{"title":"Using double attention for text tattoo localisation","authors":"Xingpeng Xu, S. Prasad, Kuanhong Cheng, A. Kong","doi":"10.1049/bme2.12071","DOIUrl":"https://doi.org/10.1049/bme2.12071","url":null,"abstract":"","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"20 1","pages":"199-214"},"PeriodicalIF":2.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90173018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingpeng Xu, Shitala Prasad, Kuanhong Cheng, Adams Wai Kin Kong
Text tattoos contain rich information about an individual for forensic investigation. To extract this information, text tattoo localisation is the first and essential step. Previous tattoo studies applied existing object detectors to detect general tattoos, but none of them considered text tattoo localisation and they neglect the prior knowledge that text tattoos are usually inside or nearby larger tattoos and appear only on human skin. To use this prior knowledge, a prior knowledge-based attention mechanism (PKAM) and a network named Text Tattoo Localisation Network based on Double Attention (TTLN-DA) are proposed. In addition to TTLN-DA, two variants of TTLN-DA are designed to study the effectiveness of different prior knowledge. For this study, NTU Tattoo V2, the largest tattoo dataset and NTU Text Tattoo V1, the largest text tattoo dataset are established. To examine the importance of the prior knowledge and the effectiveness of the proposed attention mechanism and the networks, TTLN-DA and its variants are compared with state-of-the-art object detectors and text detectors. The experimental results indicate that the prior knowledge is vital for text tattoo localisation; The PKAM contributes significantly to the performance and TTLN-DA outperforms the state-of-the-art object detectors and scene text detectors.
文身包含了个人的丰富信息,便于法医调查。为了提取这些信息,文本纹身定位是第一步也是必不可少的一步。以前的纹身研究使用现有的物体检测器来检测一般的纹身,但他们都没有考虑到文字纹身的定位,他们忽略了之前的知识,即文字纹身通常在较大的纹身内部或附近,只出现在人体皮肤上。为了利用这些先验知识,提出了基于先验知识的注意机制(PKAM)和基于双重注意的文本纹身定位网络(TTLN-DA)。除了TTLN-DA之外,还设计了TTLN-DA的两个变体来研究不同先验知识的有效性。本研究建立了最大的纹身数据集NTU Tattoo V2和最大的文字纹身数据集NTU Text Tattoo V1。为了检验先验知识的重要性以及所提出的注意机制和网络的有效性,将TTLN-DA及其变体与最先进的对象检测器和文本检测器进行了比较。实验结果表明,先验知识对文本纹身定位至关重要;PKAM对性能有显著贡献,TTLN-DA优于最先进的目标检测器和场景文本检测器。
{"title":"Using double attention for text tattoo localisation","authors":"Xingpeng Xu, Shitala Prasad, Kuanhong Cheng, Adams Wai Kin Kong","doi":"10.1049/bme2.12071","DOIUrl":"https://doi.org/10.1049/bme2.12071","url":null,"abstract":"<p>Text tattoos contain rich information about an individual for forensic investigation. To extract this information, text tattoo localisation is the first and essential step. Previous tattoo studies applied existing object detectors to detect general tattoos, but none of them considered text tattoo localisation and they neglect the prior knowledge that text tattoos are usually inside or nearby larger tattoos and appear only on human skin. To use this prior knowledge, a prior knowledge-based attention mechanism (PKAM) and a network named Text Tattoo Localisation Network based on Double Attention (TTLN-DA) are proposed. In addition to TTLN-DA, two variants of TTLN-DA are designed to study the effectiveness of different prior knowledge. For this study, NTU Tattoo V2, the largest tattoo dataset and NTU Text Tattoo V1, the largest text tattoo dataset are established. To examine the importance of the prior knowledge and the effectiveness of the proposed attention mechanism and the networks, TTLN-DA and its variants are compared with state-of-the-art object detectors and text detectors. The experimental results indicate that the prior knowledge is vital for text tattoo localisation; The PKAM contributes significantly to the performance and TTLN-DA outperforms the state-of-the-art object detectors and scene text detectors.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 3","pages":"199-214"},"PeriodicalIF":2.0,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91813390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Rathgeb, Daniel Fischer, Pawel Drozdowski, Christoph Busch
Doppelgängers (or lookalikes) usually yield an increased probability of false matches in a facial recognition system, as opposed to random face image pairs selected for non-mated comparison trials. In this work, the impact of doppelgängers on the HDA Doppelgänger and Disguised Faces in The Wild databases is assessed using a state-of-the-art face recognition system. It is found that doppelgänger image pairs yield very high similarity scores resulting in a significant increase of false match rates. Further, a doppelgänger detection method is proposed, which distinguishes doppelgängers from mated comparison trials by analysing differences in deep representations obtained from face image pairs. The proposed detection system employs a machine learning-based classifier, which is trained with generated doppelgänger image pairs utilising face morphing techniques. Experimental evaluations conducted on the HDA Doppelgänger and Look-Alike Face databases reveal a detection equal error rate of approximately 2.7% for the task of separating mated authentication attempts from doppelgängers.
