Pub Date : 2024-08-19DOI: 10.1186/s13578-024-01289-3
Yuanbing Yao, Sheng Zhou, Yue Yan, Kai Fu, Shuai Xiao
Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.
含三方基序 24(TRIM24)又称转录中介因子 1α(TIF1α),是 TIF1 家族的创始成员。最近的证据表明,TRIM24 作为癌基因的异常表达与各种癌症的不良预后有关。TRIM24 具有多层面结构,包括 N 端 TRIM 区域的 RING 结构域、B-box 1 型和 2 型结构域、盘绕线圈区域以及 C 端植物同源结构域(PHD)-溴结构域。溴结构域是表观遗传组蛋白标记的 "阅读器",通过将相关蛋白与乙酰化核糖体靶标连接起来来调节染色质结构和基因表达,从而控制基因的转录。值得注意的是,溴链已成为癌症治疗开发的重要靶点。此外,TRIM24 还扮演着信号转导分子的特殊角色,在癌细胞中协调各种细胞信号级联。在此,我们回顾了最近在了解 TRIM24 功能方面取得的进展,并展示了利用 TRIM24 作为癌症治疗靶点的研究进展。
{"title":"The tripartite motif-containing 24 is a multifunctional player in human cancer.","authors":"Yuanbing Yao, Sheng Zhou, Yue Yan, Kai Fu, Shuai Xiao","doi":"10.1186/s13578-024-01289-3","DOIUrl":"10.1186/s13578-024-01289-3","url":null,"abstract":"<p><p>Tripartite motif-containing 24 (TRIM24), also known as transcriptional intermediary factor 1α (TIF1α), is the founding member of TIF1 family. Recent evidence indicates that aberrant expression of TRIM24, functions as an oncogene, is associated with poor prognosis across various cancer types. TRIM24 exhibits a multifaceted structure comprising an N-terminal TRIM region with a RING domain, B-box type 1 and type 2 domains, and a coiled-coil region, as well as a C-terminal plant-homeodomain (PHD)-bromodomain. The bromodomain serves as a 'reader' of epigenetic histone marks, regulating chromatin structure and gene expression by linking associated proteins to acetylated nucleosomal targets, thereby controlling transcription of genes. Notably, bromodomains have emerged as compelling targets for cancer therapeutic development. In addition, TRIM24 plays specialized roles as a signal transduction molecule, orchestrating various cellular signaling cascades in cancer cells. Herein, we review the recent advancements in understanding the functions of TRIM24, and demonstrate the research progress in utilizing TRIM24 as a target for cancer therapy.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"103"},"PeriodicalIF":6.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1186/s13578-024-01280-y
Bobo Wing-Yee Mok, Maxwell Kwok, Hung Sing Li, Lowell Ling, Angel Lai, Bin Yan, Cherie Tsz-Yiu Law, Chui Him Yeung, Anna Jinxia Zhang, Rachel Chun-Yee Tam, Anja Kukic, Conor J Cremin, Yajie Zhang, Teng Long, Zhisen Kang, Ruibang Luo, Kam Tong Leung, Albert M Li, Grace Lui, Stephen Kwok-Wing Tsui, Jasper Fuk-Woo Chan, Kelvin Kai-Wang To, Paul K S Chan, Bryan P Yan, Honglin Chen, Ellen Ngar-Yun Poon
Background: COVID-19 can cause cardiac complications and the latter are associated with poor prognosis and increased mortality. SARS-CoV-2 variants differ in their infectivity and pathogenicity, but how they affect cardiomyocytes (CMs) is unclear.
Methods: The effects of SARS-CoV-2 variants were investigated using human induced pluripotent stem cell-derived (hiPSC-) CMs in vitro and Golden Syrian hamsters in vivo.
Results: Different variants exhibited distinct tropism, mechanism of viral entry and pathology in the heart. Omicron BA.2 most efficiently infected and injured CMs in vitro and in vivo, and induced expression changes consistent with increased cardiac dysfunction, compared to other variants tested. Bioinformatics and upstream regulator analyses identified transcription factors and network predicted to control the unique transcriptome of Omicron BA.2 infected CMs. Increased infectivity of Omicron BA.2 is attributed to its ability to infect via endocytosis, independently of TMPRSS2, which is absent in CMs.
