首页 > 最新文献

Journal of Coatings Technology and Research最新文献

英文 中文
Effect of titania, barite, and kaolinite fillers on char layer formation in water-based intumescent fire-retardant coatings 二氧化钛、重晶石和高岭石填料对水基膨胀型防火涂料炭层形成的影响
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2022-02-07 DOI: 10.1007/s11998-021-00585-8
Iben Hansen-Bruhn, Anne Vetter Poulsen, Ulrik Abildgaard, Jens Bomholdt Ravnsbæk, Mogens Hinge

Intumescent fire-retardant coatings are widely applied as they combine designable aesthetics and fire protection without compromising substrate properties. When exposed to heat, intumescent fire-retardant coatings expand and build an insulating char. This study presents an investigation of the char by addition of kaolinite, barite, and titania as functional fillers in intumescent coatings. Expansion experiments at 400°C with custom build image analysis showed that kaolinite inhibited (0.03 mm/s, expansion factor ≈ 7), whereas barite acted synergistically on the expansion ability (0.59 mm/s, expansion factor ≈ 85). The resulting char density and the visual inspection showed that barite char was less compact, with cracks and voids. Evaluation of fire performance by single burning item tests resulted in Euroclass C for the barite system and Euroclass A2/B for the titania system. Post-heating chars demonstrated poor thermostability of barite char, and subsequent FTIR spectroscopy revealed that titania char formed the thermostable titanium pyrophosphate. Further inspection of the titania char revealed a uniform closed cell structure with mean bubble sizes of 26–56 µm. Titania coating expands rapidly (0.37 mm/s, expansion factor ≈ 60) and forms a structurally stable tumescent char with a compact and uniform porous structure exhibiting resistance to char oxidation at sustained heating.

膨胀型防火涂料被广泛应用,因为它结合了可设计的美观性和防火性,而不影响基材的性能。当暴露在热下时,膨胀的防火涂料膨胀并形成绝缘炭。本文研究了在膨胀涂层中添加高岭石、重晶石和二氧化钛作为功能填料的焦炭。400℃下的膨胀实验显示,高岭石对其有抑制作用(0.03 mm/s,膨胀因子≈7),而重晶石对其有协同作用(0.59 mm/s,膨胀因子≈85)。由此得出的焦炭密度和目测结果表明,重晶石焦炭不致密,有裂纹和空隙。通过单个燃烧项目测试对防火性能进行评估,重晶石系统为欧洲C级,二氧化钛系统为欧洲A2/B级。重晶石炭的热稳定性较差,随后的红外光谱分析显示钛炭形成热稳定性好的焦磷酸钛。进一步检测发现,二氧化钛炭具有均匀的闭孔结构,平均气泡尺寸为26 ~ 56µm。二氧化钛涂层迅速膨胀(0.37 mm/s,膨胀系数≈60),形成结构稳定的膨胀型焦,具有致密均匀的多孔结构,在持续加热下具有抗焦氧化的性能。
{"title":"Effect of titania, barite, and kaolinite fillers on char layer formation in water-based intumescent fire-retardant coatings","authors":"Iben Hansen-Bruhn,&nbsp;Anne Vetter Poulsen,&nbsp;Ulrik Abildgaard,&nbsp;Jens Bomholdt Ravnsbæk,&nbsp;Mogens Hinge","doi":"10.1007/s11998-021-00585-8","DOIUrl":"10.1007/s11998-021-00585-8","url":null,"abstract":"<div><p>Intumescent fire-retardant coatings are widely applied as they combine designable aesthetics and fire protection without compromising substrate properties. When exposed to heat, intumescent fire-retardant coatings expand and build an insulating char. This study presents an investigation of the char by addition of kaolinite, barite, and titania as functional fillers in intumescent coatings. Expansion experiments at 400°C with custom build image analysis showed that kaolinite inhibited (0.03 mm/s, expansion factor ≈ 7), whereas barite acted synergistically on the expansion ability (0.59 mm/s, expansion factor ≈ 85). The resulting char density and the visual inspection showed that barite char was less compact, with cracks and voids. Evaluation of fire performance by single burning item tests resulted in Euroclass C for the barite system and Euroclass A2/B for the titania system. Post-heating chars demonstrated poor thermostability of barite char, and subsequent FTIR spectroscopy revealed that titania char formed the thermostable titanium pyrophosphate. Further inspection of the titania char revealed a uniform closed cell structure with mean bubble sizes of 26–56 µm. Titania coating expands rapidly (0.37 mm/s, expansion factor ≈ 60) and forms a structurally stable tumescent char with a compact and uniform porous structure exhibiting resistance to char oxidation at sustained heating.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 4","pages":"1067 - 1075"},"PeriodicalIF":2.3,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-021-00585-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4291983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Preparation of superhydrophobic titanium surface via the combined modification of hierarchical micro/nanopatterning and fluorination 分层微/纳米图和氟化复合修饰制备超疏水钛表面
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2022-01-26 DOI: 10.1007/s11998-021-00576-9
Zhen Wang, Bing Ren

Adhesion of bacteria and platelets on blood-contact implants and surgical devices is one of the causes of infections and thrombus. A superhydrophobic surface serving as a protective layer can minimize adhesion and contamination due to the low surface energy. The objective of this paper is to construct a superhydrophobic surface on a titanium implant by a combination of a topological structure and chemical coating. First, a micro/nano hierarchical morphology is obtained by sandblasting, acid-etching, and anodic oxidation. Then, a low surface energy coating material (fluoroalkylsilane, as the example case in this study) is used to modify the surface further. The effects of the morphology of micro and/or nanoscales and corresponding fluorination on the wettability are investigated. The results show that a hierarchical surface with microroughness and nanotubes is successfully constructed, and the contact angle (CA) is 44.9°, indicating good hydrophilicity. Interestingly, after being modified by fluoroalkylsilane, the surface converted from hydrophilic to superhydrophobic with a CA of 151.4°. In contrast, the fluorination modification of single micro or nanofeatures cannot achieve superhydrophobicity, indicating that the micro/nanostructures may show a synergistic effect for an efficient fluorination coating later on. Overall, our results demonstrate the feasibility of achieving a superhydrophobic surface via the micro/nano topological patterning and fluorination modification. The proposed method is expected to enrich the preparation technologies of superhydrophobic titanium surfaces.

