Wei Li, Cheng Fang, Zhihao Zhu, Chuyi Chen, Aiguo Song
The issue of electrocardiogram (ECG)-based person identification has attracted intense research interests nowadays. Different than existing related researches that advocate accentuating useful information and attenuating noisy artefacts in sensor data processing, A novel strategy of ‘turning waste into wealth’ is proposed to exploit the new discriminative information from the relationship between noise disturbance and signal data for this issue. Specifically, the authors design a new and simple method, the Set-Group Distance Measure, based on the suitable fusion of multiple minority-based distance measurements, whose power has initially been discovered for the issue. This method takes advantage of the collaborative variation information from the relative relationship, which is named as ‘relative information’, between different types of emotional noise disturbances and ECG signal data, to tackle the problem of large intra-class variation but small inter-class difference during identification. Experimental results have demonstrated the reasonability, effectiveness, robustness, efficiency and practicability of the proposed method upon public benchmark databases. This proposal not only provides technological inspirations for the further study in ECG-based person identification, but also shows a fresh feasible way to handle the noise-signal relationship for more general topics of sensor data classification.
{"title":"Turning waste into wealth: Person identification by emotion-disturbed electrocardiogram","authors":"Wei Li, Cheng Fang, Zhihao Zhu, Chuyi Chen, Aiguo Song","doi":"10.1049/bme2.12112","DOIUrl":"https://doi.org/10.1049/bme2.12112","url":null,"abstract":"<p>The issue of electrocardiogram (ECG)-based person identification has attracted intense research interests nowadays. Different than existing related researches that advocate accentuating useful information and attenuating noisy artefacts in sensor data processing, A novel strategy of ‘turning waste into wealth’ is proposed to exploit the new discriminative information from the relationship between noise disturbance and signal data for this issue. Specifically, the authors design a new and simple method, the Set-Group Distance Measure, based on the suitable fusion of multiple minority-based distance measurements, whose power has initially been discovered for the issue. This method takes advantage of the collaborative variation information from the relative relationship, which is named as ‘relative information’, between different types of emotional noise disturbances and ECG signal data, to tackle the problem of large intra-class variation but small inter-class difference during identification. Experimental results have demonstrated the reasonability, effectiveness, robustness, efficiency and practicability of the proposed method upon public benchmark databases. This proposal not only provides technological inspirations for the further study in ECG-based person identification, but also shows a fresh feasible way to handle the noise-signal relationship for more general topics of sensor data classification.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 3","pages":"159-175"},"PeriodicalIF":2.0,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50145969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the prevalence of Traditional Chinese Medicine (TCM), automation techniques are highly required to support the therapy and save human resources. As the fundamental of the TCM treatment, acupoint detection is attracting research attention in both academic and industrial domains, while current approaches suffer from poor accuracy even with sparse acupoints or require extra equipment. In this study, considering the decision-making knowledge of human experts, an image-based deep learning approach is proposed to detect facial acupoints by localising the centre of acupoints. In the proposed approach, high-resolution networks are selected as the backbone to learn informative facial features with different resolution paths. To fuse the learnt features from the high-resolution network, a resolution, channel, and spatial attention-based fusion module is innovatively proposed to imitate human decision, that is, focusing on the facial features to detect required acupoints. Finally, the heatmap is designed to integrally achieve the acupoint classification and position localisation in a single step. A small-scale real-world dataset is constructed and annotated to evaluate the proposed approach based on the authorised face dataset. The experimental results demonstrate the proposed approach outperforms other baseline models, achieving a 2.4228% normalised mean error. Most importantly, the effectiveness and efficiency of the proposed technical improvements are also confirmed by extensive experiments. The authors believe that the proposed approach can achieve acupoint detection with considerable high performance, and further support TCM automation.
