Pub Date : 2023-11-06DOI: 10.1007/s10544-023-00682-y
Zhuolun Meng, Hassan Raji, Muhammad Tayyab, Mehdi Javanmard
Glucose serves as a pivotal biomarker crucial for the monitoring and diagnosis of a spectrum of medical conditions, encompassing hypoglycemia, hyperglycemia, and diabetes, all of which may precipitate severe clinical manifestations in individuals. As a result, there is a growing demand within the medical domain for the development of rapid, cost-effective, and user-friendly diagnostic tools. In this research article, we introduce an innovative glucose sensor that relies on microfluidic devices meticulously crafted from disposable, medical-grade tapes. These devices incorporate glucose urine analysis strips securely affixed to microscope glass slides. The microfluidic channels are intricately created through laser cutting, representing a departure from traditional cleanroom techniques. This approach streamlines production processes, enhances cost-efficiency, and obviates the need for specialized equipment. Subsequent to the absorption of the target solution, the disposable device is enclosed within a 3D-printed housing. Image capture is seamlessly facilitated through the use of a smartphone camera for subsequent colorimetric analysis. Our study adeptly demonstrates the glucose sensor’s capability to accurately quantify glucose concentrations within sucrose solutions. This is achieved by employing an exponential regression model, elucidating the intricate relationship between glucose concentrations and average RGB (Red-Green-Blue) values. Furthermore, our comprehensive analysis reveals minimal variation in sensor performance across different instances. Significantly, this study underscores the potential adaptability and versatility of our solution for a wide array of assay types and smartphone-based sensor systems, making it particularly promising for deployment in resource-constrained settings and undeveloped countries. The robust correlation established between glucose concentrations and average RGB values, substantiated by an impressive R-square value of 0.98709, underscores the effectiveness and reliability of our pioneering approach within the medical field.
{"title":"Cell phone microscopy enabled low-cost manufacturable colorimetric urine glucose test","authors":"Zhuolun Meng, Hassan Raji, Muhammad Tayyab, Mehdi Javanmard","doi":"10.1007/s10544-023-00682-y","DOIUrl":"10.1007/s10544-023-00682-y","url":null,"abstract":"<p>Glucose serves as a pivotal biomarker crucial for the monitoring and diagnosis of a spectrum of medical conditions, encompassing hypoglycemia, hyperglycemia, and diabetes, all of which may precipitate severe clinical manifestations in individuals. As a result, there is a growing demand within the medical domain for the development of rapid, cost-effective, and user-friendly diagnostic tools. In this research article, we introduce an innovative glucose sensor that relies on microfluidic devices meticulously crafted from disposable, medical-grade tapes. These devices incorporate glucose urine analysis strips securely affixed to microscope glass slides. The microfluidic channels are intricately created through laser cutting, representing a departure from traditional cleanroom techniques. This approach streamlines production processes, enhances cost-efficiency, and obviates the need for specialized equipment. Subsequent to the absorption of the target solution, the disposable device is enclosed within a 3D-printed housing. Image capture is seamlessly facilitated through the use of a smartphone camera for subsequent colorimetric analysis. Our study adeptly demonstrates the glucose sensor’s capability to accurately quantify glucose concentrations within sucrose solutions. This is achieved by employing an exponential regression model, elucidating the intricate relationship between glucose concentrations and average RGB (Red-Green-Blue) values. Furthermore, our comprehensive analysis reveals minimal variation in sensor performance across different instances. Significantly, this study underscores the potential adaptability and versatility of our solution for a wide array of assay types and smartphone-based sensor systems, making it particularly promising for deployment in resource-constrained settings and undeveloped countries. The robust correlation established between glucose concentrations and average RGB values, substantiated by an impressive R-square value of 0.98709, underscores the effectiveness and reliability of our pioneering approach within the medical field.</p>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71476608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-24DOI: 10.1007/s10544-023-00679-7
Farnaz Jazini Dorcheh, Majid Ghassemi
Surface acoustic waves in combination with microfluidics has become an attractive research field regarding its various medical and biological applications. It is sometimes preferred to solve just the fluid domain and apply some boundary conditions to represent other components rather than performing a coupled numerical solution. To account for the piezoelectric actuation, a conventional velocity distribution built by superposing the left-going and right-going surface waves is commonly used as the boundary condition, its correctness is assessed here by comparing it to a coupled solution. It was shown that the actual leaky surface acoustic wave in coupled solution has different wavelengths in its real and imaginary parts, sometimes gets out of being sinusoidal, and has a different form compared to the superposed formula. For the phase differences other than 0 and π between the left and right electrodes, the distance between the electrodes affects the streaming and acoustic fields in the microchannel thereby leading to deviations in particle traces. Furthermore, the ratio of the horizontal to vertical components of the surface wave was extracted from the coupled solutions and compared to its previously reported values. The sensitivity analysis showed that for small particles, this ratio does not affect the streaming pattern but changes its velocity magnitude causing a time lag. For larger particles, the ratio altered the movement direction. This study suggests not replacing the piezoelectric actuation with the boundary condition to avoid inaccuracy in resulting fields that are being used in calculations of particle tracing and acoustic radiation forces.
