Purpose of review: This Comment represents three review articles on the relationship between Alzheimer's disease, osteoporosis, and fracture in an exploration of the benefits that AI can provide in scientific writing. The first drafts of the articles were written (1) entirely by humans; (2) entirely by ChatGPT 4.0 (AI-only or AIO); and (3) by humans and ChatGPT 4.0 whereby humans selected literature references, but ChatGPT 4.0 completed the writing (AI-assisted or AIA). Importantly, each review article was edited and carefully checked for accuracy by all co-authors resulting in a final manuscript which was significantly different from the original draft.
Recent findings: The human-written article took the most time from start to finish, the AI-only article took the least time, and the AI-assisted article fell between the two. When comparing first drafts to final drafts, the AI-only and AI-assisted articles had higher percentages of different text than the human article. The AI-only paper had a higher percentage of incorrect references in the first draft than the AI-assisted paper. The first draft of the AI-assisted article had a higher similarity score than the other two articles when examined by plagiarism identification software. This writing experiment used time tracking, human editing, and comparison software to examine the benefits and risks of using AI to assist in scientific writing. It showed that while AI may reduce total writing time, hallucinations and plagiarism were prevalent issues with this method and human editing was still necessary to ensure accuracy.
{"title":"Use of AI Language Engine ChatGPT 4.0 to Write a Scientific Review Article Examining the Intersection of Alzheimer's Disease and Bone.","authors":"Tyler J Margetts, Sonali J Karnik, Hannah S Wang, Lilian I Plotkin, Adrian L Oblak, Jill C Fehrenbacher, Melissa A Kacena, Alexandru Movila","doi":"10.1007/s11914-023-00853-z","DOIUrl":"10.1007/s11914-023-00853-z","url":null,"abstract":"<p><strong>Purpose of review: </strong>This Comment represents three review articles on the relationship between Alzheimer's disease, osteoporosis, and fracture in an exploration of the benefits that AI can provide in scientific writing. The first drafts of the articles were written (1) entirely by humans; (2) entirely by ChatGPT 4.0 (AI-only or AIO); and (3) by humans and ChatGPT 4.0 whereby humans selected literature references, but ChatGPT 4.0 completed the writing (AI-assisted or AIA). Importantly, each review article was edited and carefully checked for accuracy by all co-authors resulting in a final manuscript which was significantly different from the original draft.</p><p><strong>Recent findings: </strong>The human-written article took the most time from start to finish, the AI-only article took the least time, and the AI-assisted article fell between the two. When comparing first drafts to final drafts, the AI-only and AI-assisted articles had higher percentages of different text than the human article. The AI-only paper had a higher percentage of incorrect references in the first draft than the AI-assisted paper. The first draft of the AI-assisted article had a higher similarity score than the other two articles when examined by plagiarism identification software. This writing experiment used time tracking, human editing, and comparison software to examine the benefits and risks of using AI to assist in scientific writing. It showed that while AI may reduce total writing time, hallucinations and plagiarism were prevalent issues with this method and human editing was still necessary to ensure accuracy.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"177-181"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2024-01-29DOI: 10.1007/s11914-023-00847-x
Sonali J Karnik, Tyler J Margetts, Hannah S Wang, Alexandru Movila, Adrian L Oblak, Jill C Fehrenbacher, Melissa A Kacena, Lilian I Plotkin
Purpose of review: This review examines the linked pathophysiology of Alzheimer's disease/related dementia (AD/ADRD) and bone disorders like osteoporosis. The emphasis is on "inflammaging"-a low-level inflammation common to both, and its implications in an aging population.
