Pub Date : 2020-01-01DOI: 10.1177/1756827720930491
S. Gopinathan, A. Bigongiari, M. Heckl
This paper focusses on the relationship between the heat release rate and the acoustic field, which is a crucial element in modelling thermoacoustic instabilities. The aim of the paper is twofold. The first aim is to develop a transformation tool, which makes it easy to switch between the time-domain representation (typically a heat release law involving time-lags) and the frequency-domain representation (typically a flame transfer function) of this relationship. Both representations are characterised by the same set of parameters n1, n2, …, nk. Their number is quite small, and they have a clear physical meaning: they are time-lag dependent coupling coefficients. They are closely linked to the impulse response of the flame in the linear regime in that they are proportional to the discretised (with respect to time) impulse response. In the nonlinear regime, the parameters n1, n2, …, nk become amplitude-dependent. Their interpretation as time-lag dependent coupling coefficients prevails; however, the link with the impulse response is lost. Nonlinear flames are commonly described in the frequency-domain by an amplitude-dependent flame transfer function, the so-called flame describing function. The time-domain equivalent of the flame describing function is sometimes mistaken for a ‘nonlinear impulse response’, but this is not correct. The second aim of this paper is to highlight this misconception and to provide the correct interpretation of the time-domain equivalent of the flame describing function.
{"title":"Analytical approximations for heat release rate laws in the time- and frequency-domains","authors":"S. Gopinathan, A. Bigongiari, M. Heckl","doi":"10.1177/1756827720930491","DOIUrl":"https://doi.org/10.1177/1756827720930491","url":null,"abstract":"This paper focusses on the relationship between the heat release rate and the acoustic field, which is a crucial element in modelling thermoacoustic instabilities. The aim of the paper is twofold. The first aim is to develop a transformation tool, which makes it easy to switch between the time-domain representation (typically a heat release law involving time-lags) and the frequency-domain representation (typically a flame transfer function) of this relationship. Both representations are characterised by the same set of parameters n1, n2, …, nk. Their number is quite small, and they have a clear physical meaning: they are time-lag dependent coupling coefficients. They are closely linked to the impulse response of the flame in the linear regime in that they are proportional to the discretised (with respect to time) impulse response. In the nonlinear regime, the parameters n1, n2, …, nk become amplitude-dependent. Their interpretation as time-lag dependent coupling coefficients prevails; however, the link with the impulse response is lost. Nonlinear flames are commonly described in the frequency-domain by an amplitude-dependent flame transfer function, the so-called flame describing function. The time-domain equivalent of the flame describing function is sometimes mistaken for a ‘nonlinear impulse response’, but this is not correct. The second aim of this paper is to highlight this misconception and to provide the correct interpretation of the time-domain equivalent of the flame describing function.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827720930491","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42790911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.1177/1756827719894464
Siyin Zhou, T. Shi, W. Nie
To study the effects of quasi-direct current discharge plasma on the initiation of a pulse detonation engine at multiple locations, we proposed a double-zones quasi-direct current discharge plasma ignition scheme. Based on the establishment of the plasma-assisted detonation initiation model, the process of detonation wave formation in the mixture of hydrogen and air by single and double ignition zone were studied by numerical method. The wave structure, component evolution history, and Zeldovich–von Neumann–Döring curve after forming a stable detonation wave were all discussed. The simulation results indicate that due to its higher total ignition energy and the synchronous propagation of multiple compression waves, double-zone plasma ignition has a 17.9% shorter deflagration to detonation transition time and 14.2% lower detonation distance compared to the single-zone scheme. The double-zone scheme does not modify the peak flow field temperature and pressure when the stable detonation wave is formed, resulting in smoother pressure and temperature increases.
