首页 > 最新文献

International Journal for Uncertainty Quantification最新文献

英文 中文
ISOGEOMETRIC METHODS FOR KARHUNEN-LOEVE REPRESENTATION OF RANDOM FIELDS ON ARBITRARY MULTIPATCH DOMAINS 任意多斑域上随机场karhunen-loeve表示的等几何方法
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/int.j.uncertaintyquantification.2020035185
Ramin Jahanbin, S. Rahman
{"title":"ISOGEOMETRIC METHODS FOR KARHUNEN-LOEVE REPRESENTATION OF RANDOM FIELDS ON ARBITRARY MULTIPATCH DOMAINS","authors":"Ramin Jahanbin, S. Rahman","doi":"10.1615/int.j.uncertaintyquantification.2020035185","DOIUrl":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020035185","url":null,"abstract":"","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
GOAL-ORIENTED MODEL ADAPTIVITY IN STOCHASTIC ELASTODYNAMICS: SIMULTANEOUS CONTROL OF DISCRETIZATION, SURROGATE MODEL AND SAMPLING ERRORS 随机弹性动力学中目标导向模型的自适应:离散化、代理模型和抽样误差的同时控制
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/int.j.uncertaintyquantification.2020031735
Pedro Bonilla-Villalba, S. Claus, A. Kundu, P. Kerfriden
The presented adaptive modelling approach aims to jointly control the level of renement for each of the building-blocks employed in a typical chain of nite element approximations for stochastically parametrized systems, namely: (i) nite error approximation of the spatial elds (ii) surrogate modelling to interpolate quantities of interest(s) in the parameter domain and (iii) Monte-Carlo sampling of associated probability distribution(s). The control strategy seeks accurate calculation of any statistical measure of the distributions at minimum cost, given an acceptable margin of error as only tunable parameter. At each stage of the greedy-based algorithm for spatial discretisation, the mesh is selectively rened in the subdomains with highest contribution to the error in the desired measure. The strictly incremental complexity of the surrogate model is controlled by enforcing preponderant discretisation error integrated across the parameter domain. Finally, the number of Monte-Carlo samples is chosen such that either (a) the overall precision of the chain of approximations can be ascertained with sucient condence, or (b) the fact that the computational model requires further mesh renement is statistically established. The eciency of the proposed approach is discussed for a frequency-domain vibration structural dynamics problem with forward uncertainty propagation. Results show that locally adapted nite element solutions converge faster than those obtained using uniformly rened grids.
所提出的自适应建模方法旨在共同控制随机参数化系统的典型尼元近似链中使用的每个构建块的更新水平,即:(i)空间域的尼元误差近似(ii)在参数域中插值感兴趣的量的代理建模(iii)相关概率分布的蒙特卡罗采样(s)。控制策略寻求以最小代价精确计算分布的任何统计度量,给定可接受的误差范围作为唯一可调参数。在基于贪婪的空间离散化算法的每个阶段,网格被选择性地重新划分到对期望测量误差贡献最大的子域中。代理模型的严格增量的复杂性是通过强制优势离散误差集成跨参数域控制。最后,选择蒙特卡罗样本的数量,以便(a)近似链的整体精度可以以快速的置信度确定,或者(b)计算模型需要进一步网格修改的事实在统计上确定。讨论了该方法对具有前向不确定性传播的频域振动结构动力学问题的有效性。结果表明,局部自适应有限元解的收敛速度要快于均匀网格解的收敛速度。
{"title":"GOAL-ORIENTED MODEL ADAPTIVITY IN STOCHASTIC ELASTODYNAMICS: SIMULTANEOUS CONTROL OF DISCRETIZATION, SURROGATE MODEL AND SAMPLING ERRORS","authors":"Pedro Bonilla-Villalba, S. Claus, A. Kundu, P. Kerfriden","doi":"10.1615/int.j.uncertaintyquantification.2020031735","DOIUrl":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020031735","url":null,"abstract":"The presented adaptive modelling approach aims to jointly control the level of renement for each of the building-blocks employed in a typical chain of nite element approximations for stochastically parametrized systems, namely: (i) nite error approximation of the spatial elds (ii) surrogate modelling to interpolate quantities of interest(s) in the parameter domain and (iii) Monte-Carlo sampling of associated probability distribution(s). The control strategy seeks accurate calculation of any statistical measure of the distributions at minimum cost, given an acceptable margin of error as only tunable parameter. At each stage of the greedy-based algorithm for spatial discretisation, the mesh is selectively rened in the subdomains with highest contribution to the error in the desired measure. The strictly incremental complexity of the surrogate model is controlled by enforcing preponderant discretisation error integrated across the parameter domain. Finally, the number of Monte-Carlo samples is chosen such that either (a) the overall precision of the chain of approximations can be ascertained with sucient condence, or (b) the fact that the computational model requires further mesh renement is statistically established. The eciency of the proposed approach is discussed for a frequency-domain vibration structural dynamics problem with forward uncertainty propagation. Results show that locally adapted nite element solutions converge faster than those obtained using uniformly rened grids.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UNCERTAINTY QUANTIFICATION OF DETONATION THROUGH ADAPTED POLYNOMIAL CHAOS 用自适应多项式混沌定量爆轰的不确定度
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/int.j.uncertaintyquantification.2020030630
Xiao Liang, Ruili Wang, R. Ghanem
