure to non-flickering light compared with dim light, whereas there was no significant difference between the dim and 100-Hz flickering light conditions. By contrast, after 1:30 A.M., the mean melatonin concentrations were significantly lower under both 100-Hz flickering and non-flickering light than under dim light.</p><p><strong>Conclusion: </strong>Although melatonin suppression rate tended to be lower under 100-Hz flickering light than under non-flickering light at the initial 15 min of the light exposure, the present study suggests that 100-Hz flickering light may have the same impact on melatonin secretion as non-flickering light.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"37 1","pages":"23"},"PeriodicalIF":3.1,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-018-0183-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36588826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-13DOI: 10.1186/s40101-016-0117-3
Carina Grafetstätter, Martin Gaisberger, Johanna Prossegger, Markus Ritter, Predrag Kolarž, Christina Pichler, Josef Thalhamer, Arnulf Hartl
Background: The specific microclimate of alpine waterfalls with high levels of ionized water aerosols has been suggested to trigger beneficial immunological and psychological effects. In the present three-armed randomized controlled clinical study, we focused on effects on (i) immunological reagibility, on (ii) physiological stress responses, and on (iii) stress-related psychological parameters.
Methods: People with moderate to high stress levels (n = 65) spent an active sojourn with daily hiking tours in the National Park Hohe Tauern (Großkirchheim, Austria). Half of the group was exposed to water aerosol of an alpine waterfall for 1 h/day (first arm, n = 33), whereas the other half spent the same time at a distant site (second arm, n = 32). A third arm (control, n = 26) had no intervention (except vaccination) and stayed at home, maintaining their usual lifestyle. The effect of the interventions on the immune system was tested by oral vaccination with an approved cholera vaccine and measuring specific salivary IgA antibody titers. Lung function was determined by peak expiratory flow measurement. Electric skin conductance, heart rate, and adaption of respiration rate were assessed as physiological stress parameters. Psychological stress-related parameters were analyzed by questionnaires and scales.
Results: Compared to the control group, both intervention groups showed improvement of the lung function and of most physiological stress test parameters. Analysis of the mucosal immune response revealed a waterfall-specific beneficial effect with elevated IgA titers in the waterfall group. In line with these results, exposure to waterfall revealed an additional benefit concerning psychological parameters such as subjective stress perception (measured via visual analog scale), the Global Severity Index (GSI), and the Positive Symptom Total (PST).
Conclusions: Our study provides new data, which strongly support an "added value" of exposure to waterfall microclimate when combined with a therapeutic sojourn at high altitude including regular physical activity.
{"title":"Does waterfall aerosol influence mucosal immunity and chronic stress? A randomized controlled clinical trial.","authors":"Carina Grafetstätter, Martin Gaisberger, Johanna Prossegger, Markus Ritter, Predrag Kolarž, Christina Pichler, Josef Thalhamer, Arnulf Hartl","doi":"10.1186/s40101-016-0117-3","DOIUrl":"https://doi.org/10.1186/s40101-016-0117-3","url":null,"abstract":"<p><strong>Background: </strong>The specific microclimate of alpine waterfalls with high levels of ionized water aerosols has been suggested to trigger beneficial immunological and psychological effects. In the present three-armed randomized controlled clinical study, we focused on effects on (i) immunological reagibility, on (ii) physiological stress responses, and on (iii) stress-related psychological parameters.</p><p><strong>Methods: </strong>People with moderate to high stress levels (n = 65) spent an active sojourn with daily hiking tours in the National Park Hohe Tauern (Großkirchheim, Austria). Half of the group was exposed to water aerosol of an alpine waterfall for 1 h/day (first arm, n = 33), whereas the other half spent the same time at a distant site (second arm, n = 32). A third arm (control, n = 26) had no intervention (except vaccination) and stayed at home, maintaining their usual lifestyle. The effect of the interventions on the immune system was tested by oral vaccination with an approved cholera vaccine and measuring specific salivary IgA antibody titers. Lung function was determined by peak expiratory flow measurement. Electric skin conductance, heart rate, and adaption of respiration rate were assessed as physiological stress parameters. Psychological stress-related parameters were analyzed by questionnaires and scales.</p><p><strong>Results: </strong>Compared to the control group, both intervention groups showed improvement of the lung function and of most physiological stress test parameters. Analysis of the mucosal immune response revealed a waterfall-specific beneficial effect with elevated IgA titers in the waterfall group. In line with these results, exposure to waterfall revealed an additional benefit concerning psychological parameters such as subjective stress perception (measured via visual analog scale), the Global Severity Index (GSI), and the Positive Symptom Total (PST).</p><p><strong>Conclusions: </strong>Our study provides new data, which strongly support an \"added value\" of exposure to waterfall microclimate when combined with a therapeutic sojourn at high altitude including regular physical activity.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"36 1","pages":"10"},"PeriodicalIF":3.1,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-016-0117-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Flight controllers of the International Space Station (ISS) are engaged in shift work to provide 24-h coverage to support ISS systems. The purpose of this study was to investigate the prevalence and associated factors of shift work sleep disorder (SWSD) among Japanese ISS flight controllers.