为了研究准直流放电等离子体对脉冲爆震发动机多位置起爆的影响,提出了一种双区准直流放电等离子体点火方案。在建立等离子体辅助爆轰起爆模型的基础上,采用数值方法研究了氢空气混合气中单、双点火区爆轰波的形成过程。讨论了稳定爆震波形成后的波结构、成分演化历史以及zelovich - von Neumann-Döring曲线。仿真结果表明,双区等离子体点火由于具有较高的点火总能量和多个压缩波的同步传播,比单区方案的爆燃-爆轰过渡时间缩短了17.9%,爆轰距离缩短了14.2%。双区方案不改变稳定爆震波形成时的峰值流场温度和压力,使得压力和温度的升高更加平稳。
{"title":"Study of plasma-assisted detonation initiation by quasi-direct current discharge","authors":"Siyin Zhou, T. Shi, W. Nie","doi":"10.1177/1756827719894464","DOIUrl":"https://doi.org/10.1177/1756827719894464","url":null,"abstract":"To study the effects of quasi-direct current discharge plasma on the initiation of a pulse detonation engine at multiple locations, we proposed a double-zones quasi-direct current discharge plasma ignition scheme. Based on the establishment of the plasma-assisted detonation initiation model, the process of detonation wave formation in the mixture of hydrogen and air by single and double ignition zone were studied by numerical method. The wave structure, component evolution history, and Zeldovich–von Neumann–Döring curve after forming a stable detonation wave were all discussed. The simulation results indicate that due to its higher total ignition energy and the synchronous propagation of multiple compression waves, double-zone plasma ignition has a 17.9% shorter deflagration to detonation transition time and 14.2% lower detonation distance compared to the single-zone scheme. The double-zone scheme does not modify the peak flow field temperature and pressure when the stable detonation wave is formed, resulting in smoother pressure and temperature increases.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827719894464","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44441018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-08-01DOI: 10.1177/1756827719870724
V. Anand, E. Gutmark
Recent years have witnessed a significant growth in the advancement and study of various unsteady combustors because of the prospective stagnation pressure gain offered by them. The pressure gain combustion produced by this class of combustors is poised to produce a step-change increase in the thermodynamic efficiency of gas-turbine engines. The current manuscript is oriented toward presenting a review on the pollutant emission characteristics of these devices; specifically, studies done so far on wave rotor combustors, pulsejet combustors, pulse detonation combustors, and rotating detonation combustors are evaluated. Because of the inherent fluid dynamic unsteadiness peculiar to pressure gain combustion devices, their emissions behavior is not well understood, and is notably different from the more conventional, steady combustors. The global view provided herein is expected to further the understanding of pressure gain combustion systems and ascertain the practicality of implementing them in real-world applications.
{"title":"A review of pollutants emissions in various pressure gain combustors","authors":"V. Anand, E. Gutmark","doi":"10.1177/1756827719870724","DOIUrl":"https://doi.org/10.1177/1756827719870724","url":null,"abstract":"Recent years have witnessed a significant growth in the advancement and study of various unsteady combustors because of the prospective stagnation pressure gain offered by them. The pressure gain combustion produced by this class of combustors is poised to produce a step-change increase in the thermodynamic efficiency of gas-turbine engines. The current manuscript is oriented toward presenting a review on the pollutant emission characteristics of these devices; specifically, studies done so far on wave rotor combustors, pulsejet combustors, pulse detonation combustors, and rotating detonation combustors are evaluated. Because of the inherent fluid dynamic unsteadiness peculiar to pressure gain combustion devices, their emissions behavior is not well understood, and is notably different from the more conventional, steady combustors. The global view provided herein is expected to further the understanding of pressure gain combustion systems and ascertain the practicality of implementing them in real-world applications.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827719870724","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43863109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-07-01DOI: 10.1177/1756827718772496
M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, L. Zigan
This paper reports on the spray structure of the biofuels, ethanol, and butanol generated by a multihole direct-injection spark-ignition injector, which is studied in a constant volume chamber. The spray shape and structure are analyzed using two-phase structured laser illumination planar imaging where both laser-induced fluorescence and Mie-scattering light are recorded simultaneously for the extraction of instantaneous laser-induced fluorescence/Mie-scattering ratio images. Quantitative planar measurements of the droplet Sauter mean diameter are conducted, using calibration data from phase-Doppler anemometry. The resulting Sauter mean diameters are presented for ethanol and butanol at various fuel temperatures at different times after the start of injection. It is found that an increase in fuel temperature results in a faster atomization and higher evaporation rate, which leads to reduced spray tip penetration and smaller droplet Sauter mean diameter. At equivalent conditions, butanol consistently showed larger spray tip penetration in comparison to ethanol. This behavior is due to the higher surface tension and viscosity of butanol resulting in the formation of larger droplets and larger Sauter mean diameters in the whole spray region. Finally, the butanol injection also shows larger cyclic variations in the spray shape from injection to injection which is explained by the internal nozzle flow that is influenced by larger fuel viscosity as well. The Sauter mean diameter distribution is also compared to phase-Doppler anemometry data showing good agreement and an uncertainty analysis of the structured laser illumination planar imaging-laser-induced fluorescence/Mie-scattering technique for planar droplet sizing in direct-injection spark-ignition sprays is presented.