{"title":"An image-based facial acupoint detection approach using high-resolution network and attention fusion","authors":"Tingting Zhang, Hongyu Yang, Wenyi Ge, Yi Lin","doi":"10.1049/bme2.12113","DOIUrl":"https://doi.org/10.1049/bme2.12113","url":null,"abstract":"<p>With the prevalence of Traditional Chinese Medicine (TCM), automation techniques are highly required to support the therapy and save human resources. As the fundamental of the TCM treatment, acupoint detection is attracting research attention in both academic and industrial domains, while current approaches suffer from poor accuracy even with sparse acupoints or require extra equipment. In this study, considering the decision-making knowledge of human experts, an image-based deep learning approach is proposed to detect facial acupoints by localising the centre of acupoints. In the proposed approach, high-resolution networks are selected as the backbone to learn informative facial features with different resolution paths. To fuse the learnt features from the high-resolution network, a resolution, channel, and spatial attention-based fusion module is innovatively proposed to imitate human decision, that is, focusing on the facial features to detect required acupoints. Finally, the heatmap is designed to integrally achieve the acupoint classification and position localisation in a single step. A small-scale real-world dataset is constructed and annotated to evaluate the proposed approach based on the authorised face dataset. The experimental results demonstrate the proposed approach outperforms other baseline models, achieving a 2.4228% normalised mean error. Most importantly, the effectiveness and efficiency of the proposed technical improvements are also confirmed by extensive experiments. The authors believe that the proposed approach can achieve acupoint detection with considerable high performance, and further support TCM automation.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 3","pages":"146-158"},"PeriodicalIF":2.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50151457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordan Ortega-Rodríguez, Kevin Martín-Chinea, José Francisco Gómez-González, Ernesto Pereda
Brain-computer interface applications for biometric person identification have increased their interest in recent years since they are potentially more secure and more difficult to counterfeit than traditional biometric techniques. However, it is necessary to consider how brain waves are acquired for this purpose, not only in terms of efficiency but also of practical comfort for the user and the affordability degree of the biosignal acquisition device so that their everyday application can become a realistic possibility. In this context, this paper presents the capabilities of using a non-expensive wireless electroencephalogram (EEG) device to extract spectral-related and functional connectivity information of brain activity. The proposed method achieved a sufficient biometric identification with two datasets of 13 and 109 subjects when comparing the performance of a sizeable classification algorithm set. In addition, a novel feature in EEG biometric identification, called asymmetry index, is introduced here. Furthermore, this is the first study in this field to consider the effect of the time-lapse between different recording sessions on the system's behaviour when using a low-cost EEG device with identification accuracy rates of up to 100%.
{"title":"Brainprint based on functional connectivity and asymmetry indices of brain regions: A case study of biometric person identification with non-expensive electroencephalogram headsets","authors":"Jordan Ortega-Rodríguez, Kevin Martín-Chinea, José Francisco Gómez-González, Ernesto Pereda","doi":"10.1049/bme2.12097","DOIUrl":"https://doi.org/10.1049/bme2.12097","url":null,"abstract":"<p>Brain-computer interface applications for biometric person identification have increased their interest in recent years since they are potentially more secure and more difficult to counterfeit than traditional biometric techniques. However, it is necessary to consider how brain waves are acquired for this purpose, not only in terms of efficiency but also of practical comfort for the user and the affordability degree of the biosignal acquisition device so that their everyday application can become a realistic possibility. In this context, this paper presents the capabilities of using a non-expensive wireless electroencephalogram (EEG) device to extract spectral-related and functional connectivity information of brain activity. The proposed method achieved a sufficient biometric identification with two datasets of 13 and 109 subjects when comparing the performance of a sizeable classification algorithm set. In addition, a novel feature in EEG biometric identification, called asymmetry index, is introduced here. Furthermore, this is the first study in this field to consider the effect of the time-lapse between different recording sessions on the system's behaviour when using a low-cost EEG device with identification accuracy rates of up to 100%.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 3","pages":"129-145"},"PeriodicalIF":2.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12097","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50135592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph Busch, Farzin Deravi, Dinusha Frings, Els Kindt, Ralph Lessmann, Alexander Nouak, Jean Salomon, Mateus Achcar, Fernando Alonso-Fernandez, Daniel Bachenheimer, David Bethell, Josef Bigun, Matthew Brawley, Guido Brockmann, Enrique Cabello, Patrizio Campisi, Aleksandrs Cepilovs, Miles Clee, Mickey Cohen, Christian Croll, Andrzej Czyżewski, Bernadette Dorizzi, Martin Drahansky, Pawel Drozdowski, Catherine Fankhauser, Julian Fierrez, Marta Gomez-Barrero, Georg Hasse, Richard Guest, Ekaterina Komleva, Sebastien Marcel, Gian Luca Marcialis, Laurent Mercier, Emilio Mordini, Stefance Mouille, Pavlina Navratilova, Javier Ortega-Garcia, Dijana Petrovska, Norman Poh, Istvan Racz, Ramachandra Raghavendra, Christian Rathgeb, Christophe Remillet, Uwe Seidel, Luuk Spreeuwers, Brage Strand, Sirra Toivonen, Andreas Uhl
