首页 > 最新文献

Journal of Nonlinear Mathematical Physics最新文献

英文 中文
On the Existence and Uniqueness of the Solution of a Nonlinear Fractional Differential Equation with Integral Boundary Condition 一类具有积分边界条件的非线性分数阶微分方程解的存在唯一性
4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-27 DOI: 10.1007/s44198-023-00143-3
Elyas Shivanian
Abstract This study focuses on investigating the existence and uniqueness of a solution to a specific type of high-order nonlinear fractional differential equations that include the Rieman-Liouville fractional derivative. The boundary condition is of integral type, which involves both the starting and ending points of the domain. Initially, the unique exact solution is derived using Green’s function for the linear fractional differential equation. Subsequently, the Banach contraction mapping theorem is employed to establish the main result for the general nonlinear source term case. Moreover, an illustrative example is presented to demonstrate the legitimacy and applicability of our main result.
摘要研究一类含Rieman-Liouville分数阶导数的高阶非线性分数阶微分方程解的存在唯一性。边界条件为积分型,既包括域的起点,也包括域的终点。首先,利用格林函数推导出线性分数阶微分方程的唯一精确解。随后,利用Banach收缩映射定理建立了一般非线性源项情况下的主要结果。最后,通过实例验证了本文主要结论的合理性和适用性。
{"title":"On the Existence and Uniqueness of the Solution of a Nonlinear Fractional Differential Equation with Integral Boundary Condition","authors":"Elyas Shivanian","doi":"10.1007/s44198-023-00143-3","DOIUrl":"https://doi.org/10.1007/s44198-023-00143-3","url":null,"abstract":"Abstract This study focuses on investigating the existence and uniqueness of a solution to a specific type of high-order nonlinear fractional differential equations that include the Rieman-Liouville fractional derivative. The boundary condition is of integral type, which involves both the starting and ending points of the domain. Initially, the unique exact solution is derived using Green’s function for the linear fractional differential equation. Subsequently, the Banach contraction mapping theorem is employed to establish the main result for the general nonlinear source term case. Moreover, an illustrative example is presented to demonstrate the legitimacy and applicability of our main result.","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135536532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Monotonicity of Limit Wave Speed of the pgKdV Equation with Nonlinear Terms of Arbitrary Higher Degree 任意高次非线性pgKdV方程极限波速的单调性
4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-27 DOI: 10.1007/s44198-023-00141-5
Zhenshu Wen
Abstract We prove that limit wave speed is decreasing for the pgKdV equation with nonlinear terms of arbitrary higher degree in a numerical way. Our results provide the complete answer to the open question suggested by Yan et al. (Math Model Anal 19:537–555, 2014).
用数值方法证明了具有任意高次非线性项的pgKdV方程的极限波速是递减的。我们的结果为Yan等人提出的开放性问题提供了完整的答案(数学模型肛门19:537-555,2014)。
{"title":"On the Monotonicity of Limit Wave Speed of the pgKdV Equation with Nonlinear Terms of Arbitrary Higher Degree","authors":"Zhenshu Wen","doi":"10.1007/s44198-023-00141-5","DOIUrl":"https://doi.org/10.1007/s44198-023-00141-5","url":null,"abstract":"Abstract We prove that limit wave speed is decreasing for the pgKdV equation with nonlinear terms of arbitrary higher degree in a numerical way. Our results provide the complete answer to the open question suggested by Yan et al. (Math Model Anal 19:537–555, 2014).","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135537088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Soliton Hierarchies Associated with Lie Algebras $$mathfrak {sp}(4)$$ and $$mathfrak {so}(5)$$ 与李代数相关的一些孤子层次$$mathfrak {sp}(4)$$及 $$mathfrak {so}(5)$$
4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-26 DOI: 10.1007/s44198-023-00140-6
Baiying He, Shiyuan Liu, Siyu Gao
Abstract Based on the symplectic Lie algebra $$mathfrak {sp}(4)$$ sp ( 4 ) , we obtain two integrable hierarchies of $$mathfrak {sp}(4)$$ sp ( 4 ) , and by using the trace identity, we give their Hamiltonian structures. Then, we use $$2times 2$$ 2 × 2 Kronecker product, and construct integrable coupling systems of one soliton equation. Next, we consider two bases of Lie algebra $$mathfrak {so}(5)$$ so ( 5 ) , and we get the corresponding two integrable hierarchies. Finally, we discuss the relation between the integrable hierarchies of two different bases associated with Lie algebra $$mathfrak {so}(5)$$ so ( 5 ) .