Conclusions: In this study, we reveal previously unknown differences in how different SARS-CoV-2 variants affect CMs. Omicron BA.2, which is generally thought to cause mild disease, can damage CMs in vitro and in vivo. Our study highlights the need for further investigations to define the pathogenesis of cardiac complications arising from different SARS-CoV-2 variants.
{"title":"SARS-CoV-2 variants divergently infect and damage cardiomyocytes in vitro and in vivo.","authors":"Bobo Wing-Yee Mok, Maxwell Kwok, Hung Sing Li, Lowell Ling, Angel Lai, Bin Yan, Cherie Tsz-Yiu Law, Chui Him Yeung, Anna Jinxia Zhang, Rachel Chun-Yee Tam, Anja Kukic, Conor J Cremin, Yajie Zhang, Teng Long, Zhisen Kang, Ruibang Luo, Kam Tong Leung, Albert M Li, Grace Lui, Stephen Kwok-Wing Tsui, Jasper Fuk-Woo Chan, Kelvin Kai-Wang To, Paul K S Chan, Bryan P Yan, Honglin Chen, Ellen Ngar-Yun Poon","doi":"10.1186/s13578-024-01280-y","DOIUrl":"10.1186/s13578-024-01280-y","url":null,"abstract":"<p><strong>Background: </strong>COVID-19 can cause cardiac complications and the latter are associated with poor prognosis and increased mortality. SARS-CoV-2 variants differ in their infectivity and pathogenicity, but how they affect cardiomyocytes (CMs) is unclear.</p><p><strong>Methods: </strong>The effects of SARS-CoV-2 variants were investigated using human induced pluripotent stem cell-derived (hiPSC-) CMs in vitro and Golden Syrian hamsters in vivo.</p><p><strong>Results: </strong>Different variants exhibited distinct tropism, mechanism of viral entry and pathology in the heart. Omicron BA.2 most efficiently infected and injured CMs in vitro and in vivo, and induced expression changes consistent with increased cardiac dysfunction, compared to other variants tested. Bioinformatics and upstream regulator analyses identified transcription factors and network predicted to control the unique transcriptome of Omicron BA.2 infected CMs. Increased infectivity of Omicron BA.2 is attributed to its ability to infect via endocytosis, independently of TMPRSS2, which is absent in CMs.</p><p><strong>Conclusions: </strong>In this study, we reveal previously unknown differences in how different SARS-CoV-2 variants affect CMs. Omicron BA.2, which is generally thought to cause mild disease, can damage CMs in vitro and in vivo. Our study highlights the need for further investigations to define the pathogenesis of cardiac complications arising from different SARS-CoV-2 variants.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"101"},"PeriodicalIF":6.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297708/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1186/s13578-024-01254-0
Yumei Li, Pei Ma, Jingxia Li, Feng Wu, Mengfei Guo, E Zhou, Siwei Song, Sufei Wang, Shuai Zhang, Yang Jin
Background: Immunosurveillance is pivotal in the effectiveness of anticancer therapies and tumor control. The ineffectiveness of cisplatin in activating the immunosurveillance is attributed to its lack of adjuvanticity resulting from its inability to stimulate endoplasmic reticulum stress. Dihydroartemisinin demonstrates the anti-tumor effects through various mechanisms, including the activation of the endoplasmic reticulum stress. This study aimed to develop a novel strategy to enhance the immunogenicity of dying tumor cells by combining cisplatin with dihydroartemisinin, thereby triggering effective anti-tumor immunosurveillance and improving the efficacy of cisplatin in clinical practice.
Methods: Lewis lung carcinoma (LLC) and CT26 colon cancer cell lines and subcutaneous tumor models were used in this study. The importance of immunosurveillance was validated in both immunocompetent and immunodeficient mouse models. The ability of dihydroartemisinin and cisplatin therapy to induce immunogenic cell death and tumor growth control in vivo was validated by prophylactic tumor vaccination and therapeutic tumor models. The underlying mechanism was elucidated through the pharmaceutical or genetic intervention of the PERK/eIF2α pathway in vitro and in vivo.