Methods: A questionnaire study was conducted using the Standard Shiftwork Index to evaluate sleep-related problems and possible associated variables. Among 52 respondents out of 73 flight controllers, 30 subjects were identified as night shift workers who worked 3 or more night shifts per month. Those night shift workers who answered "almost always" to questions about experiencing insomnia or excessive sleepiness in any case of work shifts and days off were classified as having SWSD. Additionally, 7 night shift workers participated in supplemental wrist actigraphy data collection for 7 to 8 days including 3 to 4 days of consecutive night shifts.
Results: Fourteen of 30 night shift workers were classified as having SWSD. Significant group differences were observed where the SWSD group felt that night shift work was harder and reported more frequent insomniac symptoms after a night shift. However, no other variables demonstrated remarkable differences between groups. Actigraphy results characterized 5 subjects reporting better perceived adaptation as having regular daytime sleep, for 6 to 9 h in total, between consecutive night shifts. On the other hand, 2 subjects reporting perceived maladaptation revealed different sleep patterns, with longer daytime sleep and large day-to-day variation in daytime sleep between consecutive night shifts, respectively.
Conclusions: As the tasks for flight control require high levels of alertness and cognitive function, several characteristics, namely shift-working schedule (2 to 4 consecutive night shifts), very short break time (5 to 10 min/h) during work shifts, and cooperative work with onboard astronauts during the evening/night shift, accounted for increasing workloads especially in the case of night shifts, resulting in higher or equal prevalence of SWSD to that among other shift-working populations. Further studies are required to collect more actigraphy data and examine the possibility of interventions to improve SWSD.
{"title":"Sleep patterns among shift-working flight controllers of the International Space Station: an observational study on the JAXA Flight Control Team.","authors":"Koh Mizuno, Akiko Matsumoto, Tatsuya Aiba, Takashi Abe, Hiroshi Ohshima, Masaya Takahashi, Yuichi Inoue","doi":"10.1186/s40101-016-0108-4","DOIUrl":"10.1186/s40101-016-0108-4","url":null,"abstract":"<p><strong>Background: </strong>Flight controllers of the International Space Station (ISS) are engaged in shift work to provide 24-h coverage to support ISS systems. The purpose of this study was to investigate the prevalence and associated factors of shift work sleep disorder (SWSD) among Japanese ISS flight controllers.</p><p><strong>Methods: </strong>A questionnaire study was conducted using the Standard Shiftwork Index to evaluate sleep-related problems and possible associated variables. Among 52 respondents out of 73 flight controllers, 30 subjects were identified as night shift workers who worked 3 or more night shifts per month. Those night shift workers who answered \"almost always\" to questions about experiencing insomnia or excessive sleepiness in any case of work shifts and days off were classified as having SWSD. Additionally, 7 night shift workers participated in supplemental wrist actigraphy data collection for 7 to 8 days including 3 to 4 days of consecutive night shifts.</p><p><strong>Results: </strong>Fourteen of 30 night shift workers were classified as having SWSD. Significant group differences were observed where the SWSD group felt that night shift work was harder and reported more frequent insomniac symptoms after a night shift. However, no other variables demonstrated remarkable differences between groups. Actigraphy results characterized 5 subjects reporting better perceived adaptation as having regular daytime sleep, for 6 to 9 h in total, between consecutive night shifts. On the other hand, 2 subjects reporting perceived maladaptation revealed different sleep patterns, with longer daytime sleep and large day-to-day variation in daytime sleep between consecutive night shifts, respectively.</p><p><strong>Conclusions: </strong>As the tasks for flight control require high levels of alertness and cognitive function, several characteristics, namely shift-working schedule (2 to 4 consecutive night shifts), very short break time (5 to 10 min/h) during work shifts, and cooperative work with onboard astronauts during the evening/night shift, accounted for increasing workloads especially in the case of night shifts, resulting in higher or equal prevalence of SWSD to that among other shift-working populations. Further studies are required to collect more actigraphy data and examine the possibility of interventions to improve SWSD.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"35 1","pages":"19"},"PeriodicalIF":3.3,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007844/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34405875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of simultaneous exposure to extremely short pulses of blue and green light on human pupillary constriction.","authors":"Soomin Lee, Shougo Ishibashi, Yoshihiro Shimomura, Tetsuo Katsuura","doi":"10.1186/s40101-016-0109-3","DOIUrl":"https://doi.org/10.1186/s40101-016-0109-3","url":null,"abstract":"","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"35 1","pages":"20"},"PeriodicalIF":3.1,"publicationDate":"2016-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-016-0109-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34406713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-24DOI: 10.1186/s40101-016-0107-5