Due to migration, terror-threats and the viral pandemic, various EU member states have re-established internal border control or even closed their borders. European Association for Biometrics (EAB), a non-profit organisation, solicited the views of its members on ways which biometric technologies and services may be used to help with re-establishing open borders within the Schengen area while at the same time mitigating any adverse effects. From the responses received, this position paper was composed to identify ideas to re-establish free travel between the member states in the Schengen area. The paper covers the contending needs for security, open borders and fundamental rights as well as legal constraints that any technological solution must consider. A range of specific technologies for direct biometric recognition alongside complementary measures are outlined. The interrelated issues of ethical and societal considerations are also highlighted. Provided a holistic approach is adopted, it may be possible to reach a more optimal trade-off with regards to open borders while maintaining a high-level of security and protection of fundamental rights. European Association for Biometrics and its members can play an important role in fostering a shared understanding of security and mobility challenges and their solutions.
{"title":"Facilitating free travel in the Schengen area—A position paper by the European Association for Biometrics","authors":"Christoph Busch, Farzin Deravi, Dinusha Frings, Els Kindt, Ralph Lessmann, Alexander Nouak, Jean Salomon, Mateus Achcar, Fernando Alonso-Fernandez, Daniel Bachenheimer, David Bethell, Josef Bigun, Matthew Brawley, Guido Brockmann, Enrique Cabello, Patrizio Campisi, Aleksandrs Cepilovs, Miles Clee, Mickey Cohen, Christian Croll, Andrzej Czyżewski, Bernadette Dorizzi, Martin Drahansky, Pawel Drozdowski, Catherine Fankhauser, Julian Fierrez, Marta Gomez-Barrero, Georg Hasse, Richard Guest, Ekaterina Komleva, Sebastien Marcel, Gian Luca Marcialis, Laurent Mercier, Emilio Mordini, Stefance Mouille, Pavlina Navratilova, Javier Ortega-Garcia, Dijana Petrovska, Norman Poh, Istvan Racz, Ramachandra Raghavendra, Christian Rathgeb, Christophe Remillet, Uwe Seidel, Luuk Spreeuwers, Brage Strand, Sirra Toivonen, Andreas Uhl","doi":"10.1049/bme2.12107","DOIUrl":"https://doi.org/10.1049/bme2.12107","url":null,"abstract":"<p>Due to migration, terror-threats and the viral pandemic, various EU member states have re-established internal border control or even closed their borders. European Association for Biometrics (EAB), a non-profit organisation, solicited the views of its members on ways which biometric technologies and services may be used to help with re-establishing open borders within the Schengen area while at the same time mitigating any adverse effects. From the responses received, this position paper was composed to identify ideas to re-establish free travel between the member states in the Schengen area. The paper covers the contending needs for security, open borders and fundamental rights as well as legal constraints that any technological solution must consider. A range of specific technologies for direct biometric recognition alongside complementary measures are outlined. The interrelated issues of ethical and societal considerations are also highlighted. Provided a holistic approach is adopted, it may be possible to reach a more optimal trade-off with regards to open borders while maintaining a high-level of security and protection of fundamental rights. European Association for Biometrics and its members can play an important role in fostering a shared understanding of security and mobility challenges and their solutions.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 2","pages":"112-128"},"PeriodicalIF":2.0,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12107","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50132006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guanci Yang, Siyuan Yang, Kexin Luo, Shangen Lan, Ling He, Yang Li
Non-suicide self-injury (NSSI) can be dangerous and difficult for guardians or caregivers to detect in time. NSSI refers to when people hurt themselves even though they have no wish to cause critical or long-lasting hurt. To timely identify and effectively prevent NSSI in order to reduce the suicide rates of patients with a potential suicide risk, the detection of NSSI based on the spatiotemporal features of indoor activities is proposed. Firstly, an NSSI behaviour dataset is provided, and it includes four categories that can be used for scientific research on NSSI evaluation. Secondly, an NSSI detection algorithm based on the spatiotemporal features of indoor activities (NssiDetection) is proposed. NssiDetection calculates the human bounding box by using an object detection model and employs a behaviour detection model to extract the temporal and spatial features of NSSI behaviour. Thirdly, the optimal combination schemes of NssiDetection is investigated by checking its performance with different behaviour detection methods and training strategies. Lastly, a case study is performed by implementing an NSSI behaviour detection prototype system. The prototype system has a recognition accuracy of 84.18% for NSSI actions with new backgrounds, persons, or camera angles.
