首页 > 最新文献

Computational Methods in Applied Mathematics最新文献

英文 中文
Relaxation Quadratic Approximation Greedy Pursuit Method Based on Sparse Learning 基于稀疏学习的松弛二次逼近贪心追踪方法
4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-10-04 DOI: 10.1515/cmam-2023-0050
Shihai Li, Changfeng Ma
Abstract A high-performance sparse model is very important for processing high-dimensional data. Therefore, based on the quadratic approximate greed pursuit (QAGP) method, we can make full use of the information of the quadratic lower bound of its approximate function to get the relaxation quadratic approximate greed pursuit (RQAGP) method. The calculation process of the RQAGP method is to construct two inexact quadratic approximation functions by using the m -strongly convex and L -smooth characteristics of the objective function and then solve the approximation function iteratively by using the Iterative Hard Thresholding (IHT) method to get the solution of the problem. The convergence analysis is given, and the performance of the method in the sparse logistic regression model is verified on synthetic data and real data sets. The results show that the RQAGP method is effective.
高性能的稀疏模型对于处理高维数据非常重要。因此,在二次近似贪婪追踪(QAGP)方法的基础上,我们可以充分利用其近似函数的二次下界信息,得到松弛的二次近似贪婪追踪(RQAGP)方法。RQAGP方法的计算过程是利用目标函数的m -强凸和L -光滑特性构造两个不精确的二次逼近函数,然后利用迭代硬阈值法(IHT)对逼近函数进行迭代求解,得到问题的解。给出了收敛性分析,并在合成数据和实际数据集上验证了该方法在稀疏逻辑回归模型中的性能。结果表明,RQAGP方法是有效的。
{"title":"Relaxation Quadratic Approximation Greedy Pursuit Method Based on Sparse Learning","authors":"Shihai Li, Changfeng Ma","doi":"10.1515/cmam-2023-0050","DOIUrl":"https://doi.org/10.1515/cmam-2023-0050","url":null,"abstract":"Abstract A high-performance sparse model is very important for processing high-dimensional data. Therefore, based on the quadratic approximate greed pursuit (QAGP) method, we can make full use of the information of the quadratic lower bound of its approximate function to get the relaxation quadratic approximate greed pursuit (RQAGP) method. The calculation process of the RQAGP method is to construct two inexact quadratic approximation functions by using the m -strongly convex and L -smooth characteristics of the objective function and then solve the approximation function iteratively by using the Iterative Hard Thresholding (IHT) method to get the solution of the problem. The convergence analysis is given, and the performance of the method in the sparse logistic regression model is verified on synthetic data and real data sets. The results show that the RQAGP method is effective.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135549142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontmatter 头版头条
4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-10-01 DOI: 10.1515/cmam-2023-frontmatter4
{"title":"Frontmatter","authors":"","doi":"10.1515/cmam-2023-frontmatter4","DOIUrl":"https://doi.org/10.1515/cmam-2023-frontmatter4","url":null,"abstract":"","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134934704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Raviart–Thomas Basis Functions on Anisotropic Finite Elements 各向异性有限元上的新型Raviart-Thomas基函数
4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-09-19 DOI: 10.1515/cmam-2022-0235
Fleurianne Bertrand
Abstract Recently, H ( div ) mathbf{H}(mathrm{div}) -conforming finite element families were proven to be successful on anisotropic meshes, with the help of suitable interpolation error estimates. In order to ensure corresponding large-scale computation, this contribution provides novel Raviart–Thomas basis functions, robust regarding the anisotropy of a given triangulation. This new set of basis functions on simplices uses a hierarchical approach, and the orientation of the basis functions is inherited from the lowest-order case. In the higher-order case, the new basis functions can be written as a combination of the lowest-order Raviart–Thomas elements and higher-order Lagrange-elements. This ensures robustness regarding the mesh anisotropy and assembling strategies as demonstrated in the numerical experiments.