{"title":"UNCERTAINTY QUANTIFICATION OF DETONATION THROUGH ADAPTED POLYNOMIAL CHAOS","authors":"Xiao Liang, Ruili Wang, R. Ghanem","doi":"10.1615/int.j.uncertaintyquantification.2020030630","DOIUrl":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020030630","url":null,"abstract":"","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"10 1","pages":"83-100"},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
SENSITIVITY ANALYSIS FOR STOCHASTIC SIMULATORS USING DIFFERENTIAL ENTROPY 基于微分熵的随机模拟器灵敏度分析
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/int.j.uncertaintyquantification.2020031610
S. Azzi, B. Sudret, J. Wiart
{"title":"SENSITIVITY ANALYSIS FOR STOCHASTIC SIMULATORS USING DIFFERENTIAL ENTROPY","authors":"S. Azzi, B. Sudret, J. Wiart","doi":"10.1615/int.j.uncertaintyquantification.2020031610","DOIUrl":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020031610","url":null,"abstract":"","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"10 1","pages":"25-33"},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
MULTIFIDELITY MODELING OF IRRADIATED PARTICLE-LADEN TURBULENCE SUBJECT TO UNCERTAINTY 受不确定辐射粒子负载湍流的多保真度建模
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/int.j.uncertaintyquantification.2020032236
L. Jofre, Manolis Papadakis, P. Roy, A. Aiken, G. Iaccarino
{"title":"MULTIFIDELITY MODELING OF IRRADIATED PARTICLE-LADEN TURBULENCE SUBJECT TO UNCERTAINTY","authors":"L. Jofre, Manolis Papadakis, P. Roy, A. Aiken, G. Iaccarino","doi":"10.1615/int.j.uncertaintyquantification.2020032236","DOIUrl":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020032236","url":null,"abstract":"","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"10 1","pages":"499-514"},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
MULTILEVEL MONTE CARLO SAMPLING ON HETEROGENEOUS COMPUTER ARCHITECTURES 异构计算机体系结构上的多级蒙特卡罗采样
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/int.j.uncertaintyquantification.2020033179
C. Adcock, Y. Ye, L. Jofre, G. Iaccarino
{"title":"MULTILEVEL MONTE CARLO SAMPLING ON HETEROGENEOUS COMPUTER ARCHITECTURES","authors":"C. Adcock, Y. Ye, L. Jofre, G. Iaccarino","doi":"10.1615/int.j.uncertaintyquantification.2020033179","DOIUrl":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020033179","url":null,"abstract":"","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
DATA-DRIVEN CALIBRATION OF P3D HYDRAULIC FRACTURING MODELS 数据驱动的p3d水力压裂模型标定
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/int.j.uncertaintyquantification.2020033602
S. Zio, F. Rochinha
{"title":"DATA-DRIVEN CALIBRATION OF P3D HYDRAULIC FRACTURING MODELS","authors":"S. Zio, F. Rochinha","doi":"10.1615/int.j.uncertaintyquantification.2020033602","DOIUrl":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020033602","url":null,"abstract":"","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"10 1","pages":"375-398"},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
ON THE MULTILEVEL MONTE CARLO ESTIMATION OF UNBIASED EXPECTATION VIA SEQUENCE EXTRAPOLATION 用序列外推法研究无偏期望的多水平蒙特卡罗估计
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/int.j.uncertaintyquantification.2020032985
T. Barth
{"title":"ON THE MULTILEVEL MONTE CARLO ESTIMATION OF UNBIASED EXPECTATION VIA SEQUENCE EXTRAPOLATION","authors":"T. Barth","doi":"10.1615/int.j.uncertaintyquantification.2020032985","DOIUrl":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020032985","url":null,"abstract":"","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DATA-CONSISTENT SOLUTIONS TO STOCHASTIC INVERSE PROBLEMS USING A PROBABILISTIC MULTI-FIDELITY METHOD BASED ON CONDITIONAL DENSITIES 基于条件密度的概率多保真度方法的随机逆问题数据一致解
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2020030092
L. Bruder, M. W. Gee, T. Wildey
{"title":"DATA-CONSISTENT SOLUTIONS TO STOCHASTIC INVERSE PROBLEMS USING A PROBABILISTIC MULTI-FIDELITY METHOD BASED ON CONDITIONAL DENSITIES","authors":"L. Bruder, M. W. Gee, T. Wildey","doi":"10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2020030092","DOIUrl":"https://doi.org/10.1615/INT.J.UNCERTAINTYQUANTIFICATION.2020030092","url":null,"abstract":"","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"10 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MODEL CALIBRATION FOR DETONATION PRODUCTS: A PHYSICS-INFORMED, TIME-DEPENDENT SURROGATE METHOD BASED ON MACHINE LEARNING 爆炸产品的模型校准:基于机器学习的物理信息,时间依赖的替代方法
IF 1.7 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Pub Date : 2020-01-01 DOI: 10.1615/int.j.uncertaintyquantification.2020032977
Juan Zhang, J. Yin, Ruili Wang, J. Chen
{"title":"MODEL CALIBRATION FOR DETONATION PRODUCTS: A PHYSICS-INFORMED, TIME-DEPENDENT SURROGATE METHOD BASED ON MACHINE LEARNING","authors":"Juan Zhang, J. Yin, Ruili Wang, J. Chen","doi":"10.1615/int.j.uncertaintyquantification.2020032977","DOIUrl":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020032977","url":null,"abstract":"","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"10 1","pages":"277-296"},"PeriodicalIF":1.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67530543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal for Uncertainty Quantification
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1