Norio Hotta, Kaoru Yamamoto, Hisayoshi Ogata, Patrick Maher, Naoya Okumura, Koji Ishida
Previous research has shown an exaggeration in exercise hyperpnea 2 days after eccentric exercise (ECC). Enhancement in central command has been suggested as one candidate to account for this effect given that ECC-induced neuromuscular dysfunction increases relative exercise intensity, thus resulting in reinforcement of effort sense. The purpose of this study was, therefore, to elucidate whether the degree of alteration in effort sense caused by ECC affects exercise hyperpnea. Ten subjects performed 20-s single-arm extension-flexion exercises with weight strapped to the wrist, and ventilatory response was measured before (Pre) and 2 days after ECC (D2). Relative exercise intensity at Pre was 5 % of maximal voluntary contraction (MVC) of Pre, whereas that at D2 was 9 % MVC of D2 because of decline in muscle strength. Ventilatory responses were significantly exaggerated at D2 with a significant increase in effort sense. Although effort sense was significantly reduced during exercise at D2 when wrist weight was subtracted to match relative exercise intensity at Pre (5 % MVC of D2), ventilatory responses were still significantly higher than those of Pre. After the disappearance of post-ECC muscle damage, subjects performed the same exercise with weight added (9 % MVC of Pre) so that effort was equalized to match that of D2; however, no significant increase in ventilatory response was detected. The fact that the extent of change in effort sense caused by ECC-induced neuromuscular dysfunction did not affect ventilatory response at the onset of exercise after ECC may suggest that the exaggeration of ventilatory response after ECC is caused by mechanisms other than alteration of the central command.
{"title":"Does degree of alteration in effort sense caused by eccentric exercise significantly affect initial exercise hyperpnea in humans?","authors":"Norio Hotta, Kaoru Yamamoto, Hisayoshi Ogata, Patrick Maher, Naoya Okumura, Koji Ishida","doi":"10.1186/s40101-016-0107-5","DOIUrl":"https://doi.org/10.1186/s40101-016-0107-5","url":null,"abstract":"<p><p>Previous research has shown an exaggeration in exercise hyperpnea 2 days after eccentric exercise (ECC). Enhancement in central command has been suggested as one candidate to account for this effect given that ECC-induced neuromuscular dysfunction increases relative exercise intensity, thus resulting in reinforcement of effort sense. The purpose of this study was, therefore, to elucidate whether the degree of alteration in effort sense caused by ECC affects exercise hyperpnea. Ten subjects performed 20-s single-arm extension-flexion exercises with weight strapped to the wrist, and ventilatory response was measured before (Pre) and 2 days after ECC (D2). Relative exercise intensity at Pre was 5 % of maximal voluntary contraction (MVC) of Pre, whereas that at D2 was 9 % MVC of D2 because of decline in muscle strength. Ventilatory responses were significantly exaggerated at D2 with a significant increase in effort sense. Although effort sense was significantly reduced during exercise at D2 when wrist weight was subtracted to match relative exercise intensity at Pre (5 % MVC of D2), ventilatory responses were still significantly higher than those of Pre. After the disappearance of post-ECC muscle damage, subjects performed the same exercise with weight added (9 % MVC of Pre) so that effort was equalized to match that of D2; however, no significant increase in ventilatory response was detected. The fact that the extent of change in effort sense caused by ECC-induced neuromuscular dysfunction did not affect ventilatory response at the onset of exercise after ECC may suggest that the exaggeration of ventilatory response after ECC is caused by mechanisms other than alteration of the central command. </p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"35 1","pages":"18"},"PeriodicalIF":3.1,"publicationDate":"2016-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-016-0107-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34333718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-23DOI: 10.1186/s40101-016-0106-6
Nahid Tahan, Khosro Khademi-Kalantari, Mohammad Ali Mohseni-Bandpei, Saeed Mikaili, Alireza Akbarzadeh Baghban, Shapour Jaberzadeh