{"title":"Reliable detection of doppelgängers based on deep face representations","authors":"Christian Rathgeb, Daniel Fischer, Pawel Drozdowski, Christoph Busch","doi":"10.1049/bme2.12072","DOIUrl":"https://doi.org/10.1049/bme2.12072","url":null,"abstract":"<p>Doppelgängers (or lookalikes) usually yield an increased probability of false matches in a facial recognition system, as opposed to random face image pairs selected for non-mated comparison trials. In this work, the impact of doppelgängers on the HDA Doppelgänger and Disguised Faces in The Wild databases is assessed using a state-of-the-art face recognition system. It is found that doppelgänger image pairs yield very high similarity scores resulting in a significant increase of false match rates. Further, a doppelgänger detection method is proposed, which distinguishes doppelgängers from mated comparison trials by analysing differences in deep representations obtained from face image pairs. The proposed detection system employs a machine learning-based classifier, which is trained with generated doppelgänger image pairs utilising face morphing techniques. Experimental evaluations conducted on the HDA Doppelgänger and Look-Alike Face databases reveal a detection equal error rate of approximately 2.7% for the task of separating mated authentication attempts from doppelgängers.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 3","pages":"215-224"},"PeriodicalIF":2.0,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91797536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fariborz Taherkhani, Veeru Talreja, Jeremy Dawson, Matthew C. Valenti, Nasser M. Nasrabadi
In recent years, with the advent of deep-learning, face recognition (FR) has achieved exceptional success. However, many of these deep FR models perform much better in handling frontal faces compared to profile faces. The major reason for poor performance in handling of profile faces is that it is inherently difficult to learn pose-invariant deep representations that are useful for profile FR. In this paper, the authors hypothesise that the profile face domain possesses a latent connection with the frontal face domain in a latent feature subspace. The authors look to exploit this latent connection by projecting the profile faces and frontal faces into a common latent subspace and perform verification or retrieval in the latent domain. A coupled conditional generative adversarial network (cpGAN) structure is leveraged to find the hidden relationship between the profile and frontal images in a latent common embedding subspace. Specifically, the cpGAN framework consists of two conditional GAN-based sub-networks, one dedicated to the frontal domain and the other dedicated to the profile domain. Each sub-network tends to find a projection that maximises the pair-wise correlation between the two feature domains in a common embedding feature subspace. The efficacy of the authors’ approach compared with the state of the art is demonstrated using the CFP, CMU Multi-PIE, IARPA Janus Benchmark A, and IARPA Janus Benchmark C datasets. Additionally, the authors have also implemented a coupled convolutional neural network (cpCNN) and an adversarial discriminative domain adaptation network (ADDA) for profile to frontal FR. The authors have evaluated the performance of cpCNN and ADDA and compared it with the proposed cpGAN. Finally, the authors have also evaluated the authors’ cpGAN for reconstruction of frontal faces from input profile faces contained in the VGGFace2 dataset.
