Pub Date : 2024-02-15DOI: 10.1007/s10237-023-01814-2
Caleb C. Berggren, David Jiang, Y. F. Jack Wang, Jake A. Bergquist, Lindsay C. Rupp, Zexin Liu, Rob S. MacLeod, Akil Narayan, Lucas H. Timmins
Central to the clinical adoption of patient-specific modeling strategies is demonstrating that simulation results are reliable and safe. Indeed, simulation frameworks must be robust to uncertainty in model input(s), and levels of confidence should accompany results. In this study, we applied a coupled uncertainty quantification–finite element (FE) framework to understand the impact of uncertainty in vascular material properties on variability in predicted stresses. Univariate probability distributions were fit to material parameters derived from layer-specific mechanical behavior testing of human coronary tissue. Parameters were assumed to be probabilistically independent, allowing for efficient parameter ensemble sampling. In an idealized coronary artery geometry, a forward FE model for each parameter ensemble was created to predict tissue stresses under physiologic loading. An emulator was constructed within the UncertainSCI software using polynomial chaos techniques, and statistics and sensitivities were directly computed. Results demonstrated that material parameter uncertainty propagates to variability in predicted stresses across the vessel wall, with the largest dispersions in stress within the adventitial layer. Variability in stress was most sensitive to uncertainties in the anisotropic component of the strain energy function. Moreover, unary and binary interactions within the adventitial layer were the main contributors to stress variance, and the leading factor in stress variability was uncertainty in the stress-like material parameter that describes the contribution of the embedded fibers to the overall artery stiffness. Results from a patient-specific coronary model confirmed many of these findings. Collectively, these data highlight the impact of material property variation on uncertainty in predicted artery stresses and present a pipeline to explore and characterize forward model uncertainty in computational biomechanics.
{"title":"Influence of material parameter variability on the predicted coronary artery biomechanical environment via uncertainty quantification","authors":"Caleb C. Berggren, David Jiang, Y. F. Jack Wang, Jake A. Bergquist, Lindsay C. Rupp, Zexin Liu, Rob S. MacLeod, Akil Narayan, Lucas H. Timmins","doi":"10.1007/s10237-023-01814-2","DOIUrl":"10.1007/s10237-023-01814-2","url":null,"abstract":"<div><p>Central to the clinical adoption of patient-specific modeling strategies is demonstrating that simulation results are reliable and safe. Indeed, simulation frameworks must be robust to uncertainty in model input(s), and levels of confidence should accompany results. In this study, we applied a coupled uncertainty quantification–finite element (FE) framework to understand the impact of uncertainty in vascular material properties on variability in predicted stresses. Univariate probability distributions were fit to material parameters derived from layer-specific mechanical behavior testing of human coronary tissue. Parameters were assumed to be probabilistically independent, allowing for efficient parameter ensemble sampling. In an idealized coronary artery geometry, a forward FE model for each parameter ensemble was created to predict tissue stresses under physiologic loading. An emulator was constructed within the UncertainSCI software using polynomial chaos techniques, and statistics and sensitivities were directly computed. Results demonstrated that material parameter uncertainty propagates to variability in predicted stresses across the vessel wall, with the largest dispersions in stress within the adventitial layer. Variability in stress was most sensitive to uncertainties in the anisotropic component of the strain energy function. Moreover, unary and binary interactions within the adventitial layer were the main contributors to stress variance, and the leading factor in stress variability was uncertainty in the stress-like material parameter that describes the contribution of the embedded fibers to the overall artery stiffness. Results from a patient-specific coronary model confirmed many of these findings. Collectively, these data highlight the impact of material property variation on uncertainty in predicted artery stresses and present a pipeline to explore and characterize forward model uncertainty in computational biomechanics.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"927 - 940"},"PeriodicalIF":3.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.1007/s10237-024-01819-5
Ashish Siddharth, Ajay Bhandari, Sarthak S. Singh, Arun Dayal Udai
Although intravitreal (IVT) injections provide several advantages in treating posterior segment eye diseases, several associated challenges remain. The current study uses the finite element method (FEM) to highlight the effect of IVT needle rotation along the insertion axis on the reaction forces and deformation inside the eye. A comparison of the reaction forces at the eye’s key locations has been made with and without rotation. In addition, a sensitivity analysis of various parameters, such as the needle’s angular speed, insertion location, angle, gauge, shape, and intraocular pressure (IOP), has been carried out to delineate the individual parameter’s effect on reaction forces during rotation. Results demonstrate that twisting the needle significantly reduces the reaction forces at the penetration location and throughout the needle travel length, resulting in quicker penetration. Moreover, ocular biomechanics are influenced by needle insertion location, angle, shape, size, and IOP. The reaction forces incurred by the patient may be reduced by using a bevel needle of the higher gauge when inserted close to the normal of the local scleral surface toward the orra serrata within the Pars Plana region. Results obtained from the current study can deepen the understanding of the twisting needle’s interaction with the ocular tissue.