Recent findings: Aging intensifies both ADRD and bone deterioration. Notably, ADRD patients have a heightened fracture risk, impacting morbidity and mortality, though it is uncertain if fractures worsen ADRD. Therapeutically, agents targeting inflammation pathways, especially Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and TNF-α, appear beneficial for both conditions. Additionally, treatments like Sirtuin 1 (SIRT-1), known for anti-inflammatory and neuroprotective properties, are gaining attention. The interconnectedness of AD/ADRD and bone health necessitates a unified treatment approach. By addressing shared mechanisms, we can potentially transform therapeutic strategies, enriching our understanding and refining care in our aging society. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
{"title":"Mind the Gap: Unraveling the Intricate Dance Between Alzheimer's Disease and Related Dementias and Bone Health.","authors":"Sonali J Karnik, Tyler J Margetts, Hannah S Wang, Alexandru Movila, Adrian L Oblak, Jill C Fehrenbacher, Melissa A Kacena, Lilian I Plotkin","doi":"10.1007/s11914-023-00847-x","DOIUrl":"10.1007/s11914-023-00847-x","url":null,"abstract":"<p><strong>Purpose of review: </strong>This review examines the linked pathophysiology of Alzheimer's disease/related dementia (AD/ADRD) and bone disorders like osteoporosis. The emphasis is on \"inflammaging\"-a low-level inflammation common to both, and its implications in an aging population.</p><p><strong>Recent findings: </strong>Aging intensifies both ADRD and bone deterioration. Notably, ADRD patients have a heightened fracture risk, impacting morbidity and mortality, though it is uncertain if fractures worsen ADRD. Therapeutically, agents targeting inflammation pathways, especially Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and TNF-α, appear beneficial for both conditions. Additionally, treatments like Sirtuin 1 (SIRT-1), known for anti-inflammatory and neuroprotective properties, are gaining attention. The interconnectedness of AD/ADRD and bone health necessitates a unified treatment approach. By addressing shared mechanisms, we can potentially transform therapeutic strategies, enriching our understanding and refining care in our aging society. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"165-176"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139570922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose of review: The purpose of this review is to highlight the evidence of microvascular dysfunction in bone and marrow and its relation to poor skeletal outcomes in diabetes mellitus.
Recent findings: Diabetes mellitus is characterized by chronic hyperglycemia, which may lead to microangiopathy and macroangiopathy. Micro- and macroangiopathy have been diagnosed in Type 1 and Type 2 diabetes, coinciding with osteopenia, osteoporosis, enhanced fracture risk and delayed fracture healing. Microangiopathy has been reported in the skeleton, correlating with reduced blood flow and perfusion, vasomotor dysfunction, microvascular rarefaction, reduced angiogenic capabilities, and augmented vascular permeability. Microangiopathy within the skeleton may be detrimental to bone and manifest as, among other clinical abnormalities, reduced mass, enhanced fracture risk, and delayed fracture healing. More investigations are required to elucidate the various mechanisms by which diabetic microvascular dysfunction impacts the skeleton.
{"title":"Diabetes and the Microvasculature of the Bone and Marrow.","authors":"Teresa Le, Amanda Salas Sanchez, Danyah Nashawi, Sunidhi Kulkarni, Rhonda D Prisby","doi":"10.1007/s11914-023-00841-3","DOIUrl":"10.1007/s11914-023-00841-3","url":null,"abstract":"<p><strong>Purpose of review: </strong>The purpose of this review is to highlight the evidence of microvascular dysfunction in bone and marrow and its relation to poor skeletal outcomes in diabetes mellitus.</p><p><strong>Recent findings: </strong>Diabetes mellitus is characterized by chronic hyperglycemia, which may lead to microangiopathy and macroangiopathy. Micro- and macroangiopathy have been diagnosed in Type 1 and Type 2 diabetes, coinciding with osteopenia, osteoporosis, enhanced fracture risk and delayed fracture healing. Microangiopathy has been reported in the skeleton, correlating with reduced blood flow and perfusion, vasomotor dysfunction, microvascular rarefaction, reduced angiogenic capabilities, and augmented vascular permeability. Microangiopathy within the skeleton may be detrimental to bone and manifest as, among other clinical abnormalities, reduced mass, enhanced fracture risk, and delayed fracture healing. More investigations are required to elucidate the various mechanisms by which diabetic microvascular dysfunction impacts the skeleton.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"11-27"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose of review: To review the benefits, risks, and contraindications of traditional and new anesthesia approaches for hip fracture surgery and describe what is known about the impact of these approaches on postoperative outcomes.