Results: Dihydroartemisinin enhanced the generation of reactive oxygen species in cisplatin-treated LLC and CT26 cancer cells. The combination treatment of dihydroartemisinin with cisplatin promoted cell death and ensured an optimal release of damage-associated molecular patterns from dying cancer cells, promoting the phagocytosis of dendritic cells. In the tumor vaccination model, we confirmed that dihydroartemisinin plus cisplatin treatment induced immunogenic cell death. Utilizing immunocompetent and immunodeficient mouse models, we further demonstrated that the combination treatment suppressed the tumor growth of CT26 colon cancer and LLC lung cancer, leading to an improved prognosis through the restoration of cytotoxic T lymphocyte responses and reinstatement of anti-cancer immunosurveillance in vivo. Mechanistically, dihydroartemisinin restored the immunogenicity of cisplatin by activating the adjuvanticity of damage-associated molecular patterns, such as calreticulin exposure, through the PERK/eIF2α pathway. Additionally, the inhibition of eIF2α phosphorylation attenuated the anti-tumor efficiency of C + D in vivo.
Conclusions: We highlighted that dihydroartemisinin acts as an immunogenic cell death rescuer for cisplatin, activating anticancer immunosurveillance in a PERK/eIF2α-dependent manner and offering a strategy to enhance the anti-tumor efficacy of cisplatin in clinical practice.
{"title":"Dihydroartemisinin restores the immunogenicity and enhances the anticancer immunosurveillance of cisplatin by activating the PERK/eIF2α pathway.","authors":"Yumei Li, Pei Ma, Jingxia Li, Feng Wu, Mengfei Guo, E Zhou, Siwei Song, Sufei Wang, Shuai Zhang, Yang Jin","doi":"10.1186/s13578-024-01254-0","DOIUrl":"10.1186/s13578-024-01254-0","url":null,"abstract":"<p><strong>Background: </strong>Immunosurveillance is pivotal in the effectiveness of anticancer therapies and tumor control. The ineffectiveness of cisplatin in activating the immunosurveillance is attributed to its lack of adjuvanticity resulting from its inability to stimulate endoplasmic reticulum stress. Dihydroartemisinin demonstrates the anti-tumor effects through various mechanisms, including the activation of the endoplasmic reticulum stress. This study aimed to develop a novel strategy to enhance the immunogenicity of dying tumor cells by combining cisplatin with dihydroartemisinin, thereby triggering effective anti-tumor immunosurveillance and improving the efficacy of cisplatin in clinical practice.</p><p><strong>Methods: </strong>Lewis lung carcinoma (LLC) and CT26 colon cancer cell lines and subcutaneous tumor models were used in this study. The importance of immunosurveillance was validated in both immunocompetent and immunodeficient mouse models. The ability of dihydroartemisinin and cisplatin therapy to induce immunogenic cell death and tumor growth control in vivo was validated by prophylactic tumor vaccination and therapeutic tumor models. The underlying mechanism was elucidated through the pharmaceutical or genetic intervention of the PERK/eIF2α pathway in vitro and in vivo.</p><p><strong>Results: </strong>Dihydroartemisinin enhanced the generation of reactive oxygen species in cisplatin-treated LLC and CT26 cancer cells. The combination treatment of dihydroartemisinin with cisplatin promoted cell death and ensured an optimal release of damage-associated molecular patterns from dying cancer cells, promoting the phagocytosis of dendritic cells. In the tumor vaccination model, we confirmed that dihydroartemisinin plus cisplatin treatment induced immunogenic cell death. Utilizing immunocompetent and immunodeficient mouse models, we further demonstrated that the combination treatment suppressed the tumor growth of CT26 colon cancer and LLC lung cancer, leading to an improved prognosis through the restoration of cytotoxic T lymphocyte responses and reinstatement of anti-cancer immunosurveillance in vivo. Mechanistically, dihydroartemisinin restored the immunogenicity of cisplatin by activating the adjuvanticity of damage-associated molecular patterns, such as calreticulin exposure, through the PERK/eIF2α pathway. Additionally, the inhibition of eIF2α phosphorylation attenuated the anti-tumor efficiency of C + D in vivo.</p><p><strong>Conclusions: </strong>We highlighted that dihydroartemisinin acts as an immunogenic cell death rescuer for cisplatin, activating anticancer immunosurveillance in a PERK/eIF2α-dependent manner and offering a strategy to enhance the anti-tumor efficacy of cisplatin in clinical practice.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"100"},"PeriodicalIF":6.1,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-30DOI: 10.1186/s13578-024-01281-x