{"title":"Effect of twisting of intravitreal injections on ocular bio-mechanics: a novel insight to ocular surgery","authors":"Ashish Siddharth, Ajay Bhandari, Sarthak S. Singh, Arun Dayal Udai","doi":"10.1007/s10237-024-01819-5","DOIUrl":"10.1007/s10237-024-01819-5","url":null,"abstract":"<div><p>Although intravitreal (IVT) injections provide several advantages in treating posterior segment eye diseases, several associated challenges remain. The current study uses the finite element method (FEM) to highlight the effect of IVT needle rotation along the insertion axis on the reaction forces and deformation inside the eye. A comparison of the reaction forces at the eye’s key locations has been made with and without rotation. In addition, a sensitivity analysis of various parameters, such as the needle’s angular speed, insertion location, angle, gauge, shape, and intraocular pressure (IOP), has been carried out to delineate the individual parameter’s effect on reaction forces during rotation. Results demonstrate that twisting the needle significantly reduces the reaction forces at the penetration location and throughout the needle travel length, resulting in quicker penetration. Moreover, ocular biomechanics are influenced by needle insertion location, angle, shape, size, and IOP. The reaction forces incurred by the patient may be reduced by using a bevel needle of the higher gauge when inserted close to the normal of the local scleral surface toward the orra serrata within the Pars Plana region. Results obtained from the current study can deepen the understanding of the twisting needle’s interaction with the ocular tissue.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"1013 - 1030"},"PeriodicalIF":3.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><p>In complex cardiovascular surgical reconstructions, conduit materials that avoid possible large-scale structural deformations should be considered. A fundamental mode of mechanical complication is torsional buckling which occurs at the anastomosis site due to the mechanical instability, leading surgical conduit/patch surface deformation. The objective of this study is to investigate the torsional buckling behavior of commonly used materials and to develop a practical method for estimating the critical buckling rotation angle under physiological intramural vessel pressures. For this task, mechanical tests of four clinically approved materials, expanded polytetrafluoroethylene (ePTFE), Dacron, porcine and bovine pericardia, commonly used in pediatric cardiovascular surgeries, are conducted (<i>n</i> = 6). Torsional buckling initiation tests with <i>n</i> = 4 for the baseline case (<i>L</i> = 7.5 cm) and <i>n</i> = 3 for the validation of ePTFE (<i>L</i> = 15 cm) and Dacron (<i>L</i> = 15 cm and <i>L</i> = 25 cm) for each are also conducted at low venous pressures. A practical predictive formulation for the buckling potential is proposed using experimental observations and available theory. The relationship between the critical buckling rotation angle and the lumen pressure is determined by balancing the circumferential component of the compressive principal stress with the shear stress generated by the modified critical buckling torque, where the modified critical buckling torque depends linearly on the lumen pressure. While the proposed technique successfully predicted the critical rotation angle values lying within two standard deviations of the mean in the baseline case for all four materials at all lumen pressures, it could reliably predict the critical buckling rotation angles for ePTFE and Dacron samples of length 15 cm with maximum relative errors of 31% and 38%, respectively, in the validation phase. However, the validation of the performance of the technique demonstrated lower accuracy for Dacron samples of length 25 cm at higher pressure levels of 12 mmHg and 15 mmHg. Applicable to all surgical materials, this formulation enables surgeons to assess the torsional buckling potential of vascular conduits noninvasively. Bovine pericardium has been found to exhibit the highest stability, while Dacron (the lowest) and porcine pericardium have been identified as the least stable with the (unitless) torsional buckling resistance constants, 43,800, 12,300 and 14,000, respectively. There was no significant difference between ePTFE and Dacron, and between porcine and bovine pericardia. However, both porcine and bovine pericardia were found to be statistically different from ePTFE and Dacron individually (<i>p</i> < 0.0001). ePTFE exhibited highly nonlinear behavior across the entire strain range [0, 0.1] (or 10% elongation). The significant differences among the surgical materials reported here require special care in conduit construction