{"title":"Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing","authors":"M. Koegl, Y. N. Mishra, M. Storch, C. Conrad, E. Berrocal, S. Will, L. Zigan","doi":"10.1177/1756827718772496","DOIUrl":"https://doi.org/10.1177/1756827718772496","url":null,"abstract":"This paper reports on the spray structure of the biofuels, ethanol, and butanol generated by a multihole direct-injection spark-ignition injector, which is studied in a constant volume chamber. The spray shape and structure are analyzed using two-phase structured laser illumination planar imaging where both laser-induced fluorescence and Mie-scattering light are recorded simultaneously for the extraction of instantaneous laser-induced fluorescence/Mie-scattering ratio images. Quantitative planar measurements of the droplet Sauter mean diameter are conducted, using calibration data from phase-Doppler anemometry. The resulting Sauter mean diameters are presented for ethanol and butanol at various fuel temperatures at different times after the start of injection. It is found that an increase in fuel temperature results in a faster atomization and higher evaporation rate, which leads to reduced spray tip penetration and smaller droplet Sauter mean diameter. At equivalent conditions, butanol consistently showed larger spray tip penetration in comparison to ethanol. This behavior is due to the higher surface tension and viscosity of butanol resulting in the formation of larger droplets and larger Sauter mean diameters in the whole spray region. Finally, the butanol injection also shows larger cyclic variations in the spray shape from injection to injection which is explained by the internal nozzle flow that is influenced by larger fuel viscosity as well. The Sauter mean diameter distribution is also compared to phase-Doppler anemometry data showing good agreement and an uncertainty analysis of the structured laser illumination planar imaging-laser-induced fluorescence/Mie-scattering technique for planar droplet sizing in direct-injection spark-ignition sprays is presented.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827718772496","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43823872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756827719856237
F. Lückoff, K. Oberleithner
In this study, we apply periodic flow excitation of the precessing vortex core at the centerbody of a swirl-stabilized combustor to investigate the impact of the precessing vortex core on flame shape, flame dynamics, and especially thermoacoustic instabilities. The current control scheme is based on results from linear stability theory that determine the precessing vortex core as a global hydrodynamic instability with its maximum receptivity to open-loop actuation located near the center of the combustor inlet. The control concept is first validated at isothermal conditions. This is of utmost importance for the proceeding studies that focus on the exclusive impact of the precessing vortex core on the combustion dynamics. Subsequently, the control is applied to reacting conditions considering lean premixed turbulent swirl flames. Considering thermoacoustically stable flames first, it is shown that the actuation locks onto the precessing vortex core when it is naturally present in the flame, which allows the precessing vortex core frequency to be controlled. Moreover, the control allows the precessing vortex core to be excited in conditions where it is naturally suppressed by the flame, which yields a very effective possibility to control the precessing vortex core amplitude. The control is then applied to thermoacoustically unstable conditions. Considering perfectly premixed flames first, it is shown that the precessing vortex core actuation has only a minor effect on the thermoacoustic oscillation amplitude. However, we observe a continuous increase of the thermoacoustic frequency with increasing precessing vortex core amplitude due to an upstream displacement of the mean flame and resulting reduction of the convective time delay. Considering partially premixed flames, the precessing vortex core actuation shows a dramatic reduction of the thermoacoustic oscillation amplitude. In consideration of the perfectly premixed cases, we suspect that this is caused by the precessing vortex core-enhanced mixing of equivalence ratio fluctuations at the flame root and due to a reduction of time delays due to mean flame displacement.