Fan Sun, Gutian Xiao, Zhaoxia Qu
The PDZ-LIM domain-containing protein PDLIM2 is a common tumor suppressor and a key immune modulator. One main function of PDLIM2 is to promote the ubiquitination and proteasomal degradation of nuclear activated NF-κB RelA, a physiologically indispensable transcription factor whose persistent activation has been linked to almost all cancer types and inflammation-associated diseases. However, it remains unknown how PDLIM2 exerts this physiologically and pathogenically important function. Here, we show that PDLIM2 acts as a ubiquitin ligase enhancer, termed E5. It stabilizes ROC1, an essential component of SKP1/Cullin/F-box protein (SCF) ubiquitin ligases, and chaperones the ROC1-SCFβ-TrCP ubiquitin ligase to ubiquitinate nuclear RelA for proteasomal degradation in the nucleus. Consistently, silencing of ROC1, Cullin 1 or the F-box protein β-TrCP blocks RelA ubiquitination and degradation by PDLIM2. These data provide new mechanistic insights into how PDLIM2 promotes nuclear RelA ubiquitination and degradation, thereby serving as a critical tumor suppressor and a vital immune regulator. They also improve our understanding of the complex cascade of the ubiquitination and NF-κB pathways, particularly given the well-known role of the ROC1-SCFβ-TrCP ubiquitin ligase in initiating NF-κB activation by directly binding to and ubiquitinating NF-κB inhibitors for the proteasomal degradation in the cytoplasm.
{"title":"PDLIM2 is a novel E5 ubiquitin ligase enhancer that stabilizes ROC1 and recruits the ROC1-SCF ubiquitin ligase to ubiquitinate and degrade NF-κB RelA.","authors":"Fan Sun, Gutian Xiao, Zhaoxia Qu","doi":"10.1186/s13578-024-01281-x","DOIUrl":"10.1186/s13578-024-01281-x","url":null,"abstract":"<p><p>The PDZ-LIM domain-containing protein PDLIM2 is a common tumor suppressor and a key immune modulator. One main function of PDLIM2 is to promote the ubiquitination and proteasomal degradation of nuclear activated NF-κB RelA, a physiologically indispensable transcription factor whose persistent activation has been linked to almost all cancer types and inflammation-associated diseases. However, it remains unknown how PDLIM2 exerts this physiologically and pathogenically important function. Here, we show that PDLIM2 acts as a ubiquitin ligase enhancer, termed E5. It stabilizes ROC1, an essential component of SKP1/Cullin/F-box protein (SCF) ubiquitin ligases, and chaperones the ROC1-SCF<sup>β-TrCP</sup> ubiquitin ligase to ubiquitinate nuclear RelA for proteasomal degradation in the nucleus. Consistently, silencing of ROC1, Cullin 1 or the F-box protein β-TrCP blocks RelA ubiquitination and degradation by PDLIM2. These data provide new mechanistic insights into how PDLIM2 promotes nuclear RelA ubiquitination and degradation, thereby serving as a critical tumor suppressor and a vital immune regulator. They also improve our understanding of the complex cascade of the ubiquitination and NF-κB pathways, particularly given the well-known role of the ROC1-SCF<sup>β-TrCP</sup> ubiquitin ligase in initiating NF-κB activation by directly binding to and ubiquitinating NF-κB inhibitors for the proteasomal degradation in the cytoplasm.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"99"},"PeriodicalIF":6.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1186/s13578-024-01272-y
Yasmine A Zaydon, Stephen H Tsang
Stargardt disease (STGD) is the most common form of inherited juvenile macular dystrophy and is caused by sequence variants in the ABCA4 gene. Due to its genetic complexity and phenotypic variability, STGD poses significant therapeutic challenges. In the past decade, a lot of progress has been made regarding our understanding of the molecular and clinical aspects of STGD, along with its mechanisms. This has led to the development of new therapies, and there are human clinical trials currently ongoing. This paper evaluates the emergence of pharmacological approaches targeting the visual cycle to mitigate retinal damage, the role of gene therapy in correcting specific genetic defects, and the use of stem cell therapies aimed at retinal regeneration by showcasing the latest clinical trials and precision medicine approaches.