Recent findings: This review describes general and spinal anesthesia, peripheral nerve block techniques used for pain management, and novel, local anesthesia approaches which may provide significant benefit compared with traditional approaches by minimizing high-risk induction time and decreasing respiratory suppression and short- and long-term cognitive effects. Hip fracture surgery places a large physiologic stress on an already frail patient, and anesthesia choice plays an important role in managing risk of perioperative morbidity. New local anesthesia techniques may decrease morbidity and mortality, particularly in higher-risk patients.
{"title":"Anesthetic Methods for Hip Fracture.","authors":"Lisa Reider, David Furgiuele, Philip Wan, Benjamin Schaffler, Sanjit Konda","doi":"10.1007/s11914-023-00835-1","DOIUrl":"10.1007/s11914-023-00835-1","url":null,"abstract":"<p><strong>Purpose of review: </strong>To review the benefits, risks, and contraindications of traditional and new anesthesia approaches for hip fracture surgery and describe what is known about the impact of these approaches on postoperative outcomes.</p><p><strong>Recent findings: </strong>This review describes general and spinal anesthesia, peripheral nerve block techniques used for pain management, and novel, local anesthesia approaches which may provide significant benefit compared with traditional approaches by minimizing high-risk induction time and decreasing respiratory suppression and short- and long-term cognitive effects. Hip fracture surgery places a large physiologic stress on an already frail patient, and anesthesia choice plays an important role in managing risk of perioperative morbidity. New local anesthesia techniques may decrease morbidity and mortality, particularly in higher-risk patients.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"96-104"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138832511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose of review: SARS-CoV-2 drove the catastrophic global phenomenon of the COVID-19 pandemic resulting in a multitude of systemic health issues, including bone loss. The purpose of this review is to summarize recent findings related to bone loss and potential mechanisms.
Recent findings: The early clinical evidence indicates an increase in vertebral fractures, hypocalcemia, vitamin D deficiencies, and a loss in BMD among COVID-19 patients. Additionally, lower BMD is associated with more severe SARS-CoV-2 infection. Preclinical models have shown bone loss and increased osteoclastogenesis. The bone loss associated with SARS-CoV-2 infection could be the result of many factors that directly affect the bone such as higher inflammation, activation of the NLRP3 inflammasome, recruitment of Th17 cells, the hypoxic environment, and changes in RANKL/OPG signaling. Additionally, SARS-CoV-2 infection can exert indirect effects on the skeleton, as mechanical unloading may occur with severe disease (e.g., bed rest) or with BMI loss and muscle wasting that has also been shown to occur with SARS-CoV-2 infection. Muscle wasting can also cause systemic issues that may influence the bone. Medications used to treat SARS-CoV-2 infection also have a negative effect on the bone. Lastly, SARS-CoV-2 infection may also worsen conditions such as diabetes and negatively affect kidney function, all of which could contribute to bone loss and increased fracture risk. SARS-CoV-2 can negatively affect the bone through multiple direct and indirect mechanisms. Future work will be needed to determine what patient populations are at risk of COVID-19-related increases in fracture risk, the mechanisms behind bone loss, and therapeutic options. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
{"title":"COVID-19 and Bone Loss: A Review of Risk Factors, Mechanisms, and Future Directions.","authors":"Amy Creecy, Olatundun D Awosanya, Alexander Harris, Xian Qiao, Marie Ozanne, Angela J Toepp, Melissa A Kacena, Thomas McCune","doi":"10.1007/s11914-023-00842-2","DOIUrl":"10.1007/s11914-023-00842-2","url":null,"abstract":"<p><strong>Purpose of review: </strong>SARS-CoV-2 drove the catastrophic global phenomenon of the COVID-19 pandemic resulting in a multitude of systemic health issues, including bone loss. The purpose of this review is to summarize recent findings related to bone loss and potential mechanisms.</p><p><strong>Recent findings: </strong>The early clinical evidence indicates an increase in vertebral fractures, hypocalcemia, vitamin D deficiencies, and a loss in BMD among COVID-19 patients. Additionally, lower BMD is associated with more severe SARS-CoV-2 infection. Preclinical models have shown bone loss and increased osteoclastogenesis. The bone loss associated with SARS-CoV-2 infection could be the result of many factors that directly affect the bone such as higher inflammation, activation of the NLRP3 inflammasome, recruitment of Th17 cells, the hypoxic environment, and changes in RANKL/OPG signaling. Additionally, SARS-CoV-2 infection can exert indirect effects on the skeleton, as mechanical unloading may occur with severe disease (e.g., bed rest) or with BMI loss and muscle wasting that has also been shown to occur with SARS-CoV-2 infection. Muscle wasting can also cause systemic issues that may influence the bone. Medications used to treat SARS-CoV-2 infection also have a negative effect on the bone. Lastly, SARS-CoV-2 infection may also worsen conditions such as diabetes and negatively affect kidney function, all of which could contribute to bone loss and increased fracture risk. SARS-CoV-2 can negatively affect the bone through multiple direct and indirect mechanisms. Future work will be needed to determine what patient populations are at risk of COVID-19-related increases in fracture risk, the mechanisms behind bone loss, and therapeutic options. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"122-134"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139467183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose of review: This comprehensive review delves into the intricate interplay between Alzheimer's disease (AD) and osteoporosis, two prevalent conditions with significant implications for individuals' quality of life. The purpose is to explore their bidirectional association, underpinned by common pathological processes such as aging, genetic factors, inflammation, and estrogen deficiency.
Recent findings: Recent advances have shown promise in treating both Alzheimer's disease (AD) and osteoporosis by targeting disease-specific proteins and bone metabolism regulators. Monoclonal antibodies against beta-amyloid and tau for AD, as well as RANKL and sclerostin for osteoporosis, have displayed therapeutic potential. Additionally, ongoing research has identified neuroinflammatory genes shared between AD and osteoporosis, offering insight into the interconnected inflammatory mechanisms. This knowledge opens avenues for innovative dual-purpose therapies that could address both conditions, potentially revolutionizing treatment approaches for AD and osteoporosis simultaneously. This review underscores the potential for groundbreaking advancements in early diagnosis and treatment by unraveling the intricate connection between AD and bone health. It advocates for a holistic, patient-centered approach to medical care that considers both cognitive and bone health, ultimately aiming to enhance the overall well-being of individuals affected by these conditions. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
{"title":"From the Mind to the Spine: The Intersecting World of Alzheimer's and Osteoporosis.","authors":"Tyler J Margetts, Hannah S Wang, Sonali J Karnik, Lilian I Plotkin, Alexandru Movila, Adrian L Oblak, Jill C Fehrenbacher, Melissa A Kacena","doi":"10.1007/s11914-023-00848-w","DOIUrl":"10.1007/s11914-023-00848-w","url":null,"abstract":"<p><strong>Purpose of review: </strong>This comprehensive review delves into the intricate interplay between Alzheimer's disease (AD) and osteoporosis, two prevalent conditions with significant implications for individuals' quality of life. The purpose is to explore their bidirectional association, underpinned by common pathological processes such as aging, genetic factors, inflammation, and estrogen deficiency.</p><p><strong>Recent findings: </strong>Recent advances have shown promise in treating both Alzheimer's disease (AD) and osteoporosis by targeting disease-specific proteins and bone metabolism regulators. Monoclonal antibodies against beta-amyloid and tau for AD, as well as RANKL and sclerostin for osteoporosis, have displayed therapeutic potential. Additionally, ongoing research has identified neuroinflammatory genes shared between AD and osteoporosis, offering insight into the interconnected inflammatory mechanisms. This knowledge opens avenues for innovative dual-purpose therapies that could address both conditions, potentially revolutionizing treatment approaches for AD and osteoporosis simultaneously. This review underscores the potential for groundbreaking advancements in early diagnosis and treatment by unraveling the intricate connection between AD and bone health. It advocates for a holistic, patient-centered approach to medical care that considers both cognitive and bone health, ultimately aiming to enhance the overall well-being of individuals affected by these conditions. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"152-164"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912148/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose of review: The formation of a pre-metastatic niche (PMN), in which primary cancer cells prime the distant site to be favorable to their engraftment and survival, may help explain the strong osteotropism observed in multiple cancers, such as breast and prostate. PMN formation, which includes extracellular matrix remodeling, increased angiogenesis and vascular permeability, enhanced bone marrow-derived cell recruitment and immune suppression, has mostly been described in soft tissues. In this review, we summarize current literature of PMN formation in bone. We also present evidence of a potential role for osteocytes to be the primary mediators of PMN development.