{"title":"Mechanical characterization and torsional buckling of pediatric cardiovascular materials","authors":"Samir Donmazov, Senol Piskin, Tansu Gölcez, Demet Kul, Ahmet Arnaz, Kerem Pekkan","doi":"10.1007/s10237-023-01809-z","DOIUrl":"10.1007/s10237-023-01809-z","url":null,"abstract":"<div><p>In complex cardiovascular surgical reconstructions, conduit materials that avoid possible large-scale structural deformations should be considered. A fundamental mode of mechanical complication is torsional buckling which occurs at the anastomosis site due to the mechanical instability, leading surgical conduit/patch surface deformation. The objective of this study is to investigate the torsional buckling behavior of commonly used materials and to develop a practical method for estimating the critical buckling rotation angle under physiological intramural vessel pressures. For this task, mechanical tests of four clinically approved materials, expanded polytetrafluoroethylene (ePTFE), Dacron, porcine and bovine pericardia, commonly used in pediatric cardiovascular surgeries, are conducted (<i>n</i> = 6). Torsional buckling initiation tests with <i>n</i> = 4 for the baseline case (<i>L</i> = 7.5 cm) and <i>n</i> = 3 for the validation of ePTFE (<i>L</i> = 15 cm) and Dacron (<i>L</i> = 15 cm and <i>L</i> = 25 cm) for each are also conducted at low venous pressures. A practical predictive formulation for the buckling potential is proposed using experimental observations and available theory. The relationship between the critical buckling rotation angle and the lumen pressure is determined by balancing the circumferential component of the compressive principal stress with the shear stress generated by the modified critical buckling torque, where the modified critical buckling torque depends linearly on the lumen pressure. While the proposed technique successfully predicted the critical rotation angle values lying within two standard deviations of the mean in the baseline case for all four materials at all lumen pressures, it could reliably predict the critical buckling rotation angles for ePTFE and Dacron samples of length 15 cm with maximum relative errors of 31% and 38%, respectively, in the validation phase. However, the validation of the performance of the technique demonstrated lower accuracy for Dacron samples of length 25 cm at higher pressure levels of 12 mmHg and 15 mmHg. Applicable to all surgical materials, this formulation enables surgeons to assess the torsional buckling potential of vascular conduits noninvasively. Bovine pericardium has been found to exhibit the highest stability, while Dacron (the lowest) and porcine pericardium have been identified as the least stable with the (unitless) torsional buckling resistance constants, 43,800, 12,300 and 14,000, respectively. There was no significant difference between ePTFE and Dacron, and between porcine and bovine pericardia. However, both porcine and bovine pericardia were found to be statistically different from ePTFE and Dacron individually (<i>p</i> < 0.0001). ePTFE exhibited highly nonlinear behavior across the entire strain range [0, 0.1] (or 10% elongation). The significant differences among the surgical materials reported here require special care in conduit construction","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"845 - 860"},"PeriodicalIF":3.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-15DOI: 10.1007/s10237-023-01795-2
Alberto Coccarelli, Sanjay Pant, Ioannis Polydoros, Osama F. Harraz
{"title":"Correction to: A new model for evaluating pressure‑induced vascular tone in small cerebral arteries","authors":"Alberto Coccarelli, Sanjay Pant, Ioannis Polydoros, Osama F. Harraz","doi":"10.1007/s10237-023-01795-2","DOIUrl":"10.1007/s10237-023-01795-2","url":null,"abstract":"","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 2","pages":"707 - 707"},"PeriodicalIF":3.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10963469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.1007/s10237-023-01815-1
Raphael Jakob, Ben R. Britt, Costanza Giampietro, Edoardo Mazza, Alexander E. Ehret
Endothelial cell monolayers line the inner surfaces of blood and lymphatic vessels. They are continuously exposed to different mechanical loads, which may trigger mechanobiological signals and hence play a role in both physiological and pathological processes. Computer-based mechanical models of cells contribute to a better understanding of the relation between cell-scale loads and cues and the mechanical state of the hosting tissue. However, the confluency of the endothelial monolayer complicates these approaches since the intercellular cross-talk needs to be accounted for in addition to the cytoskeletal mechanics of the individual cells themselves. As a consequence, the computational approach must be able to efficiently model a large number of cells and their interaction. Here, we simulate cytoskeletal mechanics by means of molecular dynamics software, generally suitable to deal with large, locally interacting systems. Methods were developed to generate models of single cells and large monolayers with hundreds of cells. The single-cell model was considered for a comparison with experimental data. To this end, we simulated cell interactions with a continuous, deformable substrate, and computationally replicated multistep traction force microscopy experiments on endothelial cells. The results indicate that cell discrete network models are able to capture relevant features of the mechanical behaviour and are thus well-suited to investigate the mechanics of the large cytoskeletal network of individual cells and cell monolayers.
