Our everyday lives cannot function without intelligent devices, which create the so-called Internet of Things networks. Internet of Things devices have various sensors and software to manage the work environment and perform specific tasks without human intervention. Internet of Things networks require appropriate security at various levels of their operation. In this article, we present a new security protocol that protects communication in IoT networks and enables interconnected devices to communicate and exchange information to increase the security of people living in urban agglomerations. The Control Station device evaluates the collected data about events that may threaten the life or health of residents and then notifies the Emergency Notification Center about it. The protocol guarantees the security of devices and transmitted data. We verified this using automatic verification technology, formal verification using Burrows, Abadi and Needham logic and informal analysis. The proposed protocol ensures mutual authentication, anonymity and revocation. Also, it is resistant to Man-in-the-middle, modification, replay and impersonation attacks. Compared to other protocols, our solution uses simple cryptographic techniques that are lightweight, stable and do not cause problems related to high communication costs. It does not require specialist equipment, so we can implement it using typical hardware. At each stage of protocol execution, communication occurs between two entities, so it does not require interaction between different entities, which may limit its adaptability in the context of interoperability.
With the rapid advancement of wearable devices, sensor-based human activity recognition has emerged as a fundamental research area with broad applications in various domains. While significant progress has been made in this research field, energy consumption remains a critical aspect that deserves special attention. Recognizing human activities while optimizing energy consumption is essential for prolonging device battery life, reducing charging frequency, and ensuring uninterrupted monitoring and functionality.
The primary objective of this survey paper is to provide a comprehensive review of energy-aware wearable human activity recognition techniques based on wearable sensors without considering vision-based systems. In particular, it aims to explore the state-of-the-art approaches and methodologies that integrate activity recognition with energy management strategies. Finally, by surveying the existing literature, this paper aims to shed light on the challenges, opportunities and potential solutions for energy-aware human activity recognition.
Accelerating neural network (NN) controllers is important for improving the performance, efficiency, scalability, and reliability of real-time systems, particularly in resource-constrained embedded systems. This paper introduces a novel weight-dropout method for training neural network controllers in real-time closed-loop systems, aimed at accelerating the embedded implementation for solar inverters. The core idea is to eliminate small-magnitude weights during training, thereby reducing the number of necessary connections while ensuring the network’s convergence. To maintain convergence, only non-diagonal elements of the weight matrices were dropped. This dropout technique was integrated into the Levenberg–Marquardt and Forward Accumulation Through Time algorithms, resulting in more efficient training for trajectory tracking. We executed the proposed training algorithm with dropout on the AWS cloud, observing a performance increase of approximately four times compared to local execution. Furthermore, implementing the neural network controller on the Intel Cyclone V Field Programmable Gate Array (FPGA) demonstrates significant improvements in computational and resource efficiency due to the proposed dropout technique leading to sparse weight matrices. This optimization enhances the suitability of the neural network controller for embedded environments. In comparison to Sturtz et al. (2023), which dropped 11 weights, our approach eliminated 18 weights, significantly boosting resource efficiency. This resulted in a 16.40% reduction in Adaptive Logic Modules (ALMs), decreasing the count to 47,426.5. Combinational Look-Up Tables (LUTs) and dedicated logic registers saw reductions of 17.80% and 15.55%, respectively. However, the impact on block memory bits is minimal, showing only a 1% improvement, indicating that memory resources are less affected by weight dropout. In contrast, the usage of Memory 10 Kilobits (MK10s) dropped from 97 to 87, marking a 10% improvement. We also propose an adaptive dropout technique to further improve the previous results.