{"title":"The ABCs of Stargardt disease: the latest advances in precision medicine.","authors":"Yasmine A Zaydon, Stephen H Tsang","doi":"10.1186/s13578-024-01272-y","DOIUrl":"10.1186/s13578-024-01272-y","url":null,"abstract":"<p><p>Stargardt disease (STGD) is the most common form of inherited juvenile macular dystrophy and is caused by sequence variants in the ABCA4 gene. Due to its genetic complexity and phenotypic variability, STGD poses significant therapeutic challenges. In the past decade, a lot of progress has been made regarding our understanding of the molecular and clinical aspects of STGD, along with its mechanisms. This has led to the development of new therapies, and there are human clinical trials currently ongoing. This paper evaluates the emergence of pharmacological approaches targeting the visual cycle to mitigate retinal damage, the role of gene therapy in correcting specific genetic defects, and the use of stem cell therapies aimed at retinal regeneration by showcasing the latest clinical trials and precision medicine approaches.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"98"},"PeriodicalIF":6.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: β-catenin, acting as the core effector of canonical Wnt signaling pathway, plays a pivotal role in controlling lineage commitment and the formation of definitive endoderm (DE) during early embryonic development. Despite extensive studies using various animal and cell models, the β-catenin-centered regulatory mechanisms underlying DE formation remain incompletely understood, partly due to the rapid and complex cell fate transitions during early differentiation.
Results: In this study, we generated new CTNNB1-/- human ES cells (hESCs) using CRISPR-based insertional gene disruption approach and systematically rescued the DE defect in these cells by introducing various truncated or mutant forms of β-catenin. Our analysis showed that a truncated β-catenin lacking both N- and C-terminal domains (ΔN148C) could robustly rescue the DE formation, whereas hyperactive β-catenin mutants with S33Y mutation or N-terminal deletion (ΔN90) had limited ability to induce DE lineage. Notably, the ΔN148C mutant exhibited significant nuclear translocation that was positively correlated with successful DE rescue. Transcriptomic analysis further uncovered that two weak β-catenin mutants lacking the C-terminal transactivation domain (CTD) activated primitive streak (PS) genes, whereas the hyperactive β-catenin mutants activated mesoderm genes.
Conclusion: Our study uncovered an unconventional regulatory function of β-catenin through weak transactivation, indicating that the levels of β-catenin activity determine the lineage bifurcation from mesendoderm into endoderm and mesoderm.
{"title":"β-catenin mediates endodermal commitment of human ES cells via distinct transactivation functions.","authors":"Xun Ma, Liujiang Dai, Chunlai Tan, Jiangchuan Li, Xiangjun He, Yaofeng Wang, Junyi Xue, Min Huang, Jianwei Ren, Yin Xia, Qiang Wu, Hui Zhao, Wai-Yee Chan, Bo Feng","doi":"10.1186/s13578-024-01279-5","DOIUrl":"10.1186/s13578-024-01279-5","url":null,"abstract":"<p><strong>Background: </strong>β-catenin, acting as the core effector of canonical Wnt signaling pathway, plays a pivotal role in controlling lineage commitment and the formation of definitive endoderm (DE) during early embryonic development. Despite extensive studies using various animal and cell models, the β-catenin-centered regulatory mechanisms underlying DE formation remain incompletely understood, partly due to the rapid and complex cell fate transitions during early differentiation.</p><p><strong>Results: </strong>In this study, we generated new CTNNB1-/- human ES cells (hESCs) using CRISPR-based insertional gene disruption approach and systematically rescued the DE defect in these cells by introducing various truncated or mutant forms of β-catenin. Our analysis showed that a truncated β-catenin lacking both N- and C-terminal domains (ΔN<sup>148</sup>C) could robustly rescue the DE formation, whereas hyperactive β-catenin mutants with S33Y mutation or N-terminal deletion (ΔN<sup>90</sup>) had limited ability to induce DE lineage. Notably, the ΔN<sup>148</sup>C mutant exhibited significant nuclear translocation that was positively correlated with successful DE rescue. Transcriptomic analysis further uncovered that two weak β-catenin mutants lacking the C-terminal transactivation domain (CTD) activated primitive streak (PS) genes, whereas the hyperactive β-catenin mutants activated mesoderm genes.</p><p><strong>Conclusion: </strong>Our study uncovered an unconventional regulatory function of β-catenin through weak transactivation, indicating that the levels of β-catenin activity determine the lineage bifurcation from mesendoderm into endoderm and mesoderm.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"96"},"PeriodicalIF":6.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that has been found to be associated with dysregulation of gastrointestinal functions and gut microbial homeostasis (the so-called "gut-brain axis"). ASD is often accompanied by poor performances in social interaction and repetitive behaviors. Studies on the gut-brain axis provide novel insights and candidate targets for ASD therapeutics and diagnosis. Based on the ASD mice model, this work aims to reveal the mechanisms behind the interaction of intestinal barrier function and probiotics in ASD mouse models.