Background: Real-time ultrasound imaging is a valid method in the field of rehabilitation. The ultrasound imaging allows direct visualization for real-time study of the muscles as they contract over the time. Measuring of the size of each abdominal muscle in relation to the others provides useful information about the differences in structure, as well as data on trunk muscle activation patterns. The purpose of this study was to assess the size and symmetry of the abdominal muscles at rest in healthy adults and to provide a reference range of absolute abdominal muscle size in a relatively large population.
Method: A total 156 healthy subjects with the age range of 18-44 years were randomly recruited. The thickness of internal oblique, external oblique, transverse abdominis, and rectus abdominis muscles was measured at rest on both right and left sides using ultrasound. Independent t test was used to compare the mean thickness of each abdominal muscle between males and females. Differences on side-to-side thicknesses were assessed using paired t test. The association between abdominal muscle thicknesses with gender and anthropometric variables was examined using the Pearson correlation coefficient.
Results: A normal pattern of increasing order of mean abdominal muscle thickness was found in both genders at both right and left sides: transverse abdominis < external oblique < internal oblique < rectus abdominis. There was a significant difference on the size of transverse abdominis, internal oblique, and external oblique muscles between right and left sides in both genders. Males had significantly thicker abdominal muscles than females. Age was significantly correlated with the thickness of internal oblique, external oblique, and rectus abdominis muscles. Body mass index was also positively correlated with muscle thickness of rectus abdominis and external oblique.
Conclusions: The results provide a normal reference range for the abdominal muscles in healthy subjects and may be used as an index to find out abnormalities and also to evaluate the effectiveness of different interventions.
{"title":"Measurement of superficial and deep abdominal muscle thickness: an ultrasonography study.","authors":"Nahid Tahan, Khosro Khademi-Kalantari, Mohammad Ali Mohseni-Bandpei, Saeed Mikaili, Alireza Akbarzadeh Baghban, Shapour Jaberzadeh","doi":"10.1186/s40101-016-0106-6","DOIUrl":"https://doi.org/10.1186/s40101-016-0106-6","url":null,"abstract":"<p><strong>Background: </strong>Real-time ultrasound imaging is a valid method in the field of rehabilitation. The ultrasound imaging allows direct visualization for real-time study of the muscles as they contract over the time. Measuring of the size of each abdominal muscle in relation to the others provides useful information about the differences in structure, as well as data on trunk muscle activation patterns. The purpose of this study was to assess the size and symmetry of the abdominal muscles at rest in healthy adults and to provide a reference range of absolute abdominal muscle size in a relatively large population.</p><p><strong>Method: </strong>A total 156 healthy subjects with the age range of 18-44 years were randomly recruited. The thickness of internal oblique, external oblique, transverse abdominis, and rectus abdominis muscles was measured at rest on both right and left sides using ultrasound. Independent t test was used to compare the mean thickness of each abdominal muscle between males and females. Differences on side-to-side thicknesses were assessed using paired t test. The association between abdominal muscle thicknesses with gender and anthropometric variables was examined using the Pearson correlation coefficient.</p><p><strong>Results: </strong>A normal pattern of increasing order of mean abdominal muscle thickness was found in both genders at both right and left sides: transverse abdominis < external oblique < internal oblique < rectus abdominis. There was a significant difference on the size of transverse abdominis, internal oblique, and external oblique muscles between right and left sides in both genders. Males had significantly thicker abdominal muscles than females. Age was significantly correlated with the thickness of internal oblique, external oblique, and rectus abdominis muscles. Body mass index was also positively correlated with muscle thickness of rectus abdominis and external oblique.</p><p><strong>Conclusions: </strong>The results provide a normal reference range for the abdominal muscles in healthy subjects and may be used as an index to find out abnormalities and also to evaluate the effectiveness of different interventions.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"35 1","pages":"17"},"PeriodicalIF":3.1,"publicationDate":"2016-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-016-0106-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34385125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-08-22DOI: 10.1186/s40101-016-0105-7
Dahee Jung, Dami Kim, Joonhee Park, Joo Young Lee
Background: Insensible body mass loss (IBL) from the human body continuously occurs, which is an important component in body heat exchange. The purpose of this study was to examine the relevance of IBL to anthropometric characteristics and self-identified thermal tolerance.