最近,在适当的插值误差估计的帮助下,证明了H ^ (div) mathbf{H}( mathbf{div})符合有限元族在各向异性网格上是成功的。为了保证相应的大规模计算,这一贡献提供了新的Raviart-Thomas基函数,对于给定三角剖分的各向异性具有鲁棒性。这种新的基函数集采用了分层方法,基函数的方向继承自最低阶情况。在高阶情况下,新的基函数可以写成低阶拉维亚特-托马斯元素和高阶拉格朗日元素的组合。这保证了网格各向异性和装配策略的鲁棒性,如数值实验所示。
{"title":"Novel Raviart–Thomas Basis Functions on Anisotropic Finite Elements","authors":"Fleurianne Bertrand","doi":"10.1515/cmam-2022-0235","DOIUrl":"https://doi.org/10.1515/cmam-2022-0235","url":null,"abstract":"Abstract Recently, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"bold\">H</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>div</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> mathbf{H}(mathrm{div}) -conforming finite element families were proven to be successful on anisotropic meshes, with the help of suitable interpolation error estimates. In order to ensure corresponding large-scale computation, this contribution provides novel Raviart–Thomas basis functions, robust regarding the anisotropy of a given triangulation. This new set of basis functions on simplices uses a hierarchical approach, and the orientation of the basis functions is inherited from the lowest-order case. In the higher-order case, the new basis functions can be written as a combination of the lowest-order Raviart–Thomas elements and higher-order Lagrange-elements. This ensures robustness regarding the mesh anisotropy and assembling strategies as demonstrated in the numerical experiments.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135011096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Space-Time Approximation of Local Strong Solutions to the 3D Stochastic Navier–Stokes Equations 三维随机Navier-Stokes方程局部强解的时空逼近
4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-08-08 DOI: 10.1515/cmam-2023-0052
Dominic Breit, Alan Dodgson
Abstract We consider the 3D stochastic Navier–Stokes equation on the torus. Our main result concerns the temporal and spatio-temporal discretisation of a local strong pathwise solution. We prove optimal convergence rates for the energy error with respect to convergence in probability, that is convergence of order (up to) 1 in space and of order (up to) 1/2 in time. The result holds up to the possible blow-up of the (time-discrete) solution. Our approach is based on discrete stopping times for the (time-discrete) solution.
考虑环面上的三维随机Navier-Stokes方程。我们的主要结果涉及局部强路径解的时间和时空离散化。我们证明了能量误差在概率收敛方面的最优收敛率,即空间上的(至)阶收敛和时间上的(至)1/2阶收敛。结果支持(时间离散)解的可能爆破。我们的方法是基于(时间离散)解的离散停止时间。
{"title":"Space-Time Approximation of Local Strong Solutions to the 3D Stochastic Navier–Stokes Equations","authors":"Dominic Breit, Alan Dodgson","doi":"10.1515/cmam-2023-0052","DOIUrl":"https://doi.org/10.1515/cmam-2023-0052","url":null,"abstract":"Abstract We consider the 3D stochastic Navier–Stokes equation on the torus. Our main result concerns the temporal and spatio-temporal discretisation of a local strong pathwise solution. We prove optimal convergence rates for the energy error with respect to convergence in probability, that is convergence of order (up to) 1 in space and of order (up to) 1/2 in time. The result holds up to the possible blow-up of the (time-discrete) solution. Our approach is based on discrete stopping times for the (time-discrete) solution.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"87 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135747554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Convergent Entropy-Dissipating BDF2 Finite-Volume Scheme for a Population Cross-Diffusion System 种群交叉扩散系统的收敛熵耗散BDF2有限体积格式
4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-08-08 DOI: 10.1515/cmam-2023-0009
Ansgar Jüngel, Martin Vetter
Abstract A second-order backward differentiation formula (BDF2) finite-volume discretization for a nonlinear cross-diffusion system arising in population dynamics is studied. The numerical scheme preserves the Rao entropy structure and conserves the mass. The existence and uniqueness of discrete solutions and their large-time behavior as well as the convergence of the scheme are proved. The proofs are based on the G-stability of the BDF2 scheme, which provides an inequality for the quadratic Rao entropy and hence suitable a priori estimates. The novelty is the extension of this inequality to the system case. Some numerical experiments in one and two space dimensions underline the theoretical results.