Results: We found an altered intestinal barrier in both BTBR T+ Itpr3tf/J (BTBR) and valproic acid (VPA) mice, including increased intestinal permeability, decreased expression of intestinal tight junction proteins (claudin1, claudin3, and occludin), and increased levels of IL-6, TNF-α, and IFN-γ. Based on intestinal microbial alternation, C. butyricum can drive reduced expression of histone deacetylases 1 (HDAC1) and enhanced intestinal barrier function, significantly promoting behavioral abnormalities of ASD in BTBR mice. In parallel, we confirmed that C. butyricum was involved in the regulation of intestinal function by the Trek1 channel, indicating that it is a target of C. butyricum/butyric acid to improve intestinal barrier function in ASD mice.
Conclusions: Our finding provides solid evidence for the gut microbiota involved in ASD through the brain-gut axis. In addition, the probiotics C. butyricum hold promise to improve gut health and ameliorate behavioral abnormalities associated with ASD.
{"title":"Clostridium butyricum regulates intestinal barrier function via trek1 to improve behavioral abnormalities in mice with autism spectrum disorder.","authors":"Simeng Liu, Huayuan Xi, Xia Xue, Xiangdong Sun, Huang Huang, Dongjun Fu, Yang Mi, Yongzheng He, Pingchang Yang, Youcai Tang, Pengyuan Zheng","doi":"10.1186/s13578-024-01278-6","DOIUrl":"10.1186/s13578-024-01278-6","url":null,"abstract":"<p><strong>Background: </strong>Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that has been found to be associated with dysregulation of gastrointestinal functions and gut microbial homeostasis (the so-called \"gut-brain axis\"). ASD is often accompanied by poor performances in social interaction and repetitive behaviors. Studies on the gut-brain axis provide novel insights and candidate targets for ASD therapeutics and diagnosis. Based on the ASD mice model, this work aims to reveal the mechanisms behind the interaction of intestinal barrier function and probiotics in ASD mouse models.</p><p><strong>Results: </strong>We found an altered intestinal barrier in both BTBR T<sup>+</sup> Itpr3<sup>tf</sup>/J (BTBR) and valproic acid (VPA) mice, including increased intestinal permeability, decreased expression of intestinal tight junction proteins (claudin1, claudin3, and occludin), and increased levels of IL-6, TNF-α, and IFN-γ. Based on intestinal microbial alternation, C. butyricum can drive reduced expression of histone deacetylases 1 (HDAC1) and enhanced intestinal barrier function, significantly promoting behavioral abnormalities of ASD in BTBR mice. In parallel, we confirmed that C. butyricum was involved in the regulation of intestinal function by the Trek1 channel, indicating that it is a target of C. butyricum/butyric acid to improve intestinal barrier function in ASD mice.</p><p><strong>Conclusions: </strong>Our finding provides solid evidence for the gut microbiota involved in ASD through the brain-gut axis. In addition, the probiotics C. butyricum hold promise to improve gut health and ameliorate behavioral abnormalities associated with ASD.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"95"},"PeriodicalIF":6.1,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Backgroud: Type II congenital pulmonary airway malformation (CPAM) is a rare pulmonary microcystic developmental malformation. Surgical excision is the primary treatment for CPAM, although maternal steroids and betamethasone have proven effective in reducing microcystic CPAM. Disturbed intercellular communication may contribute to the development of CPAM. This study aims to investigate the expression profile and analyze intercellular communication networks to identify genes potentially associated with type II CPAM pathogenesis and therapeutic targets.