{"title":"Detection of non-suicidal self-injury based on spatiotemporal features of indoor activities","authors":"Guanci Yang, Siyuan Yang, Kexin Luo, Shangen Lan, Ling He, Yang Li","doi":"10.1049/bme2.12110","DOIUrl":"https://doi.org/10.1049/bme2.12110","url":null,"abstract":"<p>Non-suicide self-injury (NSSI) can be dangerous and difficult for guardians or caregivers to detect in time. NSSI refers to when people hurt themselves even though they have no wish to cause critical or long-lasting hurt. To timely identify and effectively prevent NSSI in order to reduce the suicide rates of patients with a potential suicide risk, the detection of NSSI based on the spatiotemporal features of indoor activities is proposed. Firstly, an NSSI behaviour dataset is provided, and it includes four categories that can be used for scientific research on NSSI evaluation. Secondly, an NSSI detection algorithm based on the spatiotemporal features of indoor activities (NssiDetection) is proposed. NssiDetection calculates the human bounding box by using an object detection model and employs a behaviour detection model to extract the temporal and spatial features of NSSI behaviour. Thirdly, the optimal combination schemes of NssiDetection is investigated by checking its performance with different behaviour detection methods and training strategies. Lastly, a case study is performed by implementing an NSSI behaviour detection prototype system. The prototype system has a recognition accuracy of 84.18% for NSSI actions with new backgrounds, persons, or camera angles.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 2","pages":"91-101"},"PeriodicalIF":2.0,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50130927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anja Hrovatič, Peter Peer, Vitomir Štruc, Žiga Emeršič
Ear images have been shown to be a reliable modality for biometric recognition with desirable characteristics, such as high universality, distinctiveness, measurability and permanence. While a considerable amount of research has been directed towards ear recognition techniques, the problem of ear alignment is still under-explored in the open literature. Nonetheless, accurate alignment of ear images, especially in unconstrained acquisition scenarios, where the ear appearance is expected to vary widely due to pose and view point variations, is critical for the performance of all downstream tasks, including ear recognition. Here, the authors address this problem and present a framework for ear alignment that relies on a two-step procedure: (i) automatic landmark detection and (ii) fiducial point alignment. For the first (landmark detection) step, the authors implement and train a Two-Stack Hourglass model (2-SHGNet) capable of accurately predicting 55 landmarks on diverse ear images captured in uncontrolled conditions. For the second (alignment) step, the authors use the Random Sample Consensus (RANSAC) algorithm to align the estimated landmark/fiducial points with a pre-defined ear shape (i.e. a collection of average ear landmark positions). The authors evaluate the proposed framework in comprehensive experiments on the AWEx and ITWE datasets and show that the 2-SHGNet model leads to more accurate landmark predictions than competing state-of-the-art models from the literature. Furthermore, the authors also demonstrate that the alignment step significantly improves recognition accuracy with ear images from unconstrained environments compared to unaligned imagery.