Methods: A total of 289 healthy young Korean males were chosen and sorted into the following three groups: heat tolerable only (HTO, N = 79), cold tolerable only (CTO, N = 104), neither heat nor cold tolerable (NHC, N = 106). They weighed before and after a 30-min rest under lightly clothed condition at an air temperature of 23 ± 1 °C with a relative humidity 55 ± 5 %RH.
Results: (1) The IBL of 289 males had a mean of 90 ± 75 g h(-1) (48 ± 40 g h(-1) m(-2)); (2) No significant difference in IBL among the three groups were found; (3) Significant differences in body weight and body mass index (BMI) among three groups were found (P < 0.05), but insignificance was found for height (P = 0.726) or body surface area (P = 0.059); (4) CTO was approximately 4.1 kg heavier in body weight (P < 0.05) and higher in BMI (P < 0.01) than in HTO; (5) Only for the group CTO, IBL (g h(-1)) showed a positive relationship to BMI (P < 0.05, R (2) = 0.056), but there was no relationship between IBL and body surface area.
Conclusions: For healthy young males within normal anthropometric ranges in Korea, IBL was positively related to BMI, and individuals with greater BMI showed greater self-identified cold tolerance, but no direct relationship was found between IBL and self-identified cold tolerance. This suggests that body physique (e.g., BMI) could be an explanatory factor between insensible body heat loss and subjective cognition on cold tolerance.
背景:人体的不知觉体重损失(Insensible body mass loss, IBL)持续发生,是人体热交换的重要组成部分。本研究的目的是检查IBL与人体测量特征和自我识别的热耐受性的相关性。方法:选取289名韩国健康青年男性,将其分为3组:仅耐热组(HTO, N = 79)、仅耐冷组(CTO, N = 104)、不耐热不耐冷组(NHC, N = 106)。在温度为23±1°C,相对湿度为55±5% RH的条件下,在轻薄的条件下休息30分钟前后称重。结果:(1)289例男性IBL平均为90±75 g h(-1)(48±40 g h(-1) m(-2));(2)三组间IBL无显著差异;(3)三组间体重和体质指数(BMI)存在显著差异(P)。结论:韩国正常人体测量范围内的健康青年男性IBL与BMI呈正相关,且BMI越大的个体自认耐寒性越强,但IBL与自认耐寒性之间无直接关系。这表明身体体质(如BMI)可能是无意识体热损失与主观耐寒认知之间的一个解释因素。
{"title":"Greater body mass index is related to greater self-identified cold tolerance and greater insensible body mass loss.","authors":"Dahee Jung, Dami Kim, Joonhee Park, Joo Young Lee","doi":"10.1186/s40101-016-0105-7","DOIUrl":"https://doi.org/10.1186/s40101-016-0105-7","url":null,"abstract":"<p><strong>Background: </strong>Insensible body mass loss (IBL) from the human body continuously occurs, which is an important component in body heat exchange. The purpose of this study was to examine the relevance of IBL to anthropometric characteristics and self-identified thermal tolerance.</p><p><strong>Methods: </strong>A total of 289 healthy young Korean males were chosen and sorted into the following three groups: heat tolerable only (HTO, N = 79), cold tolerable only (CTO, N = 104), neither heat nor cold tolerable (NHC, N = 106). They weighed before and after a 30-min rest under lightly clothed condition at an air temperature of 23 ± 1 °C with a relative humidity 55 ± 5 %RH.</p><p><strong>Results: </strong>(1) The IBL of 289 males had a mean of 90 ± 75 g h(-1) (48 ± 40 g h(-1) m(-2)); (2) No significant difference in IBL among the three groups were found; (3) Significant differences in body weight and body mass index (BMI) among three groups were found (P < 0.05), but insignificance was found for height (P = 0.726) or body surface area (P = 0.059); (4) CTO was approximately 4.1 kg heavier in body weight (P < 0.05) and higher in BMI (P < 0.01) than in HTO; (5) Only for the group CTO, IBL (g h(-1)) showed a positive relationship to BMI (P < 0.05, R (2) = 0.056), but there was no relationship between IBL and body surface area.</p><p><strong>Conclusions: </strong>For healthy young males within normal anthropometric ranges in Korea, IBL was positively related to BMI, and individuals with greater BMI showed greater self-identified cold tolerance, but no direct relationship was found between IBL and self-identified cold tolerance. This suggests that body physique (e.g., BMI) could be an explanatory factor between insensible body heat loss and subjective cognition on cold tolerance.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"35 1","pages":"16"},"PeriodicalIF":3.1,"publicationDate":"2016-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-016-0105-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34326997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Adaptation changes in postural muscle activity and anticipatory attention were investigated with the ankle joint fixed to change postural control strategies during transient floor translation.