Methods: RNA sequencing (RNA-seq) was performed on samples extracted from both the cystic area and the adjacent normal tissue post-surgery in CPAM patients. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify genes specifically expressed in type II CPAM. Single-cell RNA-seq (scRNA-seq) was integrated to unveil the heterogeneity in cell populations and analyze the communication and interaction within epithelial cell sub-populations.
Results: A total of 2,618 differentially expressed genes were identified, primarily enriched in cilium-related biological process and inflammatory response process. Key genes such as EDN1, GPR17, FPR2, and CHRM1, involved in the G protein-coupled receptor (GPCR) signaling pathway and playing roles in cell differentiation, apoptosis, calcium homeostasis, and the immune response, were highlighted based on the protein-protein interaction network. Type II CPAM-associated modules, including ciliary function-related genes, were identified using iWGCNA. By integrating scRNA-seq data, AGR3 (related to calcium homeostasis) and SLC11A1 (immune related) were identified as the only two differently expressed genes in epithelial cells of CPAM. Cell communication analysis revealed that alveolar type 1 (AT1) and alveolar type 2 (AT2) cells were the predominant communication cells for outgoing and incoming signals in epithelial cells. The ligands and receptors between epithelial cell subtypes included COLLAGEN genes enriched in PI3K-AKT singaling and involved in epithelial to mesenchymal transition.
Conclusions: In summary, by integrating bulk RNA-seq data of type II CPAM with scRNA-seq data, the gene expression profile and critical signaling pathways such as GPCR signaling and PI3K-AKT signaling pathways were revealed. Abnormally expressed genes in these pathways may disrupt epithelial-mesenchymal transition and contribute to the development of CPAM. Given the effectiveness of prenatal treatments of microcystic CPAM using maternal steroids and maternal betamethasone administration, targeting the genes and signaling pathways involved in the development of CPAM presents a promising therapeutic strategy.
{"title":"Integrative analysis of bulk and single-cell RNA sequencing reveals the gene expression profile and the critical signaling pathways of type II CPAM.","authors":"Fengxia Li, Zheng Tan, Hongyu Chen, Yue Gao, Jie Xia, Ting Huang, Liang Liang, Jian Zhang, Xianghong Zhang, Xucong Shi, Qiang Chen, Qiang Shu, Lan Yu","doi":"10.1186/s13578-024-01276-8","DOIUrl":"10.1186/s13578-024-01276-8","url":null,"abstract":"<p><strong>Backgroud: </strong>Type II congenital pulmonary airway malformation (CPAM) is a rare pulmonary microcystic developmental malformation. Surgical excision is the primary treatment for CPAM, although maternal steroids and betamethasone have proven effective in reducing microcystic CPAM. Disturbed intercellular communication may contribute to the development of CPAM. This study aims to investigate the expression profile and analyze intercellular communication networks to identify genes potentially associated with type II CPAM pathogenesis and therapeutic targets.</p><p><strong>Methods: </strong>RNA sequencing (RNA-seq) was performed on samples extracted from both the cystic area and the adjacent normal tissue post-surgery in CPAM patients. Iterative weighted gene correlation network analysis (iWGCNA) was used to identify genes specifically expressed in type II CPAM. Single-cell RNA-seq (scRNA-seq) was integrated to unveil the heterogeneity in cell populations and analyze the communication and interaction within epithelial cell sub-populations.</p><p><strong>Results: </strong>A total of 2,618 differentially expressed genes were identified, primarily enriched in cilium-related biological process and inflammatory response process. Key genes such as EDN1, GPR17, FPR2, and CHRM1, involved in the G protein-coupled receptor (GPCR) signaling pathway and playing roles in cell differentiation, apoptosis, calcium homeostasis, and the immune response, were highlighted based on the protein-protein interaction network. Type II CPAM-associated modules, including ciliary function-related genes, were identified using iWGCNA. By integrating scRNA-seq data, AGR3 (related to calcium homeostasis) and SLC11A1 (immune related) were identified as the only two differently expressed genes in epithelial cells of CPAM. Cell communication analysis revealed that alveolar type 1 (AT1) and alveolar type 2 (AT2) cells were the predominant communication cells for outgoing and incoming signals in epithelial cells. The ligands and receptors between epithelial cell subtypes included COLLAGEN genes enriched in PI3K-AKT singaling and involved in epithelial to mesenchymal transition.