摘要研究了一类非线性交叉扩散系统的二阶后向微分有限体积离散化问题。该数值格式保持了Rao熵结构和质量守恒。证明了离散解的存在唯一性及其大时性,并证明了该方案的收敛性。该证明基于BDF2格式的g稳定性,该格式提供了二次Rao熵的不等式,因此适合先验估计。新奇之处在于将这个不等式扩展到系统情况。一些一维和二维空间的数值实验证明了理论结果。
{"title":"A Convergent Entropy-Dissipating BDF2 Finite-Volume Scheme for a Population Cross-Diffusion System","authors":"Ansgar Jüngel, Martin Vetter","doi":"10.1515/cmam-2023-0009","DOIUrl":"https://doi.org/10.1515/cmam-2023-0009","url":null,"abstract":"Abstract A second-order backward differentiation formula (BDF2) finite-volume discretization for a nonlinear cross-diffusion system arising in population dynamics is studied. The numerical scheme preserves the Rao entropy structure and conserves the mass. The existence and uniqueness of discrete solutions and their large-time behavior as well as the convergence of the scheme are proved. The proofs are based on the G-stability of the BDF2 scheme, which provides an inequality for the quadratic Rao entropy and hence suitable a priori estimates. The novelty is the extension of this inequality to the system case. Some numerical experiments in one and two space dimensions underline the theoretical results.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135747555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetrized Two-Scale Finite Element Discretizations for Partial Differential Equations with Symmetric Solutions 具有对称解的偏微分方程的对称双尺度有限元离散
4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-08-08 DOI: 10.1515/cmam-2022-0192
Pengyu Hou, Fang Liu, Aihui Zhou
Abstract In this paper, some symmetrized two-scale finite element methods are proposed for a class of partial differential equations with symmetric solutions. With these methods, the finite element approximation on a fine tensor-product grid is reduced to the finite element approximations on a much coarser grid and a univariant fine grid. It is shown by both theory and numerics including electronic structure calculations that the resulting approximations still maintain an asymptotically optimal accuracy. By symmetrized two-scale finite element methods, the computational cost can be reduced further by a factor of 𝑑 approximately compared with two-scale finite element methods when Ω = ( 0 , 1 ) d Omega=(0,1)^{d} . Consequently, symmetrized two-scale finite element methods reduce computational cost significantly.
摘要本文给出了一类具有对称解的偏微分方程的对称双尺度有限元方法。利用这些方法,将精细张量积网格上的有限元逼近简化为更粗网格和不变精细网格上的有限元逼近。理论和包括电子结构计算在内的数值都表明,所得到的近似仍然保持渐近最优精度。采用对称双尺度有限元方法,当Ω =(0,1) d Omega=(0,1)^{d}时,与双尺度有限元方法相比,计算成本可进一步约降低𝑑。因此,对称双尺度有限元方法大大降低了计算成本。
{"title":"Symmetrized Two-Scale Finite Element Discretizations for Partial Differential Equations with Symmetric Solutions","authors":"Pengyu Hou, Fang Liu, Aihui Zhou","doi":"10.1515/cmam-2022-0192","DOIUrl":"https://doi.org/10.1515/cmam-2022-0192","url":null,"abstract":"Abstract In this paper, some symmetrized two-scale finite element methods are proposed for a class of partial differential equations with symmetric solutions. With these methods, the finite element approximation on a fine tensor-product grid is reduced to the finite element approximations on a much coarser grid and a univariant fine grid. It is shown by both theory and numerics including electronic structure calculations that the resulting approximations still maintain an asymptotically optimal accuracy. By symmetrized two-scale finite element methods, the computational cost can be reduced further by a factor of 𝑑 approximately compared with two-scale finite element methods when <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mi>d</m:mi> </m:msup> </m:mrow> </m:math> Omega=(0,1)^{d} . Consequently, symmetrized two-scale finite element methods reduce computational cost significantly.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135747204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Convenient Inclusion of Inhomogeneous Boundary Conditions in Minimal Residual Methods 最小残差法中一种方便的非齐次边界条件包含
4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-07-29 DOI: 10.1515/cmam-2023-0072
Rob Stevenson
Abstract Inhomogeneous essential boundary conditions can be appended to a well-posed PDE to lead to a combined variational formulation. The domain of the corresponding operator is a Sobolev space on the domain Ω on which the PDE is posed, whereas the codomain is a Cartesian product of spaces, among them fractional Sobolev spaces of functions on Ω partialOmega . In this paper, easily implementable minimal residual discretizations are constructed which yield quasi-optimal approximation from the employed trial space, in which the evaluation of fractional Sobolev norms is fully avoided.