{"title":"Profile to frontal face recognition in the wild using coupled conditional generative adversarial network","authors":"Fariborz Taherkhani, Veeru Talreja, Jeremy Dawson, Matthew C. Valenti, Nasser M. Nasrabadi","doi":"10.1049/bme2.12069","DOIUrl":"https://doi.org/10.1049/bme2.12069","url":null,"abstract":"<p>In recent years, with the advent of deep-learning, face recognition (FR) has achieved exceptional success. However, many of these deep FR models perform much better in handling frontal faces compared to profile faces. The major reason for poor performance in handling of profile faces is that it is inherently difficult to learn pose-invariant deep representations that are useful for profile FR. In this paper, the authors hypothesise that the profile face domain possesses a latent connection with the frontal face domain in a latent feature subspace. The authors look to exploit this latent connection by projecting the profile faces and frontal faces into a common latent subspace and perform verification or retrieval in the latent domain. A coupled conditional generative adversarial network (cpGAN) structure is leveraged to find the hidden relationship between the profile and frontal images in a latent common embedding subspace. Specifically, the cpGAN framework consists of two conditional GAN-based sub-networks, one dedicated to the frontal domain and the other dedicated to the profile domain. Each sub-network tends to find a projection that maximises the pair-wise correlation between the two feature domains in a common embedding feature subspace. The efficacy of the authors’ approach compared with the state of the art is demonstrated using the CFP, CMU Multi-PIE, IARPA Janus Benchmark A, and IARPA Janus Benchmark C datasets. Additionally, the authors have also implemented a coupled convolutional neural network (cpCNN) and an adversarial discriminative domain adaptation network (ADDA) for profile to frontal FR. The authors have evaluated the performance of cpCNN and ADDA and compared it with the proposed cpGAN. Finally, the authors have also evaluated the authors’ cpGAN for reconstruction of frontal faces from input profile faces contained in the VGGFace2 dataset.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 3","pages":"260-276"},"PeriodicalIF":2.0,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91822997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fariborz Taherkhani, Veeru Talreja, J. Dawson, M. Valenti, N. Nasrabadi
{"title":"Profile to frontal face recognition in the wild using coupled conditional generative adversarial network","authors":"Fariborz Taherkhani, Veeru Talreja, J. Dawson, M. Valenti, N. Nasrabadi","doi":"10.1049/bme2.12069","DOIUrl":"https://doi.org/10.1049/bme2.12069","url":null,"abstract":"","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"423 1","pages":"260-276"},"PeriodicalIF":2.0,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77005470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomasz Moroń, Krzysztof Bernacki, Jerzy Fiołka, Jia Peng, Adam Popowicz
There has recently been intensive development of methods for identification and personal verification using the human finger vascular system (FVS). The primary focus of these efforts has been the increasingly sophisticated methods of image processing, and frequently employing machine learning. In this article, we present a new concept of imaging in which the finger vasculature is illuminated using different wavelengths of light, generating multiple FVS images. We hypothesised that the analysis of these image sets, instead of individual images, could increase the effectiveness of identification. Analyses of data from over 100 volunteers, using five different deterministic methods for feature extraction, consistently demonstrated improved identification efficiency with the addition of data obtained from another wavelength. The best results were seen for combinations of diodes between 800 and 900 nm. Finger vascular system observations outside this range were of marginal utility. The knowledge gained from this experiment can be utilised by designers of biometric recognition devices leveraging FVS technology. Our results confirm that developments in this field are not restricted to image processing algorithms, and that hardware innovations remain relevant.