</p><p><strong>Conclusions: </strong>In summary, by integrating bulk RNA-seq data of type II CPAM with scRNA-seq data, the gene expression profile and critical signaling pathways such as GPCR signaling and PI3K-AKT signaling pathways were revealed. Abnormally expressed genes in these pathways may disrupt epithelial-mesenchymal transition and contribute to the development of CPAM. Given the effectiveness of prenatal treatments of microcystic CPAM using maternal steroids and maternal betamethasone administration, targeting the genes and signaling pathways involved in the development of CPAM presents a promising therapeutic strategy.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"94"},"PeriodicalIF":6.1,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264590/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Numerous studies have shown that somite development is a necessary stage of myogenesis chondrogenesis and osteogenesis. Our previous study has established a stable presomitic mesoderm progenitor cell line (UiPSM) in vitro. Naturally, we wanted to explore whether UiPSM cell can develop bone and myogenic differentiation.
Results: Selective culture conditions yielded PAX3 and PAX7 positive skeletal muscle precursors from UiPSM cells. The skeletal muscle precursors undergo in vitro maturation resulting in myotube formation. MYOD effectively promoted the maturity of the skeletal myocytes in a short time. We found that UiPSM and MYOD mediated UiPSM cell-derived skeletal myocytes were viable after transplantation into the tibialis anterior muscle of MITRG mice, as assessed by bioluminescence imaging and scRNA-seq. Lack of teratoma formation and evidence of long-term myocytes engraftment suggests considerable potential for future therapeutic applications. Moreover, UiPSM cells can differentiate into osteoblast and chondroblast cells in vitro.
Conclusions: UiPSM differentiation has potential as a developmental model for musculoskeletal development research and treatment of musculoskeletal disorders.
{"title":"Generation of musculoskeletal cells from human urine epithelium-derived presomitic mesoderm cells.","authors":"Huiru Gao, Xingnan Huang, Zepo Cai, Baomei Cai, Kaipeng Wang, Junyang Li, Junqi Kuang, Bo Wang, Ziwei Zhai, Jin Ming, Shangtao Cao, Yue Qin, Duanqing Pei","doi":"10.1186/s13578-024-01274-w","DOIUrl":"10.1186/s13578-024-01274-w","url":null,"abstract":"<p><strong>Background: </strong>Numerous studies have shown that somite development is a necessary stage of myogenesis chondrogenesis and osteogenesis. Our previous study has established a stable presomitic mesoderm progenitor cell line (UiPSM) in vitro. Naturally, we wanted to explore whether UiPSM cell can develop bone and myogenic differentiation.</p><p><strong>Results: </strong>Selective culture conditions yielded PAX3 and PAX7 positive skeletal muscle precursors from UiPSM cells. The skeletal muscle precursors undergo in vitro maturation resulting in myotube formation. MYOD effectively promoted the maturity of the skeletal myocytes in a short time. We found that UiPSM and MYOD mediated UiPSM cell-derived skeletal myocytes were viable after transplantation into the tibialis anterior muscle of MITRG mice, as assessed by bioluminescence imaging and scRNA-seq. Lack of teratoma formation and evidence of long-term myocytes engraftment suggests considerable potential for future therapeutic applications. Moreover, UiPSM cells can differentiate into osteoblast and chondroblast cells in vitro.</p><p><strong>Conclusions: </strong>UiPSM differentiation has potential as a developmental model for musculoskeletal development research and treatment of musculoskeletal disorders.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"14 1","pages":"93"},"PeriodicalIF":6.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141621292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}