Breast cancer is the most prevalent malignancy among women worldwide, with breast cancer stem cells (BCSCs) being the primary drivers of metastasis and recurrence. Numerous studies have elucidated the relationship between ferroptosis and cellular stemness, identifying the Xc- system as a key regulatory mechanism governing ferroptosis. However, the interplay between CAV1 and ferroptosis, along with its implications for stemness in breast cancer, remains inadequately understood. This gap in knowledge impedes advancements in targeted therapies for breast cancer. We employed immunohistochemistry and bioinformatics analyses to demonstrate the downregulation of CAV1 in breast cancer tissues. Additionally, we utilized CCK-8 assays, EDU staining, and Transwell assays to assess cell proliferation, migration, and invasion capabilities. Furthermore, we evaluated indicators associated with ferroptosis while examining markers related to stemness through sphere culture experiments and flow cytometry techniques. Our findings indicate that CAV1 expression can induce cell death via ferroptosis while simultaneously inhibiting both cell proliferation and features of stemness by upregulating IFNGR1 and promoting ferroptosis. Moreover, our in vivo experiments revealed that overexpression of CAV1 enhances the efficacy of anti-PD-1 therapy. In conclusion, our study elucidates the regulatory role of CAV1 on ferroptosis within breast cancer contexts; it suppresses BCSC characteristics while positioning CAV1 as a promising therapeutic target for combating this disease.