Graphic abstract

细菌和血小板在与血液接触的植入物和手术器械上的粘附是引起感染和血栓的原因之一。由于表面能低,作为保护层的超疏水表面可以最大限度地减少粘附和污染。本文的目的是通过拓扑结构和化学涂层相结合的方法在钛种植体上构建超疏水表面。首先,通过喷砂、酸蚀和阳极氧化获得微/纳米层次形貌。然后,采用低表面能涂层材料(本研究以氟烷基硅烷为例)对表面进行进一步改性。研究了微观和/或纳米尺度的形态以及相应的氟化对润湿性的影响。结果表明,成功构建了具有微孔和纳米管的层阶表面,接触角(CA)为44.9°,亲水性良好。有趣的是,经氟烷基硅烷修饰后,表面由亲水性转变为超疏水性,CA为151.4°。相比之下,单个微纳特征的氟化改性无法实现超疏水性,这表明微纳结构可能对后续高效氟化涂层表现出协同效应。总的来说,我们的研究结果证明了通过微/纳米拓扑图和氟化修饰实现超疏水表面的可行性。该方法有望丰富超疏水钛表面的制备技术。图形抽象
{"title":"Preparation of superhydrophobic titanium surface via the combined modification of hierarchical micro/nanopatterning and fluorination","authors":"Zhen Wang,&nbsp;Bing Ren","doi":"10.1007/s11998-021-00576-9","DOIUrl":"10.1007/s11998-021-00576-9","url":null,"abstract":"<div><p>Adhesion of bacteria and platelets on blood-contact implants and surgical devices is one of the causes of infections and thrombus. A superhydrophobic surface serving as a protective layer can minimize adhesion and contamination due to the low surface energy. The objective of this paper is to construct a superhydrophobic surface on a titanium implant by a combination of a topological structure and chemical coating. First, a micro/nano hierarchical morphology is obtained by sandblasting, acid-etching, and anodic oxidation. Then, a low surface energy coating material (fluoroalkylsilane, as the example case in this study) is used to modify the surface further. The effects of the morphology of micro and/or nanoscales and corresponding fluorination on the wettability are investigated. The results show that a hierarchical surface with microroughness and nanotubes is successfully constructed, and the contact angle (CA) is 44.9°, indicating good hydrophilicity. Interestingly, after being modified by fluoroalkylsilane, the surface converted from hydrophilic to superhydrophobic with a CA of 151.4°. In contrast, the fluorination modification of single micro or nanofeatures cannot achieve superhydrophobicity, indicating that the micro/nanostructures may show a synergistic effect for an efficient fluorination coating later on. Overall, our results demonstrate the feasibility of achieving a superhydrophobic surface via the micro/nano topological patterning and fluorination modification. The proposed method is expected to enrich the preparation technologies of superhydrophobic titanium surfaces.\u0000</p><h3>Graphic abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 3","pages":"967 - 975"},"PeriodicalIF":2.3,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-021-00576-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5007848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Preparation and characterization of hydrogen-containing silicone oil-modified polyurethane/Al composite coating with low-infrared emissivity 低红外发射率含氢硅油改性聚氨酯/铝复合涂层的制备与表征
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2022-01-20 DOI: 10.1007/s11998-021-00567-w
Weigang Zhang, Si Xiong, Dandan Lv

The goal of this research was to obtain a coating with low-infrared emissivity and both good hydrophobic and mechanical properties. Using nano-SiO2 as the micro-nano structural modifier, a hydrogen-containing silicone oil (HCSO)-modified polyurethane (PU)/Al composite coating with super-hydrophobicity and low-infrared emissivity was prepared via a simple glass rod scraping method. Effects of the ratio of HCSO to PU, the total filler addition, and the ratio of Al powder and nano-SiO2 on the coating properties are systematically discussed. The results show that as the ratio of HCSO to PU increases, the surface energy of the coating decreases, and this significantly increases the hydrophobicity of the coating. When the ratio is 2:8, the coating has outstanding hydrophobic properties, the adhesion strength of the coating reaches grade 1, and the water contact angle (WCA) reaches 152°. The total filler addition has a significant impact on the coating performance. With an increase in the filler addition, the emissivity of the coating increases, and the glossiness decreases. When the total filler addition is 50 wt%, the coating surface forms an obvious papillary micro-nano rough structure, so that the coating has outstanding hydrophobic properties. The ratio of Al powder to nano-SiO2 obviously affects the emissivity and hydrophobic properties of the coating. When the ratio is 5.5:4.5, the coating has good overall performance. At this point, the emissivity of the coating is as low as 0.675; the glossiness and adhesion strength are 2.7 and grade 1, respectively; the WCA and sliding angle are 155° and 8°, respectively; and it has outstanding self-cleaning performance. Through the research in this paper, a low-infrared emissivity coating with outstanding super-hydrophobic properties and adhesion strength has been obtained and has important application value in the design and transformation of infrared stealth of various equipment.