{"title":"Excitation of the precessing vortex core by active flow control to suppress thermoacoustic instabilities in swirl flames","authors":"F. Lückoff, K. Oberleithner","doi":"10.1177/1756827719856237","DOIUrl":"https://doi.org/10.1177/1756827719856237","url":null,"abstract":"In this study, we apply periodic flow excitation of the precessing vortex core at the centerbody of a swirl-stabilized combustor to investigate the impact of the precessing vortex core on flame shape, flame dynamics, and especially thermoacoustic instabilities. The current control scheme is based on results from linear stability theory that determine the precessing vortex core as a global hydrodynamic instability with its maximum receptivity to open-loop actuation located near the center of the combustor inlet. The control concept is first validated at isothermal conditions. This is of utmost importance for the proceeding studies that focus on the exclusive impact of the precessing vortex core on the combustion dynamics. Subsequently, the control is applied to reacting conditions considering lean premixed turbulent swirl flames. Considering thermoacoustically stable flames first, it is shown that the actuation locks onto the precessing vortex core when it is naturally present in the flame, which allows the precessing vortex core frequency to be controlled. Moreover, the control allows the precessing vortex core to be excited in conditions where it is naturally suppressed by the flame, which yields a very effective possibility to control the precessing vortex core amplitude. The control is then applied to thermoacoustically unstable conditions. Considering perfectly premixed flames first, it is shown that the precessing vortex core actuation has only a minor effect on the thermoacoustic oscillation amplitude. However, we observe a continuous increase of the thermoacoustic frequency with increasing precessing vortex core amplitude due to an upstream displacement of the mean flame and resulting reduction of the convective time delay. Considering partially premixed flames, the precessing vortex core actuation shows a dramatic reduction of the thermoacoustic oscillation amplitude. In consideration of the perfectly premixed cases, we suspect that this is caused by the precessing vortex core-enhanced mixing of equivalence ratio fluctuations at the flame root and due to a reduction of time delays due to mean flame displacement.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827719856237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46593728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756827718821592
Chunhua Sun, Z. Ning, X. Qiao, M. Lv, Juan Fu, Jin Zhao, Xintao Wang
The pressure drop and particular geometric structure of the nozzle exit region of an effervescent atomizer cause complex changes in the flow pattern, which could affect the spray performance. In this study, the gas–liquid two-phase flow behavior in the nozzle exit region of the effervescent atomizer was investigated numerically. The results show that the flow behaviors in the nozzle exit region have disparate characteristics with different upstream flow regimes. For upstream churn flow, the liquid film morphology is closely related to fluctuation in the gas–liquid velocity, and the flow parameters (fluids’ velocities and gas void fraction) at the exit section vary regularly with time. For upstream bubbly flow, the instantaneous gas void fraction is determined by the bubble distribution inside the mixing chamber. The bubble will form a tadpole-like shape as a result of the complex flow field and the surface tension. The flow parameters at the exit section are in an oscillatory decay, and the fluctuation amplitude is larger than for churn flow. For upstream slug flow, the gas void fraction varies significantly with time. The discrete characteristic of the gas–liquid flow parameters at exit section is very obvious.
{"title":"Numerical simulation of gas–liquid flow behavior in the nozzle exit region of an effervescent atomizer","authors":"Chunhua Sun, Z. Ning, X. Qiao, M. Lv, Juan Fu, Jin Zhao, Xintao Wang","doi":"10.1177/1756827718821592","DOIUrl":"https://doi.org/10.1177/1756827718821592","url":null,"abstract":"The pressure drop and particular geometric structure of the nozzle exit region of an effervescent atomizer cause complex changes in the flow pattern, which could affect the spray performance. In this study, the gas–liquid two-phase flow behavior in the nozzle exit region of the effervescent atomizer was investigated numerically. The results show that the flow behaviors in the nozzle exit region have disparate characteristics with different upstream flow regimes. For upstream churn flow, the liquid film morphology is closely related to fluctuation in the gas–liquid velocity, and the flow parameters (fluids’ velocities and gas void fraction) at the exit section vary regularly with time. For upstream bubbly flow, the instantaneous gas void fraction is determined by the bubble distribution inside the mixing chamber. The bubble will form a tadpole-like shape as a result of the complex flow field and the surface tension. The flow parameters at the exit section are in an oscillatory decay, and the fluctuation amplitude is larger than for churn flow. For upstream slug flow, the gas void fraction varies significantly with time. The discrete characteristic of the gas–liquid flow parameters at exit section is very obvious.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827718821592","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45373706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-01-01DOI: 10.1177/1756827719830950
M. Heckl
This paper gives an overview of the research performed by the project TANGO – an Initial Training Network (ITN) with an international consortium of seven academic and five industrial partners. TANGO is the acronym for ‘Thermoacoustic and Aeroacoustic Nonlinearities in Green combustors with Orifice structures’). The researchers in TANGO studied many of the intricate physical processes that are involved in thermoacoustic instabilities. The paper is structured in such a way that each section describes a topic investigated by one or more researchers. The topics include: - transition from combustion noise to thermoacoustic instability - development of an early-warning system by detecting the precursor of an instability - analytical flame models based on time-lags - Green's function approach for stability predictions from nonlinear flame models - intrinsic thermoacoustic modes - transport phenomena in swirl waves - model of the flame front as a moving discontinuity - development of efficient numerical codes for instability predictions - heat exchanger tubes inside a combustion chamber A substantial amount of valuable new insight was gained during this four-year project.