{"title":"Recognition of the finger vascular system using multi-wavelength imaging","authors":"Tomasz Moroń, Krzysztof Bernacki, Jerzy Fiołka, Jia Peng, Adam Popowicz","doi":"10.1049/bme2.12068","DOIUrl":"https://doi.org/10.1049/bme2.12068","url":null,"abstract":"<p>There has recently been intensive development of methods for identification and personal verification using the human finger vascular system (FVS). The primary focus of these efforts has been the increasingly sophisticated methods of image processing, and frequently employing machine learning. In this article, we present a new concept of imaging in which the finger vasculature is illuminated using different wavelengths of light, generating multiple FVS images. We hypothesised that the analysis of these image sets, instead of individual images, could increase the effectiveness of identification. Analyses of data from over 100 volunteers, using five different deterministic methods for feature extraction, consistently demonstrated improved identification efficiency with the addition of data obtained from another wavelength. The best results were seen for combinations of diodes between 800 and 900 nm. Finger vascular system observations outside this range were of marginal utility. The knowledge gained from this experiment can be utilised by designers of biometric recognition devices leveraging FVS technology. Our results confirm that developments in this field are not restricted to image processing algorithms, and that hardware innovations remain relevant.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 3","pages":"249-259"},"PeriodicalIF":2.0,"publicationDate":"2022-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91803974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tomasz Moron, K. Bernacki, J. Fiolka, Jia Peng, A. Popowicz
{"title":"Recognition of the finger vascular system using multi-wavelength imaging","authors":"Tomasz Moron, K. Bernacki, J. Fiolka, Jia Peng, A. Popowicz","doi":"10.1049/bme2.12068","DOIUrl":"https://doi.org/10.1049/bme2.12068","url":null,"abstract":"","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"71 1","pages":"249-259"},"PeriodicalIF":2.0,"publicationDate":"2022-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90390516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
When only one sample per person (OSPP) is registered in the gallery, it is difficult for ear recognition methods to sufficiently and effectively reduce the search range of the matching features, thus resulting in low computational efficiency and mismatch problems. A 3D ear biometric system using OSPP is proposed to solve this problem. By categorising ear images by shape and establishing the corresponding relationship between keypoints from ear images and regions (regional cluster) on the directional proposals that can be arranged to roughly face the ear image, the corresponding keypoints are obtained. Then, ear recognition is performed by combining corresponding keypoints and a multi-keypoint descriptor sparse representation classification method. The experimental results conducted on the University of Notre Dame Collection J2 dataset yielded a rank-1 recognition rate of 98.84%; furthermore, the time for one identification operation shared by each gallery subject was 0.047 ms.
当图库中每个人只有一个样本(OSPP)注册时,耳识别方法难以充分有效地缩小匹配特征的搜索范围,从而导致计算效率低和不匹配问题。为了解决这一问题,提出了一种基于OSPP的三维耳生物识别系统。通过对耳图像进行形状分类,在大致面向耳图像的可排列方向建议上,建立耳图像关键点与区域(区域聚类)的对应关系,得到相应的关键点。然后,将相应的关键点与多关键点描述符稀疏表示分类方法相结合进行人耳识别。在University of Notre Dame Collection J2数据集上进行的实验结果显示,rank-1识别率为98.84%;此外,每个画廊受试者共享一次识别操作的时间为0.047 ms。
{"title":"Corresponding keypoint constrained sparse representation three-dimensional ear recognition via one sample per person","authors":"Qinping Zhu, Zhichun Mu, Li Yuan","doi":"10.1049/bme2.12067","DOIUrl":"https://doi.org/10.1049/bme2.12067","url":null,"abstract":"<p>When only one sample per person (OSPP) is registered in the gallery, it is difficult for ear recognition methods to sufficiently and effectively reduce the search range of the matching features, thus resulting in low computational efficiency and mismatch problems. A 3D ear biometric system using OSPP is proposed to solve this problem. By categorising ear images by shape and establishing the corresponding relationship between keypoints from ear images and regions (regional cluster) on the directional proposals that can be arranged to roughly face the ear image, the corresponding keypoints are obtained. Then, ear recognition is performed by combining corresponding keypoints and a multi-keypoint descriptor sparse representation classification method. The experimental results conducted on the University of Notre Dame Collection J2 dataset yielded a rank-1 recognition rate of 98.84%; furthermore, the time for one identification operation shared by each gallery subject was 0.047 ms.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 3","pages":"225-248"},"PeriodicalIF":2.0,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91794343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}