本研究的目的是获得一种具有低红外发射率,同时具有良好疏水性和机械性能的涂层。以纳米sio2为微纳结构改性剂,采用简单的玻璃棒刮削法制备了超疏水性、低红外发射率的含氢硅油(HCSO)改性聚氨酯(PU)/铝复合涂层。系统地讨论了HCSO与PU的配比、填料总添加量、Al粉与纳米sio2的配比对涂层性能的影响。结果表明,随着HCSO与PU配比的增加,涂层的表面能降低,涂层的疏水性显著提高。当比例为2:8时,涂层具有优异的疏水性,涂层的附着强度达到1级,水接触角(WCA)达到152°。填料总添加量对涂层性能有显著影响。随着填料添加量的增加,涂层的发射率增加,光泽度降低。当填料总添加量为50 wt%时,涂层表面形成明显的乳头状微纳粗糙结构,使涂层具有优异的疏水性。铝粉与纳米sio2的比例对涂层的发射率和疏水性有明显影响。当比例为5.5:4.5时,涂层具有良好的综合性能。此时涂层的发射率低至0.675;光泽度2.7,附着力1级;WCA为155°,滑动角为8°;具有优异的自清洁性能。通过本文的研究,获得了一种具有优异的超疏水性和粘附强度的低红外发射率涂层,在各种装备红外隐身的设计和改造中具有重要的应用价值。
{"title":"Preparation and characterization of hydrogen-containing silicone oil-modified polyurethane/Al composite coating with low-infrared emissivity","authors":"Weigang Zhang,&nbsp;Si Xiong,&nbsp;Dandan Lv","doi":"10.1007/s11998-021-00567-w","DOIUrl":"10.1007/s11998-021-00567-w","url":null,"abstract":"<div><p>The goal of this research was to obtain a coating with low-infrared emissivity and both good hydrophobic and mechanical properties. Using nano-SiO<sub>2</sub> as the micro-nano structural modifier, a hydrogen-containing silicone oil (HCSO)-modified polyurethane (PU)/Al composite coating with super-hydrophobicity and low-infrared emissivity was prepared via a simple glass rod scraping method. Effects of the ratio of HCSO to PU, the total filler addition, and the ratio of Al powder and nano-SiO<sub>2</sub> on the coating properties are systematically discussed. The results show that as the ratio of HCSO to PU increases, the surface energy of the coating decreases, and this significantly increases the hydrophobicity of the coating. When the ratio is 2:8, the coating has outstanding hydrophobic properties, the adhesion strength of the coating reaches grade 1, and the water contact angle (WCA) reaches 152°. The total filler addition has a significant impact on the coating performance. With an increase in the filler addition, the emissivity of the coating increases, and the glossiness decreases. When the total filler addition is 50 wt%, the coating surface forms an obvious papillary micro-nano rough structure, so that the coating has outstanding hydrophobic properties. The ratio of Al powder to nano-SiO<sub>2</sub> obviously affects the emissivity and hydrophobic properties of the coating. When the ratio is 5.5:4.5, the coating has good overall performance. At this point, the emissivity of the coating is as low as 0.675; the glossiness and adhesion strength are 2.7 and grade 1, respectively; the WCA and sliding angle are 155° and 8°, respectively; and it has outstanding self-cleaning performance. Through the research in this paper, a low-infrared emissivity coating with outstanding super-hydrophobic properties and adhesion strength has been obtained and has important application value in the design and transformation of infrared stealth of various equipment.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 3","pages":"897 - 905"},"PeriodicalIF":2.3,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-021-00567-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4789045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Advanced poly(aniline-aminosalicylic acid) nanofiber functionalized with modified GO environment friendly coatings on steel surfaces with water resistance and long-term active anticorrosion performance 具有改性 GO 环境友好涂层功能的先进聚(苯胺-氨基水杨酸)纳米纤维在钢铁表面的耐水性和长期活性防腐性能
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2022-01-20 DOI: 10.1007/s11998-021-00553-2
Meng Wang, Fengjuan Xiao, Longfei Kong, Guyu yin, Changbiao Ni, Xuefei Zhang, Cheng Qian, Lu Yan, Mengya Li, Jun Li, Kaixi Zhou

An advanced long-term active corrosion protection coating for carbon steel was proposed using poly(aniline-aminosalicylic acid) nanofiber (PACA-f) covalently linked with cetyltrimethyl ammonium bromide (CTAB)-modified graphene oxide (CTGO). The proton-doped PACA-f functionalized CTGO (PACA-f/CTGO) exhibits excellent hydrophobicity and outstanding water resistance in waterborne epoxy polymer (WEP) coatings and better compatibility with WEP due to the formation of organic–inorganic networks. PACA-f/CTGO composite coating has a self-repairing function and shows superior corrosion resistance on Q235 steel. The surface-corrosion inhibition of PACA-f/CTGO on steel was investigated by molecular dynamics simulation(MD) which confirmed the chemical adsorption of the PACA-f/CTGO on the steel surface. The excellent water resistance and anticorrosion property of PACA-f/CTGO are ascribed to the high hydrophobicity of the hybrid coatings, the formation of intelligent passivation layer after the corrosive medium invading, and the barrier performance of CTGO.