{"title":"Discrete network models of endothelial cells and their interactions with the substrate","authors":"Raphael Jakob, Ben R. Britt, Costanza Giampietro, Edoardo Mazza, Alexander E. Ehret","doi":"10.1007/s10237-023-01815-1","DOIUrl":"10.1007/s10237-023-01815-1","url":null,"abstract":"<div><p>Endothelial cell monolayers line the inner surfaces of blood and lymphatic vessels. They are continuously exposed to different mechanical loads, which may trigger mechanobiological signals and hence play a role in both physiological and pathological processes. Computer-based mechanical models of cells contribute to a better understanding of the relation between cell-scale loads and cues and the mechanical state of the hosting tissue. However, the confluency of the endothelial monolayer complicates these approaches since the intercellular cross-talk needs to be accounted for in addition to the cytoskeletal mechanics of the individual cells themselves. As a consequence, the computational approach must be able to efficiently model a large number of cells and their interaction. Here, we simulate cytoskeletal mechanics by means of molecular dynamics software, generally suitable to deal with large, locally interacting systems. Methods were developed to generate models of single cells and large monolayers with hundreds of cells. The single-cell model was considered for a comparison with experimental data. To this end, we simulated cell interactions with a continuous, deformable substrate, and computationally replicated multistep traction force microscopy experiments on endothelial cells. The results indicate that cell discrete network models are able to capture relevant features of the mechanical behaviour and are thus well-suited to investigate the mechanics of the large cytoskeletal network of individual cells and cell monolayers.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"941 - 957"},"PeriodicalIF":3.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139728681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1007/s10237-024-01822-w
Jiacheng Yao, John Crockett, Mathias D’Souza, Gavin A. Day, Ruth K. Wilcox, Alison C. Jones, Marlène Mengoni
Finite element studies of the tibiofemoral joint have increased use in research, with attention often placed on the material models. Few studies assess the effect of meniscus modelling assumptions in image-based models on contact mechanics outcomes. This work aimed to assess the effect of modelling assumptions of the meniscus on knee contact mechanics and meniscus kinematics. A sensitivity analysis was performed using three specimen-specific tibiofemoral models and one generic knee model. The assumptions in representing the meniscus attachment on the tibia (shape of the roots and position of the attachment), the material properties of the meniscus, the shape of the meniscus and the alignment of the joint were evaluated, creating 40 model instances. The values of material parameters for the meniscus and the position of the root attachment had a small influence on the total contact area but not on the meniscus displacement or the force balance between condyles. Using 3D shapes to represent the roots instead of springs had a large influence in meniscus displacement but not in knee contact area. Changes in meniscus shape and in knee alignment had a significantly larger influence on all outcomes of interest, with differences two to six times larger than those due to material properties. The sensitivity study demonstrated the importance of meniscus shape and knee alignment on meniscus kinematics and knee contact mechanics, both being more important than the material properties or the position of the roots. It also showed that differences between knees were large, suggesting that clinical interpretations of modelling studies using single geometries should be avoided.