{"title":"Efficient ear alignment using a two-stack hourglass network","authors":"Anja Hrovatič, Peter Peer, Vitomir Štruc, Žiga Emeršič","doi":"10.1049/bme2.12109","DOIUrl":"https://doi.org/10.1049/bme2.12109","url":null,"abstract":"<p>Ear images have been shown to be a reliable modality for biometric recognition with desirable characteristics, such as high universality, distinctiveness, measurability and permanence. While a considerable amount of research has been directed towards ear recognition techniques, the problem of ear alignment is still under-explored in the open literature. Nonetheless, accurate alignment of ear images, especially in unconstrained acquisition scenarios, where the ear appearance is expected to vary widely due to pose and view point variations, is critical for the performance of all downstream tasks, including ear recognition. Here, the authors address this problem and present a framework for ear alignment that relies on a two-step procedure: (i) automatic landmark detection and (ii) fiducial point alignment. For the first (landmark detection) step, the authors implement and train a Two-Stack Hourglass model (2-SHGNet) capable of accurately predicting 55 landmarks on diverse ear images captured in uncontrolled conditions. For the second (alignment) step, the authors use the Random Sample Consensus (RANSAC) algorithm to align the estimated landmark/fiducial points with a pre-defined ear shape (i.e. a collection of average ear landmark positions). The authors evaluate the proposed framework in comprehensive experiments on the AWEx and ITWE datasets and show that the 2-SHGNet model leads to more accurate landmark predictions than competing state-of-the-art models from the literature. Furthermore, the authors also demonstrate that the alignment step significantly improves recognition accuracy with ear images from unconstrained environments compared to unaligned imagery.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 2","pages":"77-90"},"PeriodicalIF":2.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50150490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonio Galli, Michela Gravina, Stefano Marrone, Domenico Mattiello, Carlo Sansone
The widespread use of fingerprint authentication systems (FASs) in consumer electronics opens for the development of advanced presentation attacks, that is, procedures designed to bypass a FAS using a forged fingerprint. As a consequence, FAS are often equipped with a fingerprint presentation attack detection (FPAD) module, to recognise live fingerprints from fake replicas. In this work, a novel FPAD approach based on Convolutional Neural Networks (CNNs) and on an ad hoc adversarial data augmentation strategy designed to iteratively increase the considered detector robustness is proposed. In particular, the concept of adversarial fingerprint, that is, fake fingerprints disguised by using ad hoc fingerprint adversarial perturbation algorithms was leveraged to help the detector focus only on salient portions of the fingerprints. The procedure can be adapted to different CNNs, adversarial fingerprint algorithms and fingerprint scanners, making the proposed approach versatile and easily customisable todifferent working scenarios. To test the effectiveness of the proposed approach, the authors took part in the LivDet 2021 competition, an international challenge gathering experts to compete on fingerprint liveness detection under different scanners and fake replica generation approach, achieving first place out of 23 participants in the ‘Liveness Detection in Action track’.
{"title":"Adversarial liveness detector: Leveraging adversarial perturbations in fingerprint liveness detection","authors":"Antonio Galli, Michela Gravina, Stefano Marrone, Domenico Mattiello, Carlo Sansone","doi":"10.1049/bme2.12106","DOIUrl":"https://doi.org/10.1049/bme2.12106","url":null,"abstract":"<p>The widespread use of fingerprint authentication systems (FASs) in consumer electronics opens for the development of advanced presentation attacks, that is, procedures designed to bypass a FAS using a forged fingerprint. As a consequence, FAS are often equipped with a fingerprint presentation attack detection (FPAD) module, to recognise live fingerprints from fake replicas. In this work, a novel FPAD approach based on Convolutional Neural Networks (CNNs) and on an ad hoc adversarial data augmentation strategy designed to iteratively increase the considered detector robustness is proposed. In particular, the concept of adversarial fingerprint, that is, fake fingerprints disguised by using ad hoc fingerprint adversarial perturbation algorithms was leveraged to help the detector focus only on salient portions of the fingerprints. The procedure can be adapted to different CNNs, adversarial fingerprint algorithms and fingerprint scanners, making the proposed approach versatile and easily customisable todifferent working scenarios. To test the effectiveness of the proposed approach, the authors took part in the LivDet 2021 competition, an international challenge gathering experts to compete on fingerprint liveness detection under different scanners and fake replica generation approach, achieving first place out of 23 participants in the ‘Liveness Detection in Action track’.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 2","pages":"102-111"},"PeriodicalIF":2.0,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50127461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the increasing number of motor vehicles globally, the casualties and property losses caused by traffic accidents are substantial worldwide. Traffic accidents caused by fatigue driving are also increasing year by year. In this article, the authors propose a functional brain network-based driving fatigue detection method and seek to combine features and algorithms with optimal effect. First, a simulated driving experiment is established to obtain EEG signal data from multiple subjects in a long-term monotonic cognitive task. Second, the correlation between each EEG signal channel is calculated using Pearson correlation coefficient to construct a functional brain network. Then, five functional brain network features (clustering coefficient, node degree, eccentricity, local efficiency, and characteristic path length) are extracted and combined to obtain a total of 26 features and eight machine learning algorithms (SVM, LR, DT, RF, KNN, LDA, ADB, GBM) are used as classifiers for fatigue detection respectively. Finally, the optimal combination of features and algorithms are obtained. The results show that the feature combination of node degree, local efficiency, and characteristic path length achieves the best classification accuracy of 92.92% in the logistic regression algorithm.