Recent findings: Osteocytes regulate the bone microenvironment in myriad ways beyond canonical bone tissue remodeling, including changes that contribute to PMN formation. Perilacunar tissue remodeling, which has been observed in both bone and non-bone metastatic cancers, is a potential mechanism by which osteocyte-cancer cell signaling stimulates changes to the bone microenvironment. Osteocytes also protect against endothelial permeability, including that induced by cancer cells, in a loading-mediated process. Finally, osteocytes are potent regulators of cells within the bone marrow, including progenitors and immune cells, and might be involved in this aspect of PMN formation. Osteocytes should be examined for their role in PMN formation.
{"title":"The Role of Osteocytes in Pre-metastatic Niche Formation.","authors":"Emma N Briggs, Maureen E Lynch","doi":"10.1007/s11914-023-00857-9","DOIUrl":"10.1007/s11914-023-00857-9","url":null,"abstract":"<p><strong>Purpose of review: </strong>The formation of a pre-metastatic niche (PMN), in which primary cancer cells prime the distant site to be favorable to their engraftment and survival, may help explain the strong osteotropism observed in multiple cancers, such as breast and prostate. PMN formation, which includes extracellular matrix remodeling, increased angiogenesis and vascular permeability, enhanced bone marrow-derived cell recruitment and immune suppression, has mostly been described in soft tissues. In this review, we summarize current literature of PMN formation in bone. We also present evidence of a potential role for osteocytes to be the primary mediators of PMN development.</p><p><strong>Recent findings: </strong>Osteocytes regulate the bone microenvironment in myriad ways beyond canonical bone tissue remodeling, including changes that contribute to PMN formation. Perilacunar tissue remodeling, which has been observed in both bone and non-bone metastatic cancers, is a potential mechanism by which osteocyte-cancer cell signaling stimulates changes to the bone microenvironment. Osteocytes also protect against endothelial permeability, including that induced by cancer cells, in a loading-mediated process. Finally, osteocytes are potent regulators of cells within the bone marrow, including progenitors and immune cells, and might be involved in this aspect of PMN formation. Osteocytes should be examined for their role in PMN formation.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"105-114"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose of review: With the recent explosion in the use of artificial intelligence (AI) and specifically ChatGPT, we sought to determine whether ChatGPT could be used to assist in writing credible, peer-reviewed, scientific review articles. We also sought to assess, in a scientific study, the advantages and limitations of using ChatGPT for this purpose. To accomplish this, 3 topics of importance in musculoskeletal research were selected: (1) the intersection of Alzheimer's disease and bone; (2) the neural regulation of fracture healing; and (3) COVID-19 and musculoskeletal health. For each of these topics, 3 approaches to write manuscript drafts were undertaken: (1) human only; (2) ChatGPT only (AI-only); and (3) combination approach of #1 and #2 (AI-assisted). Articles were extensively fact checked and edited to ensure scientific quality, resulting in final manuscripts that were significantly different from the original drafts. Numerous parameters were measured throughout the process to quantitate advantages and disadvantages of approaches.
Recent findings: Overall, use of AI decreased the time spent to write the review article, but required more extensive fact checking. With the AI-only approach, up to 70% of the references cited were found to be inaccurate. Interestingly, the AI-assisted approach resulted in the highest similarity indices suggesting a higher likelihood of plagiarism. Finally, although the technology is rapidly changing, at the time of study, ChatGPT 4.0 had a cutoff date of September 2021 rendering identification of recent articles impossible. Therefore, all literature published past the cutoff date was manually provided to ChatGPT, rendering approaches #2 and #3 identical for contemporary citations. As a result, for the COVID-19 and musculoskeletal health topic, approach #2 was abandoned midstream due to the extensive overlap with approach #3. The main objective of this scientific study was to see whether AI could be used in a scientifically appropriate manner to improve the scientific writing process. Indeed, AI reduced the time for writing but had significant inaccuracies. The latter necessitates that AI cannot currently be used alone but could be used with careful oversight by humans to assist in writing scientific review articles.