利用与十六烷基三甲基溴化铵(CTAB)改性氧化石墨烯(CTGO)共价连接的聚(苯胺-氨基水杨酸)纳米纤维(PACA-f),提出了一种先进的碳钢长期活性腐蚀防护涂层。质子掺杂的 PACA-f 功能化 CTGO(PACA-f/CTGO)在水性环氧聚合物(WEP)涂料中表现出优异的疏水性和出色的耐水性,并且由于形成了有机-无机网络,与 WEP 具有更好的兼容性。PACA-f/CTGO 复合涂料具有自修复功能,在 Q235 钢材上显示出卓越的耐腐蚀性。分子动力学模拟(MD)研究了 PACA-f/CTGO 对钢的表面缓蚀作用,证实了 PACA-f/CTGO 在钢表面的化学吸附作用。PACA-f/CTGO优异的耐水性和防腐性归因于杂化涂层的高疏水性、腐蚀介质侵入后形成的智能钝化层以及CTGO的阻隔性能。
{"title":"Advanced poly(aniline-aminosalicylic acid) nanofiber functionalized with modified GO environment friendly coatings on steel surfaces with water resistance and long-term active anticorrosion performance","authors":"Meng Wang,&nbsp;Fengjuan Xiao,&nbsp;Longfei Kong,&nbsp;Guyu yin,&nbsp;Changbiao Ni,&nbsp;Xuefei Zhang,&nbsp;Cheng Qian,&nbsp;Lu Yan,&nbsp;Mengya Li,&nbsp;Jun Li,&nbsp;Kaixi Zhou","doi":"10.1007/s11998-021-00553-2","DOIUrl":"10.1007/s11998-021-00553-2","url":null,"abstract":"<div><p>An advanced long-term active corrosion protection coating for carbon steel was proposed using poly(aniline-aminosalicylic acid) nanofiber (PACA-f) covalently linked with cetyltrimethyl ammonium bromide (CTAB)-modified graphene oxide (CTGO). The proton-doped PACA-f functionalized CTGO (PACA-f/CTGO) exhibits excellent hydrophobicity and outstanding water resistance in waterborne epoxy polymer (WEP) coatings and better compatibility with WEP due to the formation of organic–inorganic networks. PACA-f/CTGO composite coating has a self-repairing function and shows superior corrosion resistance on Q235 steel. The surface-corrosion inhibition of PACA-f/CTGO on steel was investigated by molecular dynamics simulation(MD) which confirmed the chemical adsorption of the PACA-f/CTGO on the steel surface. The excellent water resistance and anticorrosion property of PACA-f/CTGO are ascribed to the high hydrophobicity of the hybrid coatings, the formation of intelligent passivation layer after the corrosive medium invading, and the barrier performance of CTGO.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 2","pages":"625 - 642"},"PeriodicalIF":2.3,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4790637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on physical vapor deposition-based metallic coatings on steel as an alternative to conventional galvanized coatings 钢表面物理气相沉积金属涂层替代传统镀锌涂层的研究进展
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2022-01-19 DOI: 10.1007/s11998-021-00564-z
Atasi Dan, Pavan Kumar Bijalwan, Abhishek Subhas Pathak, Amar Nath Bhagat

An effective way to protect the steel surface from degradation is to develop a coating on top of the steel substrate. A wide variety of coating deposition processes are available to develop protective coatings on steel. To date, several processes like hot-dip galvanization (HDG), electrogalvanization (EG), and physical vapor deposition (PVD) have been investigated. Among them, the most commonly used methods are hot-dip galvanization and electrogalvanization. HDG is used extensively due to lower cost, shorter process time, the requirement of lesser maintenance, uniform protection, and ease of deposition at a larger scale. On the other hand, EG promises in providing advantages like versatility in the coating composition, good surface finish, uniformity in the coating, lower coating thickness, etc. Although both processes provide different advantages, there are always drawbacks limiting their applications. To overcome different limitations of conventional processes and for further advancement of protective coatings, PVD has received increased attention in recent years over hot dipping and electroplating. PVD process provides a more uniform deposit, higher accuracy, very low thickness, improved adhesion, a wider choice of materials, and no environmental pollution. In this paper, we review the scope and prospect of the PVD technique for the steel industry over HDG and EG. The paper focuses on different kinds of PVD techniques, their advantages, and disadvantages. An emphasis has been given to the recent development of Zn- and Al-based PVD coatings on steel substrates. The industrial competency of PVD in the steel industry has been discussed in this article. Challenges associated with the commercialization of the process and recommendations for further improvement have been discussed.