{"title":"Effect of meniscus modelling assumptions in a static tibiofemoral finite element model: importance of geometry over material","authors":"Jiacheng Yao, John Crockett, Mathias D’Souza, Gavin A. Day, Ruth K. Wilcox, Alison C. Jones, Marlène Mengoni","doi":"10.1007/s10237-024-01822-w","DOIUrl":"10.1007/s10237-024-01822-w","url":null,"abstract":"<div><p>Finite element studies of the tibiofemoral joint have increased use in research, with attention often placed on the material models. Few studies assess the effect of meniscus modelling assumptions in image-based models on contact mechanics outcomes. This work aimed to assess the effect of modelling assumptions of the meniscus on knee contact mechanics and meniscus kinematics. A sensitivity analysis was performed using three specimen-specific tibiofemoral models and one generic knee model. The assumptions in representing the meniscus attachment on the tibia (shape of the roots and position of the attachment), the material properties of the meniscus, the shape of the meniscus and the alignment of the joint were evaluated, creating 40 model instances. The values of material parameters for the meniscus and the position of the root attachment had a small influence on the total contact area but not on the meniscus displacement or the force balance between condyles. Using 3D shapes to represent the roots instead of springs had a large influence in meniscus displacement but not in knee contact area. Changes in meniscus shape and in knee alignment had a significantly larger influence on all outcomes of interest, with differences two to six times larger than those due to material properties. The sensitivity study demonstrated the importance of meniscus shape and knee alignment on meniscus kinematics and knee contact mechanics, both being more important than the material properties or the position of the roots. It also showed that differences between knees were large, suggesting that clinical interpretations of modelling studies using single geometries should be avoided.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"1055 - 1065"},"PeriodicalIF":3.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-11DOI: 10.1007/s10237-024-01816-8
Michelle Spanjaards, Finja Borowski, Laura Supp, René Ubachs, Valentina Lavezzo, Olaf van der Sluis
In silico simulations can be used to evaluate and optimize the safety, quality, efficacy and applicability of medical devices. Furthermore, in silico modeling is a powerful tool in therapy planning to optimally tailor treatment for each patient. For this purpose, a workflow to perform fast preoperative risk assessment of paravalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) is presented in this paper. To this end, a novel, efficient method is introduced to calculate the regurgitant volume in a simplified, but sufficiently accurate manner. A proof of concept of the method is obtained by comparison of the calculated results with results obtained from in vitro experiments. Furthermore, computational fluid dynamics (CFD) simulations are used to validate more complex stenosis scenarios. Comparing the simplified leakage model to CFD simulations reveals its potential for procedure planning and qualitative preoperative risk assessment of PVL. Finally, a 3D device deployment model and the efficient leakage model are combined to showcase the application of the presented leakage model, by studying the effect of stent size and the degree of stenosis on the regurgitant volume. The presented leakage model is also used to visualize the leakage path. To generalize the leakage model to a wide range of clinical applications, further validation on a large cohort of patients is needed to validate the accuracy of the model’s prediction under various patient-specific conditions.
{"title":"A fast in silico model for preoperative risk assessment of paravalvular leakage","authors":"Michelle Spanjaards, Finja Borowski, Laura Supp, René Ubachs, Valentina Lavezzo, Olaf van der Sluis","doi":"10.1007/s10237-024-01816-8","DOIUrl":"10.1007/s10237-024-01816-8","url":null,"abstract":"<div><p>In silico simulations can be used to evaluate and optimize the safety, quality, efficacy and applicability of medical devices. Furthermore, in silico modeling is a powerful tool in therapy planning to optimally tailor treatment for each patient. For this purpose, a workflow to perform fast preoperative risk assessment of paravalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) is presented in this paper. To this end, a novel, efficient method is introduced to calculate the regurgitant volume in a simplified, but sufficiently accurate manner. A proof of concept of the method is obtained by comparison of the calculated results with results obtained from in vitro experiments. Furthermore, computational fluid dynamics (CFD) simulations are used to validate more complex stenosis scenarios. Comparing the simplified leakage model to CFD simulations reveals its potential for procedure planning and qualitative preoperative risk assessment of PVL. Finally, a 3D device deployment model and the efficient leakage model are combined to showcase the application of the presented leakage model, by studying the effect of stent size and the degree of stenosis on the regurgitant volume. The presented leakage model is also used to visualize the leakage path. To generalize the leakage model to a wide range of clinical applications, further validation on a large cohort of patients is needed to validate the accuracy of the model’s prediction under various patient-specific conditions.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"959 - 985"},"PeriodicalIF":3.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101555/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139717153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.1007/s10237-023-01813-3
Mengyao Zhou, Patrick José González, Ludo Van Haasterecht, Alperen Soylu, Maria Mihailovski, Paul Van Zuijlen, Marie Louise Groot
The intact and healthy skin forms a barrier to the outside world and protects the body from mechanical impact. The skin is a complex structure with unique mechano-elastic properties. To better direct the design of biomimetic materials and induce skin regeneration in wounds with optimal outcome, more insight is required in how the mechano-elastic properties emerge from the skin’s main constituents, collagen and elastin fibers. Here, we employed two-photon excited autofluorescence and second harmonic generation microscopy to characterize collagen and elastin fibers in 3D in 24 human dermis skin samples. Through uniaxial stretching experiments, we derive uni-directional mechanical properties from resultant stress-strain curves, including the initial Young’s modulus, elastic Young’s modulus, maximal stress, and maximal and mid-strain values. The stress-strain curves show a large variation, with an average Young’s modules in the toe and linear regions of 0.1 MPa and 21 MPa. We performed a comprehensive analysis of the correlation between the key mechanical properties with age and with microstructural parameters, e.g., fiber density, thickness, and orientation. Age was found to correlate negatively with Young’s modulus and collagen density. Moreover, real-time monitoring during uniaxial stretching allowed us to observe changes in collagen and elastin alignment. Elastin fibers aligned significantly in both the heel and linear regions, and the collagen bundles engaged and oriented mainly in the linear region. This research advances our understanding of skin biomechanics and yields input for future first principles full modeling of skin tissue.