非齐次本质边界条件可以附加到一个适定偏微分方程上,从而得到一个组合变分公式。对应算子的域是在PDE被放置的域Ω上的Sobolev空间,而上域是空间的笛卡尔积,其中包括∂Ω partialOmega上函数的分数Sobolev空间。本文构造了一种易于实现的最小残差离散化方法,该方法从所采用的试验空间中得到拟最优逼近,其中完全避免了分数阶Sobolev范数的估计。
{"title":"A Convenient Inclusion of Inhomogeneous Boundary Conditions in Minimal Residual Methods","authors":"Rob Stevenson","doi":"10.1515/cmam-2023-0072","DOIUrl":"https://doi.org/10.1515/cmam-2023-0072","url":null,"abstract":"Abstract Inhomogeneous essential boundary conditions can be appended to a well-posed PDE to lead to a combined variational formulation. The domain of the corresponding operator is a Sobolev space on the domain Ω on which the PDE is posed, whereas the codomain is a Cartesian product of spaces, among them fractional Sobolev spaces of functions on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo rspace=\"0em\">∂</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:math> partialOmega . In this paper, easily implementable minimal residual discretizations are constructed which yield quasi-optimal approximation from the employed trial space, in which the evaluation of fractional Sobolev norms is fully avoided.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135444034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reconstruction of the Radiation Condition and Solution for the Helmholtz Equation in a Semi-infinite Strip from Cauchy Data on an Interior Segment 由内线段上的Cauchy数据重建半无限带中Helmholtz方程的辐射条件和求解
IF 1.3 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-07-25 DOI: 10.1515/cmam-2022-0244
Pauline Achieng, F. Berntsson, V. Kozlov
Abstract We consider an inverse problem for the Helmholtz equation of reconstructing a solution from measurements taken on a segment inside a semi-infinite strip. Homogeneous Neumann conditions are prescribed on both side boundaries of the strip and an unknown Dirichlet condition on the remaining part of the boundary. Additional complexity is that the radiation condition at infinity is unknown. Our aim is to find the unknown function in the Dirichlet boundary condition and the radiation condition. Such problems appear in acoustics to determine acoustical sources and surface vibrations from acoustic field measurements. The problem is split into two sub-problems, a well-posed and an ill-posed problem. We analyse the theoretical properties of both problems; in particular, we show that the radiation condition is described by a stable non-linear problem. The second problem is ill-posed, and we use the Landweber iteration method together with the discrepancy principle to regularize it. Numerical tests show that the approach works well.