保护钢表面不被腐蚀的有效方法是在钢基体上涂覆一层涂层。有各种各样的涂层沉积工艺可用于开发钢的保护涂层。迄今为止,热浸镀锌(HDG)、电镀锌(EG)和物理气相沉积(PVD)等几种工艺已经得到了研究。其中,最常用的方法是热镀锌和电镀锌。HDG由于成本低、工艺时间短、维护要求少、保护均匀、易于大规模沉积而得到广泛应用。另一方面,EG承诺提供诸如涂料成分的多功能性,良好的表面光洁度,涂层均匀性,涂层厚度低等优点。尽管这两种工艺都有不同的优点,但总有一些缺点限制了它们的应用。近年来,为了克服传统工艺的各种局限性和进一步发展保护涂层,PVD在热浸镀和电镀方面受到越来越多的关注。PVD工艺提供了更均匀的沉积,更高的精度,非常低的厚度,改善附着力,更广泛的材料选择,并且没有环境污染。在本文中,我们回顾了PVD技术在钢铁工业中的应用范围和前景。本文重点介绍了各种PVD技术及其优缺点。重点介绍了锌基和铝基PVD涂层在钢基体上的最新进展。本文对PVD在钢铁行业的产业竞争力进行了探讨。讨论了与该工艺商业化有关的挑战和进一步改进的建议。
{"title":"A review on physical vapor deposition-based metallic coatings on steel as an alternative to conventional galvanized coatings","authors":"Atasi Dan,&nbsp;Pavan Kumar Bijalwan,&nbsp;Abhishek Subhas Pathak,&nbsp;Amar Nath Bhagat","doi":"10.1007/s11998-021-00564-z","DOIUrl":"10.1007/s11998-021-00564-z","url":null,"abstract":"<div><p>An effective way to protect the steel surface from degradation is to develop a coating on top of the steel substrate. A wide variety of coating deposition processes are available to develop protective coatings on steel. To date, several processes like hot-dip galvanization (HDG), electrogalvanization (EG), and physical vapor deposition (PVD) have been investigated. Among them, the most commonly used methods are hot-dip galvanization and electrogalvanization. HDG is used extensively due to lower cost, shorter process time, the requirement of lesser maintenance, uniform protection, and ease of deposition at a larger scale. On the other hand, EG promises in providing advantages like versatility in the coating composition, good surface finish, uniformity in the coating, lower coating thickness, etc. Although both processes provide different advantages, there are always drawbacks limiting their applications. To overcome different limitations of conventional processes and for further advancement of protective coatings, PVD has received increased attention in recent years over hot dipping and electroplating. PVD process provides a more uniform deposit, higher accuracy, very low thickness, improved adhesion, a wider choice of materials, and no environmental pollution. In this paper, we review the scope and prospect of the PVD technique for the steel industry over HDG and EG. The paper focuses on different kinds of PVD techniques, their advantages, and disadvantages. An emphasis has been given to the recent development of Zn- and Al-based PVD coatings on steel substrates. The industrial competency of PVD in the steel industry has been discussed in this article. Challenges associated with the commercialization of the process and recommendations for further improvement have been discussed.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 2","pages":"403 - 438"},"PeriodicalIF":2.3,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4750326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Improving fungal decay resistance of solvent and waterborne polyurethane-coated wood by free and microencapsulated thyme essential oil 游离百里香精油和微胶囊化百里香精油提高溶剂型和水性聚氨酯涂层木材的抗真菌性
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2022-01-19 DOI: 10.1007/s11998-021-00573-y
Seyed Mahmoud Miri Tari, Asghar Tarmian, Mohammad Azadfallah

Free and microencapsulated thyme essential oils (Zataria multiflora Boiss) were incorporated into solvent and waterborne polyurethane coatings separately to enhance decay resistance of the biocide free coatings. The essential oil was extracted by hydro-distillation in a Clevenger-type apparatus for 4?h. Poly (methyl methacrylate) (PMMA) microcapsules containing thyme oil as an active ingredient were prepared through solvent evaporation method with oil in water emulsion system. Fungal resistance of the coated hornbeam wood (Carpinus?betulus) against white rot fungus Coriolus versicolor CTB 863 A and brown rot fungus Coniophora?puteana BAM Ebw. 15 was tested according to European EN?113 standard before and after six-cycle accelerated aging test (ASTM D1037). The results revealed that the core-shell capsules were formed properly, and their sizes were in the range of 5–50?μ. The encapsulation efficiency determined by UV–visible spectrophotometer at λ?=?275 nm was 67%. The free essential oil was not efficient enough to improve the fungal resistance, while the microencapsulated oil enhanced the resistance even after the accelerated aging via a controlled-release mechanism as well as protected the susceptible ingredients through the shielding effect of the polymeric shell.

将游离百里香精油和微胶囊百里香精油分别加入到溶剂型和水性聚氨酯涂料中,以提高无杀菌剂涂料的耐腐性。在clevenger型装置中,用水蒸气蒸馏法提取精油4h。以百里香油为有效成分,采用油-水乳液体系溶剂蒸发法制备了以百里香油为有效成分的聚甲基丙烯酸甲酯(PMMA)微胶囊。漆包木对白腐菌CTB 863a和褐腐菌Coniophora?puteana BAM Ebw. 15按照欧洲EN?113标准前后六循环加速老化试验(ASTM D1037)。结果表明:所制备的核-壳胶囊结构合理,粒径在5 ~ 50 μ之间;紫外可见分光光度计在λ?=?275 nm为67%。游离精油对真菌抗性的提高效果不足,而微胶囊化精油在加速老化后仍能通过控释机制增强真菌抗性,并通过聚合物外壳的屏蔽作用保护敏感成分。
{"title":"Improving fungal decay resistance of solvent and waterborne polyurethane-coated wood by free and microencapsulated thyme essential oil","authors":"Seyed Mahmoud Miri Tari,&nbsp;Asghar Tarmian,&nbsp;Mohammad Azadfallah","doi":"10.1007/s11998-021-00573-y","DOIUrl":"10.1007/s11998-021-00573-y","url":null,"abstract":"<div><p>Free and microencapsulated thyme essential oils (<i>Zataria multiflora Boiss</i>) were incorporated into solvent and waterborne polyurethane coatings separately to enhance decay resistance of the biocide free coatings. The essential oil was extracted by hydro-distillation in a Clevenger-type apparatus for 4?h. Poly (methyl methacrylate) (PMMA) microcapsules containing thyme oil as an active ingredient were prepared through solvent evaporation method with oil in water emulsion system. Fungal resistance of the coated hornbeam wood (<i>Carpinus?betulus</i>) against white rot fungus <i>Coriolus versicolor</i> CTB 863 A and brown rot fungus <i>Coniophora?puteana</i> BAM Ebw. 15 was tested according to European EN?113 standard before and after six-cycle accelerated aging test (ASTM D1037). The results revealed that the core-shell capsules were formed properly, and their sizes were in the range of 5–50?μ. The encapsulation efficiency determined by UV–visible spectrophotometer at <i>λ</i>?=?275 nm was 67%. The free essential oil was not efficient enough to improve the fungal resistance, while the microencapsulated oil enhanced the resistance even after the accelerated aging via a controlled-release mechanism as well as protected the susceptible ingredients through the shielding effect of the polymeric shell.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 3","pages":"959 - 966"},"PeriodicalIF":2.3,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4750319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Antibacterial noncytotoxic chitosan coatings on polytetrafluoroethylene films by plasma grafting for medical device applications 等离子接枝在聚四氟乙烯薄膜上制备抗菌无毒壳聚糖涂层,用于医疗器械
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2022-01-08 DOI: 10.1007/s11998-021-00560-3
Juliana M. Vaz, Thiago B. Taketa, Jacobo Hernandez-Montelongo, Larissa M. C. G. Fiúza, Cristiano Rodrigues, Marisa M. Beppu, Rodrigo S. Vieira