{"title":"Uniaxial mechanical stretch properties correlated with three-dimensional microstructure of human dermal skin","authors":"Mengyao Zhou, Patrick José González, Ludo Van Haasterecht, Alperen Soylu, Maria Mihailovski, Paul Van Zuijlen, Marie Louise Groot","doi":"10.1007/s10237-023-01813-3","DOIUrl":"10.1007/s10237-023-01813-3","url":null,"abstract":"<div><p>The intact and healthy skin forms a barrier to the outside world and protects the body from mechanical impact. The skin is a complex structure with unique mechano-elastic properties. To better direct the design of biomimetic materials and induce skin regeneration in wounds with optimal outcome, more insight is required in how the mechano-elastic properties emerge from the skin’s main constituents, collagen and elastin fibers. Here, we employed two-photon excited autofluorescence and second harmonic generation microscopy to characterize collagen and elastin fibers in 3D in 24 human dermis skin samples. Through uniaxial stretching experiments, we derive uni-directional mechanical properties from resultant stress-strain curves, including the initial Young’s modulus, elastic Young’s modulus, maximal stress, and maximal and mid-strain values. The stress-strain curves show a large variation, with an average Young’s modules in the toe and linear regions of 0.1 MPa and 21 MPa. We performed a comprehensive analysis of the correlation between the key mechanical properties with age and with microstructural parameters, e.g., fiber density, thickness, and orientation. Age was found to correlate negatively with Young’s modulus and collagen density. Moreover, real-time monitoring during uniaxial stretching allowed us to observe changes in collagen and elastin alignment. Elastin fibers aligned significantly in both the heel and linear regions, and the collagen bundles engaged and oriented mainly in the linear region. This research advances our understanding of skin biomechanics and yields input for future first principles full modeling of skin tissue.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"911 - 925"},"PeriodicalIF":3.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101527/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.1007/s10237-023-01805-3
Zhenhai Li
The balance of integrin activation and deactivation regulates its function and mediates cell behaviors. Mechanical force triggers the unbending and activation of integrin. However, how an activated and extended integrin spontaneously bends back is unclear. I performed all-atom molecular dynamics simulations on an integrin or its subunits to reveal the bending-unbending mechanism of integrin. According to the simulations, the integrin structure works like a human arm. The integrin α subunit serves as the bones, while the β leg serves as the bicep. The integrin extension results in the stretching of the β leg, and the extended integrin spontaneously bends as a consequence of the contraction of the β leg. This study provides new insights into the mechanism of how the integrin secures in the bent inactivated state and sheds light on how the integrin could achieve a stable extended state.