{"title":"Advances by the Marie Curie project TANGO in thermoacoustics","authors":"M. Heckl","doi":"10.1177/1756827719830950","DOIUrl":"https://doi.org/10.1177/1756827719830950","url":null,"abstract":"This paper gives an overview of the research performed by the project TANGO – an Initial Training Network (ITN) with an international consortium of seven academic and five industrial partners. TANGO is the acronym for ‘Thermoacoustic and Aeroacoustic Nonlinearities in Green combustors with Orifice structures’). The researchers in TANGO studied many of the intricate physical processes that are involved in thermoacoustic instabilities. The paper is structured in such a way that each section describes a topic investigated by one or more researchers. The topics include: - transition from combustion noise to thermoacoustic instability - development of an early-warning system by detecting the precursor of an instability - analytical flame models based on time-lags - Green's function approach for stability predictions from nonlinear flame models - intrinsic thermoacoustic modes - transport phenomena in swirl waves - model of the flame front as a moving discontinuity - development of efficient numerical codes for instability predictions - heat exchanger tubes inside a combustion chamber A substantial amount of valuable new insight was gained during this four-year project.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":"11 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827719830950","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43004810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-01DOI: 10.1177/1756827717728056
S. Gopinathan, Dmytro Iurashev, A. Bigongiari, M. Heckl
In the present work, we formulate a new method to represent a given Flame Describing Function by analytical expressions. The underlying idea is motivated by the observation that different types of perturbations in a burner travel with different speeds and that the arrival of a perturbation at the flame is spread out over time. We develop an analytical model for the Flame Describing Function, which consists of a superposition of several Gaussians, each characterised by three amplitude-dependent quantities: central time-lag, peak value and standard deviation. These quantities are treated as fitting parameters, and they are deduced from the original Flame Describing Function by using error minimisation and nonlinear optimisation techniques. The amplitude-dependence of the fitting parameters is also represented analytically (by linear or quadratic functions). We test our method by using it to make stability predictions for a burner with well-documented stability behaviour (Noiray's matrix burner). This is done in the time-domain with a tailored Green's function approach.
{"title":"Nonlinear analytical flame models with amplitude-dependent time-lag distributions","authors":"S. Gopinathan, Dmytro Iurashev, A. Bigongiari, M. Heckl","doi":"10.1177/1756827717728056","DOIUrl":"https://doi.org/10.1177/1756827717728056","url":null,"abstract":"In the present work, we formulate a new method to represent a given Flame Describing Function by analytical expressions. The underlying idea is motivated by the observation that different types of perturbations in a burner travel with different speeds and that the arrival of a perturbation at the flame is spread out over time. We develop an analytical model for the Flame Describing Function, which consists of a superposition of several Gaussians, each characterised by three amplitude-dependent quantities: central time-lag, peak value and standard deviation. These quantities are treated as fitting parameters, and they are deduced from the original Flame Describing Function by using error minimisation and nonlinear optimisation techniques. The amplitude-dependence of the fitting parameters is also represented analytically (by linear or quadratic functions). We test our method by using it to make stability predictions for a burner with well-documented stability behaviour (Noiray's matrix burner). This is done in the time-domain with a tailored Green's function approach.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":"10 1","pages":"264 - 276"},"PeriodicalIF":1.6,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827717728056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42926930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-01DOI: 10.1177/1756827718809570
A. Bigongiari, M. Heckl
In this paper, we will present a fast prediction tool based on a one-dimensional Green's function approach that can be used to bypass numerically expensive computational fluid dynamics simulations. The Green’s function approach has the advantage of providing a clear picture of the physics behind the generation and evolution of combustion instabilities. In addition, the method allows us to perform a modal analysis; single acoustic modes can be treated in isolation or in combination with other modes. In this article, we will investigate the role of higher-order modes in determining the stability of the system. We will initially produce the stability maps for the first and second mode separately. Then the time history of the perturbation will be computed, where both the modes are present. The flame will be modelled by a generic Flame Describing Function, i.e. by an amplitude-dependent Flame Transfer Function. The time-history calculations show the evolution of the two modes resulting from an initial perturbation; both transient and limit-cycle oscillations are revealed. Our study represents a first step towards the modelling of nonlinearity and non-normality in combustion processes.