Chitosan is an exciting alternative for the development of coating-surfaces due to its large action spectrum against pathogenic microorganisms. However, to produce a stable coating with effective antibacterial action, a compromise between deacetylation degree (DD) and molecular weight (MW) is essential. Four chitosan samples were characterized regarding Mw and DD and correlated with the minimum and bactericide concentrations against E. coli, P. aeruginosa, and S. aureus. CHI80MW (79.7% DD and 7.0 × 105 Da) showed the best antibacterial effect and was selected to functionalize polytetrafluoroethylene (PTFE) surfaces by plasma. CHI80MW was grafted onto the PTFE surfaces using two different spacer molecules: poly(ethylene glycol) bis (carboxymethyl) ether (PEG) and poly(ethylene-alt-maleic anhydride) (PA). PTFE-Plasma-PA-CHI80MW exhibited a coating with more attached chitosan and better antibacterial action if compared to PTFE-Plasma-PEG-CHI80MW: after 8 h, PTFE-Plasma-PEG-CHI80MW presented a bacterial reduction of 25-30% for the three bacterial strains, and PTFE-Plasma-PA-CHI80MW reduced them to 77-90%. Moreover, cytotoxicity tests showed that PTFE-Plasma-PA-CHI80MW samples were compatible with human fibroblasts.

由于壳聚糖对病原微生物的作用谱大,它是发展涂层表面的一个令人兴奋的选择。然而,为了制备出具有有效抗菌作用的稳定涂层,脱乙酰度(DD)和分子量(MW)之间的折衷是必不可少的。对4种壳聚糖样品进行了分子量和DD的表征,并与对大肠杆菌、铜绿假单胞菌和金黄色葡萄球菌的最低抑菌浓度和抑菌浓度相关。CHI80MW (79.7% DD和7.0 × 105 Da)的抗菌效果最好,并被选择用于等离子体功能化聚四氟乙烯(PTFE)表面。CHI80MW用两种不同的间隔分子:聚乙二醇双羧甲基醚(PEG)和聚乙烯-马来酸酐(PA)接枝到聚四氟乙烯表面。与PTFE-Plasma-PA-CHI80MW相比,PTFE-Plasma-PA-CHI80MW涂层具有更多的壳聚糖和更好的抗菌作用:8 h后,PTFE-Plasma-PEG-CHI80MW对三种细菌的细菌数量减少了25-30%,而PTFE-Plasma-PA-CHI80MW则减少了77-90%。此外,细胞毒性试验表明,PTFE-Plasma-PA-CHI80MW样品与人成纤维细胞相容。
{"title":"Antibacterial noncytotoxic chitosan coatings on polytetrafluoroethylene films by plasma grafting for medical device applications","authors":"Juliana M. Vaz,&nbsp;Thiago B. Taketa,&nbsp;Jacobo Hernandez-Montelongo,&nbsp;Larissa M. C. G. Fiúza,&nbsp;Cristiano Rodrigues,&nbsp;Marisa M. Beppu,&nbsp;Rodrigo S. Vieira","doi":"10.1007/s11998-021-00560-3","DOIUrl":"10.1007/s11998-021-00560-3","url":null,"abstract":"<div><p>Chitosan is an exciting alternative for the development of coating-surfaces due to its large action spectrum against pathogenic microorganisms. However, to produce a stable coating with effective antibacterial action, a compromise between deacetylation degree (DD) and molecular weight (MW) is essential. Four chitosan samples were characterized regarding Mw and DD and correlated with the minimum and bactericide concentrations against <i>E. coli</i>, <i>P. aeruginosa,</i> and <i>S. aureus</i>. CHI80MW (79.7% DD and 7.0 × 10<sup>5</sup> Da) showed the best antibacterial effect and was selected to functionalize polytetrafluoroethylene (PTFE) surfaces by plasma. CHI80MW was grafted onto the PTFE surfaces using two different spacer molecules: poly(ethylene glycol) bis (carboxymethyl) ether (PEG) and poly(ethylene-alt-maleic anhydride) (PA). PTFE-Plasma-PA-CHI80MW exhibited a coating with more attached chitosan and better antibacterial action if compared to PTFE-Plasma-PEG-CHI80MW: after 8 h, PTFE-Plasma-PEG-CHI80MW presented a bacterial reduction of 25-30% for the three bacterial strains, and PTFE-Plasma-PA-CHI80MW reduced them to 77-90%. Moreover, cytotoxicity tests showed that PTFE-Plasma-PA-CHI80MW samples were compatible with human fibroblasts.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 3","pages":"829 - 838"},"PeriodicalIF":2.3,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4339129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Flow stabilization and coating thickness reduction through use of multi-slot air-knife in gas jet wiping 采用多槽气刀进行气体喷射擦拭,可稳定流动,减少涂层厚度
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2022-01-03 DOI: 10.1007/s11998-021-00570-1
A. Yahyaee Soufiani, J. R. McDermid, A. N. Hrymak, F. E. Goodwin