摘要基于辛李代数$$mathfrak {sp}(4)$$ sp(4),得到了$$mathfrak {sp}(4)$$ sp(4)的两个可积层次,并利用迹恒等式给出了它们的哈密顿结构。然后利用$$2times 2$$ 2 × 2 Kronecker积,构造了单孤子方程的可积耦合系统。接下来,我们考虑了李代数$$mathfrak {so}(5)$$ so(5)的两个基,得到了对应的两个可积层次。最后,我们讨论了与李代数相关的两种不同基的可积层次之间的关系$$mathfrak {so}(5)$$ so(5)。
{"title":"Some Soliton Hierarchies Associated with Lie Algebras $$mathfrak {sp}(4)$$ and $$mathfrak {so}(5)$$","authors":"Baiying He, Shiyuan Liu, Siyu Gao","doi":"10.1007/s44198-023-00140-6","DOIUrl":"https://doi.org/10.1007/s44198-023-00140-6","url":null,"abstract":"Abstract Based on the symplectic Lie algebra $$mathfrak {sp}(4)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>sp</mml:mi> <mml:mo>(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , we obtain two integrable hierarchies of $$mathfrak {sp}(4)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>sp</mml:mi> <mml:mo>(</mml:mo> <mml:mn>4</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and by using the trace identity, we give their Hamiltonian structures. Then, we use $$2times 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> Kronecker product, and construct integrable coupling systems of one soliton equation. Next, we consider two bases of Lie algebra $$mathfrak {so}(5)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>so</mml:mi> <mml:mo>(</mml:mo> <mml:mn>5</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , and we get the corresponding two integrable hierarchies. Finally, we discuss the relation between the integrable hierarchies of two different bases associated with Lie algebra $$mathfrak {so}(5)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>so</mml:mi> <mml:mo>(</mml:mo> <mml:mn>5</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> .","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134961124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Meromorphic Solutions of Non-linear Differential-Difference Equations 非线性微分-差分方程的亚纯解
4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-26 DOI: 10.1007/s44198-023-00136-2
MingXin Zhao, Zhigang Huang
Abstract In this paper, we investigate the non-existence of transcendental entire solutions for non-linear differential-difference equations of the forms $$begin{aligned} f^{n}(z)+Q(z,f)=beta _{1}e^{alpha _{1}z}+beta _{2}e^{alpha _{2}z}+cdots +beta _{s}e^{alpha _{s}z} end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msup> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>Q</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>z</mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mi>z</mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>β</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>s</mml:mi> </mml:msub> <mml:mi>z</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> and $$begin{aligned} f^{n}(z)f^{(k)}(z)+L_d(z,f)=sum ^{s}_{i=1}p_i(z)e^{alpha _i{(z)}}, end{aligned}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:msup> <mml:mi>f</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>f</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:munderover> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>s</mml:mi> </mml:munderover> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> where n , s are positive integers, $$nge s+2,$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo>
摘要本文研究了$$begin{aligned} f^{n}(z)+Q(z,f)=beta _{1}e^{alpha _{1}z}+beta _{2}e^{alpha _{2}z}+cdots +beta _{s}e^{alpha _{s}z} end{aligned}$$ f n (z) + Q (z, f) = β 1 e α 1 z + β 2 e α 2 z +⋯⋯+ β s e α s z和$$begin{aligned} f^{n}(z)f^{(k)}(z)+L_d(z,f)=sum ^{s}_{i=1}p_i(z)e^{alpha _i{(z)}}, end{aligned}$$ f n (z) f (k) (z) + L d (z, f) =∑i = 1 s p i (z) e α i (z),其中n, s为正整数,$$nge s+2,$$ n≥s + 2, Q (z),F)是F中阶为d的微分-差分多项式。
{"title":"On Meromorphic Solutions of Non-linear Differential-Difference Equations","authors":"MingXin Zhao, Zhigang Huang","doi":"10.1007/s44198-023-00136-2","DOIUrl":"https://doi.org/10.1007/s44198-023-00136-2","url":null,"abstract":"Abstract In this paper, we investigate the non-existence of transcendental entire solutions for non-linear differential-difference equations of the forms $$begin{aligned} f^{n}(z)+Q(z,f)=beta _{1}e^{alpha _{1}z}+beta _{2}e^{alpha _{2}z}+cdots +beta _{s}e^{alpha _{s}z} end{aligned}$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mtable&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mi&gt;Q&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;β&lt;/mml:mi&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;e&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;β&lt;/mml:mi&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;e&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;/mml:msub&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:mo&gt;⋯&lt;/mml:mo&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;β&lt;/mml:mi&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;e&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;/mml:mrow&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;/mml:mtable&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; and $$begin{aligned} f^{n}(z)f^{(k)}(z)+L_d(z,f)=sum ^{s}_{i=1}p_i(z)e^{alpha _i{(z)}}, end{aligned}$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mtable&gt; &lt;mml:mtr&gt; &lt;mml:mtd&gt; &lt;mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;+&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;L&lt;/mml:mi&gt; &lt;mml:mi&gt;d&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:munderover&gt; &lt;mml:mo&gt;∑&lt;/mml:mo&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;i&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;s&lt;/mml:mi&gt; &lt;/mml:munderover&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mi&gt;i&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:msup&gt; &lt;mml:mi&gt;e&lt;/mml:mi&gt; &lt;mml:mrow&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;mml:mi&gt;i&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;z&lt;/mml:mi&gt; &lt;mml:mo&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:mtd&gt; &lt;/mml:mtr&gt; &lt;/mml:mtable&gt; &lt;/mml:mrow&gt; &lt;/mml:math&gt; where n , s are positive integers, $$nge s+2,$$ &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;mml:mo&gt;≥&lt;/mml:mo&gt;","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Lie Algebroid Structure for Vector Bundles of Finite Rank Isomorphic to Tangent Bundle of Their Base Space 有限秩向量束与基空间切束同构的李代数结构
4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-20 DOI: 10.1007/s44198-023-00135-3
Akbar Dehghan Nezhad, Mina Moghaddam Zeabadi
Abstract We define a Lie algebroid structure for a class of vector bundles of rank k over a k -dimensional smooth manifold W , which are isomorphic to the tangent bundle TW . We construct an exciting example of these types of vector bundles. This example is constructed based on partial Caputo fractional derivatives. We call this vector bundle a fractional vector bundle and denote it by $${mathscr {F}}^{nu } {mathscr {W}}$$ F ν W .
摘要定义了k维光滑流形W上一类秩k的向量束的李代数结构,它们与切束TW同构。我们构造了这类向量束的一个令人兴奋的例子。这个例子是基于偏卡普托分数阶导数构造的。我们称这个向量束为分数向量束,用$${mathscr {F}}^{nu } {mathscr {W}}$$ F ν W表示。
{"title":"A Lie Algebroid Structure for Vector Bundles of Finite Rank Isomorphic to Tangent Bundle of Their Base Space","authors":"Akbar Dehghan Nezhad, Mina Moghaddam Zeabadi","doi":"10.1007/s44198-023-00135-3","DOIUrl":"https://doi.org/10.1007/s44198-023-00135-3","url":null,"abstract":"Abstract We define a Lie algebroid structure for a class of vector bundles of rank k over a k -dimensional smooth manifold W , which are isomorphic to the tangent bundle TW . We construct an exciting example of these types of vector bundles. This example is constructed based on partial Caputo fractional derivatives. We call this vector bundle a fractional vector bundle and denote it by $${mathscr {F}}^{nu } {mathscr {W}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>F</mml:mi> </mml:mrow> <mml:mi>ν</mml:mi> </mml:msup> <mml:mi>W</mml:mi> </mml:mrow> </mml:math> .","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"172 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136308354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Percolation Analysis of COVID-19 Epidemic COVID-19流行的渗透分析
4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-13 DOI: 10.1007/s44198-023-00139-z
Ramin Kazemi, Mohammad Qasem Vahidi-Asl
Abstract The spread of COVID-19 can be greatly influenced by human mobility. However, implementing control measures based on restrictions can be costly. That is why it is crucial to develop a quarantine strategy that can minimize the spread of the disease while also reducing costs. This article focuses on determining the percolation threshold of COVID-19 in Tehran province using a square lattice and two types of city connections. The study identifies the number of roads that need to be closed and the cities that should be quarantined. Monte Carlo simulations using the Newman and Ziff and Union-Find algorithms were conducted through the $$text {SEAIRD}$$ SEAIRD model to assess the effectiveness of the proposed measures. The results showed a possible reduction of 81 $$%$$ % in disease spread. This approach can be used in other regions to assist in the development of public health policies.