{"title":"Optimal feature-algorithm combination research for EEG fatigue driving detection based on functional brain network","authors":"Yi Zhou, ChangQing Zeng, ZhenDong Mu","doi":"10.1049/bme2.12108","DOIUrl":"https://doi.org/10.1049/bme2.12108","url":null,"abstract":"<p>With the increasing number of motor vehicles globally, the casualties and property losses caused by traffic accidents are substantial worldwide. Traffic accidents caused by fatigue driving are also increasing year by year. In this article, the authors propose a functional brain network-based driving fatigue detection method and seek to combine features and algorithms with optimal effect. First, a simulated driving experiment is established to obtain EEG signal data from multiple subjects in a long-term monotonic cognitive task. Second, the correlation between each EEG signal channel is calculated using Pearson correlation coefficient to construct a functional brain network. Then, five functional brain network features (clustering coefficient, node degree, eccentricity, local efficiency, and characteristic path length) are extracted and combined to obtain a total of 26 features and eight machine learning algorithms (SVM, LR, DT, RF, KNN, LDA, ADB, GBM) are used as classifiers for fatigue detection respectively. Finally, the optimal combination of features and algorithms are obtained. The results show that the feature combination of node degree, local efficiency, and characteristic path length achieves the best classification accuracy of 92.92% in the logistic regression algorithm.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 2","pages":"65-76"},"PeriodicalIF":2.0,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12108","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50138604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hazal Su Bıçakcı, Marco Santopietro, Richard Guest
Activity classification and biometric authentication have become synonymous with wearable technologies such as smartwatches and trackers. Although great efforts have been made to develop electrocardiogram (ECG)-based biometric verification and identification modalities using data from these devices, in this paper, we explore the use of adaptive techniques based on prior activity classification in an attempt to enhance biometric performance. In doing so, we also compare two waveform similarity distances to provide features for classification. Two public datasets which were collected from medical and wearable devices provide a cross-device comparison. Our results show that our method is able to be used for both wearable and medical devices in activity classification and biometric verification cases. This study is the first study which uses only ECG signals for both activity classification and biometric verification purposes.
{"title":"Activity-based electrocardiogram biometric verification using wearable devices","authors":"Hazal Su Bıçakcı, Marco Santopietro, Richard Guest","doi":"10.1049/bme2.12105","DOIUrl":"https://doi.org/10.1049/bme2.12105","url":null,"abstract":"<p>Activity classification and biometric authentication have become synonymous with wearable technologies such as smartwatches and trackers. Although great efforts have been made to develop electrocardiogram (ECG)-based biometric verification and identification modalities using data from these devices, in this paper, we explore the use of adaptive techniques based on prior activity classification in an attempt to enhance biometric performance. In doing so, we also compare two waveform similarity distances to provide features for classification. Two public datasets which were collected from medical and wearable devices provide a cross-device comparison. Our results show that our method is able to be used for both wearable and medical devices in activity classification and biometric verification cases. This study is the first study which uses only ECG signals for both activity classification and biometric verification purposes.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"12 1","pages":"38-51"},"PeriodicalIF":2.0,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50143033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Imad Rida, Gian Luca Marcialis, Lunke Fei, Dan Istrate, Julian Fierrez
Over the past few decades, biometric security is increasingly becoming an important tool to enhance security and brings greater convenience. Nowadays, biometric systems are widely used by government agencies and private industries. Though a growing effort has been devoted in order to develop robust biometric recognition systems that can operate in various conditions, many problems still remain to be solved, including the design of techniques to handle varying illumination sources, occlusions and low quality images resulting from uncontrolled acquisition conditions.
The performance of any biometric recognition system heavily depends on finding a good and suitable feature representation space satisfying, smoothness, cluster, manifold, sparsity and temporal/spatial coherence, where observations from different classes are well separated. Unfortunately, finding this proper representation is a challenging problem which has taken a huge interest in machine learning and computer vision communities.