This paper investigates the gas jet wiping process, which is widely employed for controlling the final zinc-alloy coating thickness of a moving steel strip in the continuous hot-dip galvanizing process. In this study, large eddy simulation (LES) was employed to determine the effect of lower velocity symmetric auxiliary jets on main jet stabilization and coating thickness reduction during the gas jet wiping process. For validation purposes, experimental measurements of coating thickness were also carried out for the prediction of final coating thickness via a novel prototype multi-slot air knife used as the wiping actuator. Good agreement was found between the experimental measurements and model predictions for the coating weight, which also confirmed the applicability of the Elsaadawy et al.1 model for the prediction of final coating weight for the multi-slot air knife geometry used. It was found that the jet flapping observed during single jet wiping could be prevented through use of the multi-slot air knife operating with lower velocity symmetric auxiliary jets (Rea/Rem =  0.45) situated on both sides of the main jet. The auxiliary jets modified the flow field in the main jet shear layer and diminished the formation of alternating vortices, which are the main cause of jet flow oscillations. As a result, a stabilized impinging flow with a longer potential core was found for the multi-slot jet configuration. This led to increased pressure gradient and increased shear stresses in the vicinity of the wiping region and, consequently, lower coating weights were obtained through use of the multi-slot air knife compared to the conventional single slot jet.

本文研究了在连续热镀锌过程中广泛应用于运动钢带最终锌合金镀层厚度控制的气体喷射擦拭工艺。本研究采用大涡模拟(large eddy simulation, LES)研究了低速对称辅助射流对气体射流擦拭过程中主射流稳定和涂层厚度减小的影响。为了验证涂层厚度,还通过一种新型多槽气刀原型作为擦拭驱动器进行了涂层厚度的实验测量,以预测最终涂层厚度。在涂层重量的实验测量和模型预测之间发现了良好的一致性,这也证实了Elsaadawy等人1模型对于所使用的多槽气刀几何形状的最终涂层重量预测的适用性。结果表明,采用位于主射流两侧的低速对称副射流(Rea/Rem = 0.45)的多槽气刀可以防止单射流擦拭过程中所观察到的射流扑动。辅助射流改变了主射流剪切层内的流场,减少了交替涡的形成,而交替涡是引起射流振荡的主要原因。结果表明,在多槽射流结构下,得到了一个稳定的、具有较长位芯的冲击流。这导致擦拭区域附近的压力梯度增大,剪切应力增大,因此,与传统的单槽射流相比,使用多槽气刀可以获得更低的涂层重量。
{"title":"Flow stabilization and coating thickness reduction through use of multi-slot air-knife in gas jet wiping","authors":"A. Yahyaee Soufiani,&nbsp;J. R. McDermid,&nbsp;A. N. Hrymak,&nbsp;F. E. Goodwin","doi":"10.1007/s11998-021-00570-1","DOIUrl":"10.1007/s11998-021-00570-1","url":null,"abstract":"<div><p>This paper investigates the gas jet wiping process, which is widely employed for controlling the final zinc-alloy coating thickness of a moving steel strip in the continuous hot-dip galvanizing process. In this study, large eddy simulation (LES) was employed to determine the effect of lower velocity symmetric auxiliary jets on main jet stabilization and coating thickness reduction during the gas jet wiping process. For validation purposes, experimental measurements of coating thickness were also carried out for the prediction of final coating thickness via a novel prototype multi-slot air knife used as the wiping actuator. Good agreement was found between the experimental measurements and model predictions for the coating weight, which also confirmed the applicability of the Elsaadawy et al.<sup>1</sup> model for the prediction of final coating weight for the multi-slot air knife geometry used. It was found that the jet flapping observed during single jet wiping could be prevented through use of the multi-slot air knife operating with lower velocity symmetric auxiliary jets (Re<sub>a</sub>/Re<sub>m</sub> =  0.45) situated on both sides of the main jet. The auxiliary jets modified the flow field in the main jet shear layer and diminished the formation of alternating vortices, which are the main cause of jet flow oscillations. As a result, a stabilized impinging flow with a longer potential core was found for the multi-slot jet configuration. This led to increased pressure gradient and increased shear stresses in the vicinity of the wiping region and, consequently, lower coating weights were obtained through use of the multi-slot air knife compared to the conventional single slot jet.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 1","pages":"143 - 158"},"PeriodicalIF":2.3,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4121635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based automated characterization of crosscut tests for coatings via image segmentation 基于深度学习的涂层横切测试图像分割自动表征
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2021-12-17 DOI: 10.1007/s11998-021-00557-y
Gaoyuan Zhang, Christian Schmitz, Matthias Fimmers, Christoph Quix, Sayed Hoseini

A manual scratch test to measure the scratch resistance of coatings applied to a certain substrate is usually used to test the adhesion of a coating. Despite its significant amount of subjectivity, the crosscut test is widely considered to be the most practical measuring method for adhesion strength with a good reliability. Intelligent software tools help to improve and optimize systems combining chemistry, engineering based on high-throughput formulation screening (HTFS) technologies and machine learning algorithms to open up novel solutions in material sciences. Nevertheless, automated testing often misses the link to quality control by the human eye that is sensitive in spotting and evaluating defects as it is the case in the crosscut test. In this paper, we present a method for the automated and objective characterization of coatings to drive and support Chemistry 4.0 solutions via semantic image segmentation using deep convolutional networks. The algorithm evaluated the adhesion strength based on the images of the crosscuts recognizing the delaminated area and the results were compared with the traditional classification rated by the human expert.