{"title":"The Use of Artificial Intelligence in Writing Scientific Review Articles.","authors":"Melissa A Kacena, Lilian I Plotkin, Jill C Fehrenbacher","doi":"10.1007/s11914-023-00852-0","DOIUrl":"10.1007/s11914-023-00852-0","url":null,"abstract":"<p><strong>Purpose of review: </strong>With the recent explosion in the use of artificial intelligence (AI) and specifically ChatGPT, we sought to determine whether ChatGPT could be used to assist in writing credible, peer-reviewed, scientific review articles. We also sought to assess, in a scientific study, the advantages and limitations of using ChatGPT for this purpose. To accomplish this, 3 topics of importance in musculoskeletal research were selected: (1) the intersection of Alzheimer's disease and bone; (2) the neural regulation of fracture healing; and (3) COVID-19 and musculoskeletal health. For each of these topics, 3 approaches to write manuscript drafts were undertaken: (1) human only; (2) ChatGPT only (AI-only); and (3) combination approach of #1 and #2 (AI-assisted). Articles were extensively fact checked and edited to ensure scientific quality, resulting in final manuscripts that were significantly different from the original drafts. Numerous parameters were measured throughout the process to quantitate advantages and disadvantages of approaches.</p><p><strong>Recent findings: </strong>Overall, use of AI decreased the time spent to write the review article, but required more extensive fact checking. With the AI-only approach, up to 70% of the references cited were found to be inaccurate. Interestingly, the AI-assisted approach resulted in the highest similarity indices suggesting a higher likelihood of plagiarism. Finally, although the technology is rapidly changing, at the time of study, ChatGPT 4.0 had a cutoff date of September 2021 rendering identification of recent articles impossible. Therefore, all literature published past the cutoff date was manually provided to ChatGPT, rendering approaches #2 and #3 identical for contemporary citations. As a result, for the COVID-19 and musculoskeletal health topic, approach #2 was abandoned midstream due to the extensive overlap with approach #3. The main objective of this scientific study was to see whether AI could be used in a scientifically appropriate manner to improve the scientific writing process. Indeed, AI reduced the time for writing but had significant inaccuracies. The latter necessitates that AI cannot currently be used alone but could be used with careful oversight by humans to assist in writing scientific review articles.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"115-121"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912250/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose of review: There were two primary purposes to our reviews. First, to provide an update to the scientific community about the impacts of COVID-19 on musculoskeletal health. Second, was to determine the value of using a large language model, ChatGPT 4.0, in the process of writing a scientific review article. To accomplish these objectives, we originally set out to write three review articles on the topic using different methods to produce the initial drafts of the review articles. The first review article was written in the traditional manner by humans, the second was to be written exclusively using ChatGPT (AI-only or AIO), and the third approach was to input the outline and references selected by humans from approach 1 into ChatGPT, using the AI to assist in completing the writing (AI-assisted or AIA). All review articles were extensively fact-checked and edited by all co-authors leading to the final drafts of the manuscripts, which were significantly different from the initial drafts.
Recent findings: Unfortunately, during this process, it became clear that approach 2 was not feasible for a very recent topic like COVID-19 as at the time, ChatGPT 4.0 had a cutoff date of September 2021 and all articles published after this date had to be provided to ChatGPT, making approaches 2 and 3 virtually identical. Therefore, only two approaches and two review articles were written (human and AI-assisted). Here we found that the human-only approach took less time to complete than the AI-assisted approach. This was largely due to the number of hours required to fact-check and edit the AI-assisted manuscript. Of note, the AI-assisted approach resulted in inaccurate attributions of references (about 20%) and had a higher similarity index suggesting an increased risk of plagiarism. The main aim of this project was to determine whether the use of AI could improve the process of writing a scientific review article. Based on our experience, with the current state of technology, it would not be advised to solely use AI to write a scientific review article, especially on a recent topic.