Representation learning methods can be organised in two main groups: ‘intra-class’ and ‘inter-class’. In the first group, the techniques seek to extract useful information from the raw data itself. They broadly range from conventional hand-crafted feature design based on the human knowledge about the target application (SIFT, Local Binary Patterns, HoG, etc.), to dimensionality reduction techniques (PCA, linear discriminant analysis, Factor Analysis, isometric mapping, Locally Linear Embedding, etc.) and feature selection (wrapper, filter, embedded), until the recent deep representations which achieved state-of-the-art performances in many applications.
The ‘inter-class’ techniques seek to find a structure and relationship between the different data observations. In this group, we can find metric/kernel learning, investigating the spatial or temporal relationship among different examples, while subspace/manifold learning techniques seek to discover the underlying inherent structural property.
The objective of this special issue is to provide a stage for worldwide researchers to publish their recent and original results on representation learning for robust biometric systems. There are in total eight articles accepted for publication in this Special Issue through careful peer reviews and revisions.
Li et al. introduced a watermarking algorithm based on an accelerated-KAZE discrete cosine transform (AKAZE-DCT) to address the poor robustness of the image watermarking algorithms to geometric attacks. Firstly, the extracted features using AKAZE-DCT are combined with the perceptual hashing, then, the watermarking image is encrypted with logistic chaos dislocation, finally, the watermarking is embedded and extracted with the zero-watermarking technique. The experimental results showed that the algorithm can effectively extract the watermark under conventional and geometric attacks, reflecting better robustness and invisibility.
在过去的几十年里,生物识别安全越来越成为增强安全的重要工具,并带来了更大的便利。如今,生物识别系统被政府机构和私营企业广泛使用。尽管为了开发能够在各种条件下运行的强大的生物识别系统已经投入了越来越多的努力,但许多问题仍然有待解决,包括处理不同照明源的技术设计,不受控制的采集条件导致的遮挡和低质量图像。任何生物特征识别系统的性能在很大程度上依赖于找到一个好的和合适的特征表示空间,满足平滑性、聚类、流形、稀疏性和时空相干性,其中来自不同类别的观察得到很好的分离。不幸的是,找到这种适当的表示是一个具有挑战性的问题,这在机器学习和计算机视觉社区引起了极大的兴趣。表征学习方法可以分为两大类:“类内”和“类间”。在第一组中,这些技术试图从原始数据本身中提取有用的信息。它们的范围很广,从基于人类对目标应用(SIFT,局部二值模式,HoG等)的知识的传统手工特征设计,到降维技术(PCA,线性判别分析,因子分析,等距映射,局部线性嵌入等)和特征选择(包装,滤波,嵌入),直到最近在许多应用中取得最先进性能的深度表示。“类间”技术试图找到不同数据观测之间的结构和关系。在这一组中,我们可以找到度量/核学习,研究不同示例之间的空间或时间关系,而子空间/流形学习技术寻求发现潜在的固有结构属性。本期特刊的目的是为世界各地的研究人员提供一个舞台,发表他们在鲁棒生物识别系统的表示学习方面的最新和原创成果。经过认真的同行评议和修改,本特刊共有八篇文章被接受发表。Li等人提出了一种基于加速kaze离散余弦变换(AKAZE-DCT)的水印算法,以解决图像水印算法对几何攻击鲁棒性差的问题。首先将AKAZE-DCT提取的特征与感知哈希相结合,然后对水印图像进行逻辑混沌位错加密,最后采用零水印技术对水印进行嵌入和提取。实验结果表明,该算法在常规攻击和几何攻击下均能有效提取水印,具有较好的鲁棒性和不可见性。Gong等人提出了一种新的基于深度学习的鲁棒零水印算法。事实上,他们设计了一个残差densenet,它采用了低频特征。该算法在水印生成阶段不修改原始图像,在水印提取阶段不需要原始图像。此外,该算法还适用于多个水印。实验结果表明,该算法在常规攻击和几何攻击下都具有良好的鲁棒性。Parashar和Shekhawat提出了一种可逆的步态匿名化管道,通过对图像进行变形来修改步态几何形状。修改后的数据可以防止黑客利用数据集进行对抗性攻击。研究结果为步态识别数据集的对抗性攻击和隐私保护开辟了新的研究方向。Li等人提出了一种基于线条特征局部三方向模式的掌纹识别方法。首先,提取掌纹图像的线特征,包括方向和幅度;然后,将方向特征编码为三方向模式。三向模式反映了局部区域的方向变化。最后,利用三方向特征、方向特征和幅度特征构造特征。在PolyU, PolyU多光谱,同济,CASIA和IITD掌纹数据库上的实验表明,该技术取得了良好的效果。Wu等人建立了一个握笔姿势(PHHP)图像数据集,这是迄今为止收集到的最大的基于视觉的PHHP数据集。介绍了一种由粗多特征学习网络和精细抓笔特征学习网络组成的粗到细PHHP识别网络。实验结果表明,与基线识别模型相比,该方法具有很好的PHHP识别性能。Aguiar de Lima等人。 研究了语言对说话人识别系统的影响,以及语音对系统性能的影响。实验使用了三种广泛使用的语言:葡萄牙语、英语和汉语。Sun等人提出了一种基于卷积神经网络的新型分类算法,以提高乳房x光检查对乳腺癌的诊断性能。实验结果表明,本文提出的算法大大提高了乳腺肿块的分类性能和诊断速度,对乳腺癌诊断具有重要意义。Parashar等人提出了一种基于姿态特征的方法,尝试对穿着大衣、携带物品或其他协变量的人进行步态识别。它旨在使用卷积神经网络来估计人类的运动。实验显示出很有希望的结果。