{"title":"A molecular arm: the molecular bending–unbending mechanism of integrin","authors":"Zhenhai Li","doi":"10.1007/s10237-023-01805-3","DOIUrl":"10.1007/s10237-023-01805-3","url":null,"abstract":"<div><p>The balance of integrin activation and deactivation regulates its function and mediates cell behaviors. Mechanical force triggers the unbending and activation of integrin. However, how an activated and extended integrin spontaneously bends back is unclear. I performed all-atom molecular dynamics simulations on an integrin or its subunits to reveal the bending-unbending mechanism of integrin. According to the simulations, the integrin structure works like a human arm. The integrin α subunit serves as the bones, while the <i>β</i> leg serves as the bicep. The integrin extension results in the stretching of the <i>β</i> leg, and the extended integrin spontaneously bends as a consequence of the contraction of the <i>β</i> leg. This study provides new insights into the mechanism of how the integrin secures in the bent inactivated state and sheds light on how the integrin could achieve a stable extended state.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"781 - 792"},"PeriodicalIF":3.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139678734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1007/s10237-023-01811-5
Lucas Colabella, Salah Naili, Sophie Le Cann, Guillaume Haiat
In orthopedic and dental surgery, the implantation of biomaterials within the bone to restore the integrity of the treated organ has become a standard procedure. Their long-term stability relies on the osseointegration phenomena, where bone grows onto and around metallic implants, creating a bone-implant interface. Bone is a highly hierarchical material that evolves spatially and temporally during this healing phase. A deeper understanding of its biomechanical characteristics is needed, as they are determinants for surgical success. In this context, we propose a multiscale homogenization model to evaluate the effective elastic properties of bone as a function of the distance from the implant, based on the tissue’s structure and composition at lower scales. The model considers three scales: hydroxyapatite foam (nanoscale), ultrastructure (microscale), and tissue (mesoscale). The elastic properties and the volume fraction of the elementary constituents of bone matrix (mineral, collagen, and water), the orientation of the collagen fibril relative to the implant surface, and the mesoscale porosity constitute the input data of the model. The effect of a spatiotemporal variation in the collagen fibrils’ orientation on the bone anisotropic properties in the proximity of the implant was investigated. The findings revealed a strong variation of the components of the effective elasticity tensor of the bone as a function of the distance from the implant. The effective elasticity appears to be primarily sensitive to the porosity (mesoscale) rather than to the collagen fibrils’ orientation (sub-micro scale). However, the orientation of the fibrils has a significant influence on the isotropy of the bone. When analyzing the symmetry properties of the effective elasticity tensor, the ratio between the isotropic and hexagonal components is determined by a combination of the porosity and the fibrils’ orientation. A decrease in porosity leads to a decrease in bone isotropy and, in turn, an increase in the impact of the fibrils’ orientation. These results demonstrate that the collagen fibril orientation should be taken into account to properly describe the effective elastic anisotropy of bone at the organ scale.
{"title":"Effect of collagen fibril orientation on the anisotropic properties of peri-implant bone","authors":"Lucas Colabella, Salah Naili, Sophie Le Cann, Guillaume Haiat","doi":"10.1007/s10237-023-01811-5","DOIUrl":"10.1007/s10237-023-01811-5","url":null,"abstract":"<div><p>In orthopedic and dental surgery, the implantation of biomaterials within the bone to restore the integrity of the treated organ has become a standard procedure. Their long-term stability relies on the osseointegration phenomena, where bone grows onto and around metallic implants, creating a bone-implant interface. Bone is a highly hierarchical material that evolves spatially and temporally during this healing phase. A deeper understanding of its biomechanical characteristics is needed, as they are determinants for surgical success. In this context, we propose a multiscale homogenization model to evaluate the effective elastic properties of bone as a function of the distance from the implant, based on the tissue’s structure and composition at lower scales. The model considers three scales: hydroxyapatite foam (nanoscale), ultrastructure (microscale), and tissue (mesoscale). The elastic properties and the volume fraction of the elementary constituents of bone matrix (mineral, collagen, and water), the orientation of the collagen fibril relative to the implant surface, and the mesoscale porosity constitute the input data of the model. The effect of a spatiotemporal variation in the collagen fibrils’ orientation on the bone anisotropic properties in the proximity of the implant was investigated. The findings revealed a strong variation of the components of the effective elasticity tensor of the bone as a function of the distance from the implant. The effective elasticity appears to be primarily sensitive to the porosity (mesoscale) rather than to the collagen fibrils’ orientation (sub-micro scale). However, the orientation of the fibrils has a significant influence on the isotropy of the bone. When analyzing the symmetry properties of the effective elasticity tensor, the ratio between the isotropic and hexagonal components is determined by a combination of the porosity and the fibrils’ orientation. A decrease in porosity leads to a decrease in bone isotropy and, in turn, an increase in the impact of the fibrils’ orientation. These results demonstrate that the collagen fibril orientation should be taken into account to properly describe the effective elastic anisotropy of bone at the organ scale.</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 3","pages":"879 - 891"},"PeriodicalIF":3.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139649922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}