通常使用人工划伤试验来测量涂在某一基材上的涂层的抗划伤性,以测试涂层的附着力。尽管横切试验具有很大的主观性,但它被广泛认为是最实用的粘着强度测量方法,具有良好的可靠性。智能软件工具有助于改进和优化系统,将化学、基于高通量配方筛选(HTFS)技术的工程和机器学习算法相结合,为材料科学开辟新的解决方案。尽管如此,自动化测试经常忽略了通过人眼进行的质量控制,人眼在发现和评估缺陷方面是敏感的,就像横切测试中的情况一样。在本文中,我们提出了一种自动化和客观表征涂层的方法,通过使用深度卷积网络的语义图像分割来驱动和支持化学4.0解决方案。该算法基于识别分层区域的横切图像评估附着强度,并将结果与人类专家评定的传统分类结果进行比较。
{"title":"Deep learning-based automated characterization of crosscut tests for coatings via image segmentation","authors":"Gaoyuan Zhang,&nbsp;Christian Schmitz,&nbsp;Matthias Fimmers,&nbsp;Christoph Quix,&nbsp;Sayed Hoseini","doi":"10.1007/s11998-021-00557-y","DOIUrl":"10.1007/s11998-021-00557-y","url":null,"abstract":"<div><p>A manual scratch test to measure the scratch resistance of coatings applied to a certain substrate is usually used to test the adhesion of a coating. Despite its significant amount of subjectivity, the crosscut test is widely considered to be the most practical measuring method for adhesion strength with a good reliability. Intelligent software tools help to improve and optimize systems combining chemistry, engineering based on high-throughput formulation screening (HTFS) technologies and machine learning algorithms to open up novel solutions in material sciences. Nevertheless, automated testing often misses the link to quality control by the human eye that is sensitive in spotting and evaluating defects as it is the case in the crosscut test. In this paper, we present a method for the automated and objective characterization of coatings to drive and support Chemistry 4.0 solutions via semantic image segmentation using deep convolutional networks. The algorithm evaluated the adhesion strength based on the images of the crosscuts recognizing the delaminated area and the results were compared with the traditional classification rated by the human expert.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 2","pages":"671 - 683"},"PeriodicalIF":2.3,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-021-00557-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4675669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies 缓蚀剂的种类、机理和电化学评价研究综述
IF 2.3 4区 材料科学 Q2 Chemistry Pub Date : 2021-11-29 DOI: 10.1007/s11998-021-00547-0
I. A. Wonnie Ma, Sh. Ammar, Sachin S. A. Kumar, K. Ramesh, S. Ramesh

This article presents a concise review of different types of inhibitors for corrosion protection on metal surfaces. Corrosion inhibitors can be of different types, which include organic, inorganic and hybrid (organic/inorganic) materials. They are also classified as cathodic, anodic and/or mixed-type inhibitors, which are based on the active inhibitor molecules that retard the corrosion process. Silicate, nitrites, molybdates, phosphates, zinc salt and cerium salt are widely used as inorganic inhibitors. Many organic compounds have been widely utilized as inhibitors. Corrosion protection will be obtained by various mechanisms such as physisorption, chemisorption, barrier protection, thin-film formation and electrochemical processes. The type of inhibitors, inhibition mechanism and the evaluation methods have been explained in detail.

本文简要介绍了不同类型的金属表面防腐蚀抑制剂。缓蚀剂可以有不同的类型,包括有机、无机和混合(有机/无机)材料。它们也被分为阴极型、阳极型和/或混合型缓蚀剂,这是基于活性缓蚀剂分子,可以延缓腐蚀过程。硅酸盐、亚硝酸盐、钼酸盐、磷酸盐、锌盐和铈盐被广泛用作无机抑制剂。许多有机化合物已被广泛用作抑制剂。通过物理吸附、化学吸附、屏障保护、薄膜形成和电化学过程等多种机制来获得腐蚀保护。详细介绍了抑制剂的种类、抑制机理和评价方法。
{"title":"A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies","authors":"I. A. Wonnie Ma,&nbsp;Sh. Ammar,&nbsp;Sachin S. A. Kumar,&nbsp;K. Ramesh,&nbsp;S. Ramesh","doi":"10.1007/s11998-021-00547-0","DOIUrl":"10.1007/s11998-021-00547-0","url":null,"abstract":"<div><p>This article presents a concise review of different types of inhibitors for corrosion protection on metal surfaces. Corrosion inhibitors can be of different types, which include organic, inorganic and hybrid (organic/inorganic) materials. They are also classified as cathodic, anodic and/or mixed-type inhibitors, which are based on the active inhibitor molecules that retard the corrosion process. Silicate, nitrites, molybdates, phosphates, zinc salt and cerium salt are widely used as inorganic inhibitors. Many organic compounds have been widely utilized as inhibitors. Corrosion protection will be obtained by various mechanisms such as physisorption, chemisorption, barrier protection, thin-film formation and electrochemical processes. The type of inhibitors, inhibition mechanism and the evaluation methods have been explained in detail.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":"19 1","pages":"241 - 268"},"PeriodicalIF":2.3,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5126934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
期刊
Journal of Coatings Technology and Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1