{"title":"Analysis of the interaction of thermoacoustic modes with a Green’s function approach","authors":"A. Bigongiari, M. Heckl","doi":"10.1177/1756827718809570","DOIUrl":"https://doi.org/10.1177/1756827718809570","url":null,"abstract":"In this paper, we will present a fast prediction tool based on a one-dimensional Green's function approach that can be used to bypass numerically expensive computational fluid dynamics simulations. The Green’s function approach has the advantage of providing a clear picture of the physics behind the generation and evolution of combustion instabilities. In addition, the method allows us to perform a modal analysis; single acoustic modes can be treated in isolation or in combination with other modes. In this article, we will investigate the role of higher-order modes in determining the stability of the system. We will initially produce the stability maps for the first and second mode separately. Then the time history of the perturbation will be computed, where both the modes are present. The flame will be modelled by a generic Flame Describing Function, i.e. by an amplitude-dependent Flame Transfer Function. The time-history calculations show the evolution of the two modes resulting from an initial perturbation; both transient and limit-cycle oscillations are revealed. Our study represents a first step towards the modelling of nonlinearity and non-normality in combustion processes.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":"10 1","pages":"326 - 336"},"PeriodicalIF":1.6,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827718809570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42983552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-12-01DOI: 10.1177/1756827717731486
Aswathy Surendran, M. Heckl, N. Hosseini, Omkejan J. Teerling
One of the major concerns in the operability of power generation systems is their susceptibility to combustion instabilities. In this work, we explore whether a heat exchanger, an integral component of a domestic boiler, can be made to act as a passive controller that suppresses combustion instabilities. The combustor is modelled as a quarter-wave resonator (1-D, open at one end, closed at the other) with a compact heat source inside, which is modelled by a time-lag law. The heat exchanger is modelled as an array of tubes with bias flow and is placed near the closed end of the resonator, causing it to behave like a cavity-backed slit plate: an effective acoustic absorber. For simplicity and ease of analysis, we treat the physical processes of heat transfer and acoustic scattering occurring at the heat exchanger as two individual processes separated by an infinitesimal distance. The aeroacoustic response of the tube array is modelled using a quasi-steady approach and the heat transfer across the heat exchanger is modelled by assuming it to be a heat sink. Unsteady numerical simulations were carried out to obtain the heat exchanger transfer function, which is the response of the heat transfer at heat exchanger to upstream velocity perturbations. Combining the aeroacoustic response and the heat exchanger transfer function, in the limit of the distance between these processes tending to zero, gives the net influence of the heat exchanger. Other parameters of interest are the heat source location and the cavity length (the distance between the tube array and the closed end). We then construct stability maps for the first resonant mode of the aforementioned combustor configuration, for various parameter combinations. Our model predicts that stability can be achieved for a wide range of parameters.
{"title":"Passive control of instabilities in combustion systems with heat exchanger","authors":"Aswathy Surendran, M. Heckl, N. Hosseini, Omkejan J. Teerling","doi":"10.1177/1756827717731486","DOIUrl":"https://doi.org/10.1177/1756827717731486","url":null,"abstract":"One of the major concerns in the operability of power generation systems is their susceptibility to combustion instabilities. In this work, we explore whether a heat exchanger, an integral component of a domestic boiler, can be made to act as a passive controller that suppresses combustion instabilities. The combustor is modelled as a quarter-wave resonator (1-D, open at one end, closed at the other) with a compact heat source inside, which is modelled by a time-lag law. The heat exchanger is modelled as an array of tubes with bias flow and is placed near the closed end of the resonator, causing it to behave like a cavity-backed slit plate: an effective acoustic absorber. For simplicity and ease of analysis, we treat the physical processes of heat transfer and acoustic scattering occurring at the heat exchanger as two individual processes separated by an infinitesimal distance. The aeroacoustic response of the tube array is modelled using a quasi-steady approach and the heat transfer across the heat exchanger is modelled by assuming it to be a heat sink. Unsteady numerical simulations were carried out to obtain the heat exchanger transfer function, which is the response of the heat transfer at heat exchanger to upstream velocity perturbations. Combining the aeroacoustic response and the heat exchanger transfer function, in the limit of the distance between these processes tending to zero, gives the net influence of the heat exchanger. Other parameters of interest are the heat source location and the cavity length (the distance between the tube array and the closed end). We then construct stability maps for the first resonant mode of the aforementioned combustor configuration, for various parameter combinations. Our model predicts that stability can be achieved for a wide range of parameters.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":"10 1","pages":"362 - 379"},"PeriodicalIF":1.6,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756827717731486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45796452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}