{"title":"Guest editorial: Recent advances in representation learning for robust biometric recognition systems","authors":"Imad Rida, Gian Luca Marcialis, Lunke Fei, Dan Istrate, Julian Fierrez","doi":"10.1049/bme2.12104","DOIUrl":"10.1049/bme2.12104","url":null,"abstract":"<p>Over the past few decades, biometric security is increasingly becoming an important tool to enhance security and brings greater convenience. Nowadays, biometric systems are widely used by government agencies and private industries. Though a growing effort has been devoted in order to develop robust biometric recognition systems that can operate in various conditions, many problems still remain to be solved, including the design of techniques to handle varying illumination sources, occlusions and low quality images resulting from uncontrolled acquisition conditions.</p><p>The performance of any biometric recognition system heavily depends on finding a good and suitable feature representation space satisfying, smoothness, cluster, manifold, sparsity and temporal/spatial coherence, where observations from different classes are well separated. Unfortunately, finding this proper representation is a challenging problem which has taken a huge interest in machine learning and computer vision communities.</p><p>Representation learning methods can be organised in two main groups: ‘intra-class’ and ‘inter-class’. In the first group, the techniques seek to extract useful information from the raw data itself. They broadly range from conventional hand-crafted feature design based on the human knowledge about the target application (SIFT, Local Binary Patterns, HoG, etc.), to dimensionality reduction techniques (PCA, linear discriminant analysis, Factor Analysis, isometric mapping, Locally Linear Embedding, etc.) and feature selection (wrapper, filter, embedded), until the recent deep representations which achieved state-of-the-art performances in many applications.</p><p>The ‘inter-class’ techniques seek to find a structure and relationship between the different data observations. In this group, we can find metric/kernel learning, investigating the spatial or temporal relationship among different examples, while subspace/manifold learning techniques seek to discover the underlying inherent structural property.</p><p>The objective of this special issue is to provide a stage for worldwide researchers to publish their recent and original results on representation learning for robust biometric systems. There are in total eight articles accepted for publication in this Special Issue through careful peer reviews and revisions.</p><p>Li et al. introduced a watermarking algorithm based on an accelerated-KAZE discrete cosine transform (AKAZE-DCT) to address the poor robustness of the image watermarking algorithms to geometric attacks. Firstly, the extracted features using AKAZE-DCT are combined with the perceptual hashing, then, the watermarking image is encrypted with logistic chaos dislocation, finally, the watermarking is embedded and extracted with the zero-watermarking technique. The experimental results showed that the algorithm can effectively extract the watermark under conventional and geometric attacks, reflecting better robustness and invisibility.</p><p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 6","pages":"531-533"},"PeriodicalIF":2.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48958342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}