Methods: For 15 healthy young adults, 40 transient floor translations (S2) in the anterior direction were applied 2 s after an auditory warning signal (S1), under conditions with or without fixation of the ankle. Activity of the frontal postural muscles (tibialis anterior (TA), rectus femoris (RF), rectus abdominis) and contingent negative variation (CNV, brain potential) were analyzed for 20 trials each of the early and latter halves under each fixation condition.
Results: With fixation, peak amplitude of muscle activity after S2 was significantly decreased in TA and increased in RF. These muscles showed marked adaptive decreases. The early component of CNV reduced with adaptation, particularly under fixation condition. Only in RF, background activity increased just before S2, with adaptation under fixation. A significant correlation was found between timings of CNV peak and RF activation just before S2 only after adaptation under fixation.
Conclusion: These results suggest that the main activation muscle changes from TA to RF with fixation. Under such condition, attention would be focused on the knee with adaptation, and the need for heightening attention in the early stage may have declined. Correspondingly, the timing to heighten stiffness of the RF became later, and attention would have been paid to RF activation just before S2.
{"title":"Postural control and contingent negative variation during transient floor translation while standing with the ankle fixed.","authors":"Vitalii Lytnev, Katsuo Fujiwara, Naoe Kiyota, Mariko Irei, Hiroshi Toyama, Chie Yaguchi","doi":"10.1186/s40101-016-0104-8","DOIUrl":"https://doi.org/10.1186/s40101-016-0104-8","url":null,"abstract":"<p><strong>Background: </strong>Adaptation changes in postural muscle activity and anticipatory attention were investigated with the ankle joint fixed to change postural control strategies during transient floor translation.</p><p><strong>Methods: </strong>For 15 healthy young adults, 40 transient floor translations (S2) in the anterior direction were applied 2 s after an auditory warning signal (S1), under conditions with or without fixation of the ankle. Activity of the frontal postural muscles (tibialis anterior (TA), rectus femoris (RF), rectus abdominis) and contingent negative variation (CNV, brain potential) were analyzed for 20 trials each of the early and latter halves under each fixation condition.</p><p><strong>Results: </strong>With fixation, peak amplitude of muscle activity after S2 was significantly decreased in TA and increased in RF. These muscles showed marked adaptive decreases. The early component of CNV reduced with adaptation, particularly under fixation condition. Only in RF, background activity increased just before S2, with adaptation under fixation. A significant correlation was found between timings of CNV peak and RF activation just before S2 only after adaptation under fixation.</p><p><strong>Conclusion: </strong>These results suggest that the main activation muscle changes from TA to RF with fixation. Under such condition, attention would be focused on the knee with adaptation, and the need for heightening attention in the early stage may have declined. Correspondingly, the timing to heighten stiffness of the RF became later, and attention would have been paid to RF activation just before S2.</p>","PeriodicalId":48730,"journal":{"name":"Journal of Physiological Anthropology","volume":"36 1","pages":"7"},"PeriodicalIF":3.1,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40101-016-0104-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34702166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}