{"title":"A discussion about the velocity distribution commonly used as the boundary condition in surface acoustic wave numerical simulations","authors":"Farnaz Jazini Dorcheh, Majid Ghassemi","doi":"10.1007/s10544-023-00679-7","DOIUrl":"10.1007/s10544-023-00679-7","url":null,"abstract":"<div><p>Surface acoustic waves in combination with microfluidics has become an attractive research field regarding its various medical and biological applications. It is sometimes preferred to solve just the fluid domain and apply some boundary conditions to represent other components rather than performing a coupled numerical solution. To account for the piezoelectric actuation, a conventional velocity distribution built by superposing the left-going and right-going surface waves is commonly used as the boundary condition, its correctness is assessed here by comparing it to a coupled solution. It was shown that the actual leaky surface acoustic wave in coupled solution has different wavelengths in its real and imaginary parts, sometimes gets out of being sinusoidal, and has a different form compared to the superposed formula. For the phase differences other than 0 and π between the left and right electrodes, the distance between the electrodes affects the streaming and acoustic fields in the microchannel thereby leading to deviations in particle traces. Furthermore, the ratio of the horizontal to vertical components of the surface wave was extracted from the coupled solutions and compared to its previously reported values. The sensitivity analysis showed that for small particles, this ratio does not affect the streaming pattern but changes its velocity magnitude causing a time lag. For larger particles, the ratio altered the movement direction. This study suggests not replacing the piezoelectric actuation with the boundary condition to avoid inaccuracy in resulting fields that are being used in calculations of particle tracing and acoustic radiation forces.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 4","pages":""},"PeriodicalIF":2.8,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-23DOI: 10.1007/s10544-023-00681-z
Gwangjin Choi, Yoonhee Ha, Doo-Hee Kim, Soowon Shin, Junewoo Hyun, Sangwoo Kim, Seung-Ha Oh, Kyou-Sik Min
Reliability evaluation results of a manufacturable 32-channel cochlear electrode array are reported in this paper. Applying automated laser micro-machining process and a layer-by-layer silicone deposition scheme, authors developed the manufacturing methods of the electrode array for fine patterning and mass production. The developed electrode array has been verified through the requirements specified by the ISO Standard 14708-7. And the insertion trauma of the electrode array has been evaluated based on human temporal bone studies. According to the specified requirements, the electrode array was assessed through elongation & insulation, flexural, and fatigue tests. In addition, Temporal bone study was performed using eight fresh-frozen cadaver temporal bones with the electrode arrays inserted via the round window. Following soaking in saline condition, the impedances between conducting wires of the electrode array were measured over 100 kΩ (the pass/fail criterion). After each required test, it was shown that the electrode array maintained the electrical continuity and insulation condition. The average insertion angle of the electrode array inside the scala tympani was 399.7°. The human temporal bone studies exhibited atraumatic insertion rate of 60.3% (grade 0 or 1). The reliability of the manufacturable electrode array is successfully verified in mechanical, electrical, and histological aspects. Following the completion of a 32-channel cochlear implant system, the performance and stability of the 32-channel electrode array will be evaluated in clinical trials.