COVID-19的传播受人员流动的影响很大。然而,基于限制实施控制措施可能代价高昂。这就是为什么制定一种既能最大限度地减少疾病传播又能降低成本的隔离战略至关重要。本文的重点是使用方形网格和两种类型的城市连接来确定德黑兰省COVID-19的渗透阈值。该研究确定了需要关闭的道路数量和应该隔离的城市。通过$$text {SEAIRD}$$ SEAIRD模型,使用Newman和Ziff以及Union-Find算法进行蒙特卡罗模拟,以评估所提出措施的有效性。结果显示可能减少81 $$%$$ % in disease spread. This approach can be used in other regions to assist in the development of public health policies.
{"title":"Percolation Analysis of COVID-19 Epidemic","authors":"Ramin Kazemi, Mohammad Qasem Vahidi-Asl","doi":"10.1007/s44198-023-00139-z","DOIUrl":"https://doi.org/10.1007/s44198-023-00139-z","url":null,"abstract":"Abstract The spread of COVID-19 can be greatly influenced by human mobility. However, implementing control measures based on restrictions can be costly. That is why it is crucial to develop a quarantine strategy that can minimize the spread of the disease while also reducing costs. This article focuses on determining the percolation threshold of COVID-19 in Tehran province using a square lattice and two types of city connections. The study identifies the number of roads that need to be closed and the cities that should be quarantined. Monte Carlo simulations using the Newman and Ziff and Union-Find algorithms were conducted through the $$text {SEAIRD}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mtext>SEAIRD</mml:mtext> </mml:math> model to assess the effectiveness of the proposed measures. The results showed a possible reduction of 81 $$%$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>%</mml:mo> </mml:math> in disease spread. This approach can be used in other regions to assist in the development of public health policies.","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135741872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Symplectic Simulation on Soliton-Collision for Nonlinear Perturbed Schrödinger Equation 非线性摄动Schrödinger方程孤子碰撞的多辛模拟
4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-05 DOI: 10.1007/s44198-023-00137-1
Peijun Zhang, Weipeng Hu, Zhen Wang, Zhijun Qiao
Abstract Seeking solitary wave solutions and revealing their interactional characteristics for nonlinear evolution equations help us lot to comprehend the motion laws of the microparticles. As a local nonlinear dynamic behavior, the soliton-collision is difficult to be reproduced numerically. In this paper, the soliton-collision process in the nonlinear perturbed Schrödinger equation is simulated employing the multi-symplectic method. The multi-symplectic formulations are derived including the multi-symplectic form and three local conservation laws of the nonlinear perturbed Schrödinger equation. Employing the implicit midpoint rule, we construct a multi-symplectic scheme, which is equivalent to the Preissmann box scheme, for the nonlinear perturbed Schrödinger equation. The elegant structure-preserving properties of the multi-symplectic scheme are illustrated by the tiny maximum absolute residual of the discrete multi-symplectic structure at each time step in the numerical simulations. The effects of the perturbation strength on the soliton-collision in the nonlinear perturbed Schrödinger equation are reported in the numerical results in detail.