{"title":"The Utility of AI in Writing a Scientific Review Article on the Impacts of COVID-19 on Musculoskeletal Health.","authors":"Olatundun D Awosanya, Alexander Harris, Amy Creecy, Xian Qiao, Angela J Toepp, Thomas McCune, Melissa A Kacena, Marie V Ozanne","doi":"10.1007/s11914-023-00855-x","DOIUrl":"10.1007/s11914-023-00855-x","url":null,"abstract":"<p><strong>Purpose of review: </strong>There were two primary purposes to our reviews. First, to provide an update to the scientific community about the impacts of COVID-19 on musculoskeletal health. Second, was to determine the value of using a large language model, ChatGPT 4.0, in the process of writing a scientific review article. To accomplish these objectives, we originally set out to write three review articles on the topic using different methods to produce the initial drafts of the review articles. The first review article was written in the traditional manner by humans, the second was to be written exclusively using ChatGPT (AI-only or AIO), and the third approach was to input the outline and references selected by humans from approach 1 into ChatGPT, using the AI to assist in completing the writing (AI-assisted or AIA). All review articles were extensively fact-checked and edited by all co-authors leading to the final drafts of the manuscripts, which were significantly different from the initial drafts.</p><p><strong>Recent findings: </strong>Unfortunately, during this process, it became clear that approach 2 was not feasible for a very recent topic like COVID-19 as at the time, ChatGPT 4.0 had a cutoff date of September 2021 and all articles published after this date had to be provided to ChatGPT, making approaches 2 and 3 virtually identical. Therefore, only two approaches and two review articles were written (human and AI-assisted). Here we found that the human-only approach took less time to complete than the AI-assisted approach. This was largely due to the number of hours required to fact-check and edit the AI-assisted manuscript. Of note, the AI-assisted approach resulted in inaccurate attributions of references (about 20%) and had a higher similarity index suggesting an increased risk of plagiarism. The main aim of this project was to determine whether the use of AI could improve the process of writing a scientific review article. Based on our experience, with the current state of technology, it would not be advised to solely use AI to write a scientific review article, especially on a recent topic.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"146-151"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139432590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose of review: Fractures are a prominent form of traumatic injury and shall continue to be for the foreseeable future. While the inflammatory response and the cells of the bone marrow microenvironment play significant roles in fracture healing, the nervous system is also an important player in regulating bone healing.
Recent findings: Considerable evidence demonstrates a role for nervous system regulation of fracture healing in a setting of traumatic injury to the brain. Although many of the impacts of the nervous system on fracture healing are positive, pain mediated by the nervous system can have detrimental effects on mobilization and quality of life. Understanding the role the nervous system plays in fracture healing is vital to understanding fracture healing as a whole and improving quality of life post-injury. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.
{"title":"Do Not Lose Your Nerve, Be Callus: Insights Into Neural Regulation of Fracture Healing.","authors":"Murad K Nazzal, Ashlyn J Morris, Reginald S Parker, Fletcher A White, Roman M Natoli, Melissa A Kacena, Jill C Fehrenbacher","doi":"10.1007/s11914-023-00850-2","DOIUrl":"10.1007/s11914-023-00850-2","url":null,"abstract":"<p><strong>Purpose of review: </strong>Fractures are a prominent form of traumatic injury and shall continue to be for the foreseeable future. While the inflammatory response and the cells of the bone marrow microenvironment play significant roles in fracture healing, the nervous system is also an important player in regulating bone healing.</p><p><strong>Recent findings: </strong>Considerable evidence demonstrates a role for nervous system regulation of fracture healing in a setting of traumatic injury to the brain. Although many of the impacts of the nervous system on fracture healing are positive, pain mediated by the nervous system can have detrimental effects on mobilization and quality of life. Understanding the role the nervous system plays in fracture healing is vital to understanding fracture healing as a whole and improving quality of life post-injury. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.</p>","PeriodicalId":48750,"journal":{"name":"Current Osteoporosis Reports","volume":" ","pages":"182-192"},"PeriodicalIF":4.3,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139643196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}