摘要我们考虑亥姆霍兹方程的一个反问题,该反问题是根据对半无限带内的一段的测量来重建解。在条的两侧边界上规定了齐次Neumann条件,在边界的剩余部分上规定了未知的Dirichlet条件。额外的复杂性是无穷远处的辐射条件是未知的。我们的目的是找到Dirichlet边界条件和辐射条件下的未知函数。这样的问题出现在声学中,以根据声场测量来确定声源和表面振动。该问题分为两个子问题,一个是适定问题,另一个是不适定问题。我们分析了这两个问题的理论性质;特别地,我们证明了辐射条件是由一个稳定的非线性问题描述的。第二个问题是不适定的,我们使用Landweber迭代方法和差分原理对其进行正则化。数值测试表明,该方法效果良好。
{"title":"Reconstruction of the Radiation Condition and Solution for the Helmholtz Equation in a Semi-infinite Strip from Cauchy Data on an Interior Segment","authors":"Pauline Achieng, F. Berntsson, V. Kozlov","doi":"10.1515/cmam-2022-0244","DOIUrl":"https://doi.org/10.1515/cmam-2022-0244","url":null,"abstract":"Abstract We consider an inverse problem for the Helmholtz equation of reconstructing a solution from measurements taken on a segment inside a semi-infinite strip. Homogeneous Neumann conditions are prescribed on both side boundaries of the strip and an unknown Dirichlet condition on the remaining part of the boundary. Additional complexity is that the radiation condition at infinity is unknown. Our aim is to find the unknown function in the Dirichlet boundary condition and the radiation condition. Such problems appear in acoustics to determine acoustical sources and surface vibrations from acoustic field measurements. The problem is split into two sub-problems, a well-posed and an ill-posed problem. We analyse the theoretical properties of both problems; in particular, we show that the radiation condition is described by a stable non-linear problem. The second problem is ill-posed, and we use the Landweber iteration method together with the discrepancy principle to regularize it. Numerical tests show that the approach works well.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41823031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Finite Element Methods 有限元方法的最新进展
IF 1.3 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-07-25 DOI: 10.1515/cmam-2023-0135
Sven Beuchler, A. Rösch
{"title":"Recent Advances in Finite Element Methods","authors":"Sven Beuchler, A. Rösch","doi":"10.1515/cmam-2023-0135","DOIUrl":"https://doi.org/10.1515/cmam-2023-0135","url":null,"abstract":"","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"10 1","pages":"813 - 815"},"PeriodicalIF":1.3,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139354992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations 非发散型椭圆型偏微分方程的计算多尺度方法
IF 1.3 4区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2023-07-24 DOI: 10.1515/cmam-2023-0040
Philip Freese, Dietmar Gallistl, Daniel Peterseim, Timo Sprekeler
This paper proposes novel computational multiscale methods for linear second-order elliptic partial differential equations in nondivergence form with heterogeneous coefficients satisfying a Cordes condition. The construction follows the methodology of localized orthogonal decomposition (LOD) and provides operator-adapted coarse spaces by solving localized cell problems on a fine scale in the spirit of numerical homogenization. The degrees of freedom of the coarse spaces are related to nonconforming and mixed finite element methods for homogeneous problems. The rigorous error analysis of one exemplary approach shows that the favorable properties of the LOD methodology known from divergence-form PDEs, i.e., its applicability and accuracy beyond scale separation and periodicity, remain valid for problems in nondivergence form.
本文提出了一种新的多尺度计算方法,用于求解满足Cordes条件的非散度非均质系数线性二阶椭圆型偏微分方程。该构造遵循定域正交分解(LOD)的方法,并在数值均匀化的精神下,通过在精细尺度上求解定域单元问题,提供适合算子的粗空间。粗糙空间的自由度与齐次问题的非协调和混合有限元方法有关。对一个示例性方法的严格误差分析表明,发散型偏微分方程中已知的LOD方法的有利性质,即其超越尺度分离和周期性的适用性和准确性,仍然适用于非发散形式的问题。
{"title":"Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations","authors":"Philip Freese, Dietmar Gallistl, Daniel Peterseim, Timo Sprekeler","doi":"10.1515/cmam-2023-0040","DOIUrl":"https://doi.org/10.1515/cmam-2023-0040","url":null,"abstract":"This paper proposes novel computational multiscale methods for linear second-order elliptic partial differential equations in nondivergence form with heterogeneous coefficients satisfying a Cordes condition. The construction follows the methodology of localized orthogonal decomposition (LOD) and provides operator-adapted coarse spaces by solving localized cell problems on a fine scale in the spirit of numerical homogenization. The degrees of freedom of the coarse spaces are related to nonconforming and mixed finite element methods for homogeneous problems. The rigorous error analysis of one exemplary approach shows that the favorable properties of the LOD methodology known from divergence-form PDEs, i.e., its applicability and accuracy beyond scale separation and periodicity, remain valid for problems in nondivergence form.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"113 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computational Methods in Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1