寻求非线性演化方程的孤立波解,揭示其相互作用特性,有助于我们更好地理解微粒的运动规律。孤子碰撞作为一种局部非线性动力学行为,很难用数值方法模拟。本文采用多辛方法模拟了非线性摄动Schrödinger方程中的孤子碰撞过程。导出了非线性摄动Schrödinger方程的多辛表达式,包括多辛形式和三个局部守恒定律。对于非线性摄动Schrödinger方程,我们采用隐式中点规则构造了一个等价于Preissmann盒格式的多辛格式。在数值模拟中,离散多辛结构在每个时间步长的极小最大绝对残差说明了多辛格式的优美的保结构特性。数值结果详细报道了扰动强度对非线性摄动Schrödinger方程孤子碰撞的影响。
{"title":"Multi-Symplectic Simulation on Soliton-Collision for Nonlinear Perturbed Schrödinger Equation","authors":"Peijun Zhang, Weipeng Hu, Zhen Wang, Zhijun Qiao","doi":"10.1007/s44198-023-00137-1","DOIUrl":"https://doi.org/10.1007/s44198-023-00137-1","url":null,"abstract":"Abstract Seeking solitary wave solutions and revealing their interactional characteristics for nonlinear evolution equations help us lot to comprehend the motion laws of the microparticles. As a local nonlinear dynamic behavior, the soliton-collision is difficult to be reproduced numerically. In this paper, the soliton-collision process in the nonlinear perturbed Schrödinger equation is simulated employing the multi-symplectic method. The multi-symplectic formulations are derived including the multi-symplectic form and three local conservation laws of the nonlinear perturbed Schrödinger equation. Employing the implicit midpoint rule, we construct a multi-symplectic scheme, which is equivalent to the Preissmann box scheme, for the nonlinear perturbed Schrödinger equation. The elegant structure-preserving properties of the multi-symplectic scheme are illustrated by the tiny maximum absolute residual of the discrete multi-symplectic structure at each time step in the numerical simulations. The effects of the perturbation strength on the soliton-collision in the nonlinear perturbed Schrödinger equation are reported in the numerical results in detail.","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds 三维洛伦兹沃克流形上的广义Ricci孤子
IF 0.7 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-08-18 DOI: 10.1007/s44198-023-00134-4
V. Pirhadi, Gh. Fasihi-Ramandi, S. Azami
{"title":"Generalized Ricci Solitons on Three-Dimensional Lorentzian Walker Manifolds","authors":"V. Pirhadi, Gh. Fasihi-Ramandi, S. Azami","doi":"10.1007/s44198-023-00134-4","DOIUrl":"https://doi.org/10.1007/s44198-023-00134-4","url":null,"abstract":"","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48998465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fractional Perspective on the Dynamics of HIV, Considering the Interaction of Viruses and Immune System with the Effect of Antiretroviral Therapy 考虑病毒和免疫系统相互作用与抗逆转录病毒治疗效果的HIV动力学的分数观点
IF 0.7 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-08-05 DOI: 10.1007/s44198-023-00133-5
Tao-Qian Tang, Rashid Jan, H. Ahmad, Z. Shah, N. Vrinceanu, Mihaela Racheriu
{"title":"A Fractional Perspective on the Dynamics of HIV, Considering the Interaction of Viruses and Immune System with the Effect of Antiretroviral Therapy","authors":"Tao-Qian Tang, Rashid Jan, H. Ahmad, Z. Shah, N. Vrinceanu, Mihaela Racheriu","doi":"10.1007/s44198-023-00133-5","DOIUrl":"https://doi.org/10.1007/s44198-023-00133-5","url":null,"abstract":"","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46914146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotics of Solutions for Periodic Problem for the Korteweg-de Vries Equation with Landau Damping, Pumping and Higher Order Convective Non Linearity 具有朗道阻尼、抽运和高阶对流非线性的Korteweg-de Vries方程周期问题解的渐近性
IF 0.7 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED Pub Date : 2023-07-31 DOI: 10.1007/s44198-023-00131-7
B. Juárez-Campos, J. Villela‐Aguilar, Rafael Carreño-Bolaños
{"title":"Asymptotics of Solutions for Periodic Problem for the Korteweg-de Vries Equation with Landau Damping, Pumping and Higher Order Convective Non Linearity","authors":"B. Juárez-Campos, J. Villela‐Aguilar, Rafael Carreño-Bolaños","doi":"10.1007/s44198-023-00131-7","DOIUrl":"https://doi.org/10.1007/s44198-023-00131-7","url":null,"abstract":"","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52860191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nonlinear Mathematical Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1