Pub Date : 2024-06-01Epub Date: 2024-05-31DOI: 10.1080/10962247.2024.2342765
Charles Driscoll, Jana B Milford, Daven K Henze, Michael D Bell
Human activities have increased atmospheric emissions and deposition of oxidized and reduced forms of nitrogen, but emission control programs have largely focused on oxidized nitrogen. As a result, in many regions of the world emissions of oxidized nitrogen are decreasing while emissions of reduced nitrogen are increasing. Emissions of reduced nitrogen largely originate from livestock waste and fertilizer application, with contributions from transportation sources in urban areas. Observations suggest a discrepancy between trends in emissions and deposition of reduced nitrogen in the U.S., likely due to an underestimate in emissions. In the atmosphere, ammonia reacts with oxides of sulfur and nitrogen to form fine particulate matter that impairs health and visibility and affects climate forcings. Recent reductions in emissions of sulfur and nitrogen oxides have limited partitioning with ammonia, decreasing long-range transport. Continuing research is needed to improve understanding of how shifting emissions alter formation of secondary particulates and patterns of transport and deposition of reactive nitrogen. Satellite remote sensing has potential for monitoring atmospheric concentrations and emissions of ammonia, but there remains a need to maintain and strengthen ground-based measurements and continue development of chemical transport models. Elevated nitrogen deposition has decreased plant and soil microbial biodiversity and altered the biogeochemical function of terrestrial, freshwater, and coastal ecosystems. Further study is needed on differential effects of oxidized versus reduced nitrogen and pathways and timescales of ecosystem recovery from elevated nitrogen deposition. Decreases in deposition of reduced nitrogen could alleviate exceedances of critical loads for terrestrial and freshwater indicators in many U.S. areas. The U.S. Environmental Protection Agency should consider using critical loads as a basis for setting standards to protect public welfare and ecosystems. The U.S. and other countries might look to European experience for approaches to control emissions of reduced nitrogen from agricultural and transportation sectors.Implications: In this Critical Review we synthesize research on effects, air emissions, environmental transformations, and management of reduced forms of nitrogen. Emissions of reduced nitrogen affect human health, the structure and function of ecosystems, and climatic forcings. While emissions of oxidized forms of nitrogen are regulated in the U.S., controls on reduced forms are largely absent. Decreases in emissions of sulfur and nitrogen oxides coupled with increases in ammonia are shifting the gas-particle partitioning of ammonia and decreasing long-range atmospheric transport of reduced nitrogen. Effort is needed to understand, monitor, and manage emissions of reduced nitrogen in a changing environment.
{"title":"Atmospheric reduced nitrogen: Sources, transformations, effects, and management.","authors":"Charles Driscoll, Jana B Milford, Daven K Henze, Michael D Bell","doi":"10.1080/10962247.2024.2342765","DOIUrl":"10.1080/10962247.2024.2342765","url":null,"abstract":"<p><p>Human activities have increased atmospheric emissions and deposition of oxidized and reduced forms of nitrogen, but emission control programs have largely focused on oxidized nitrogen. As a result, in many regions of the world emissions of oxidized nitrogen are decreasing while emissions of reduced nitrogen are increasing. Emissions of reduced nitrogen largely originate from livestock waste and fertilizer application, with contributions from transportation sources in urban areas. Observations suggest a discrepancy between trends in emissions and deposition of reduced nitrogen in the U.S., likely due to an underestimate in emissions. In the atmosphere, ammonia reacts with oxides of sulfur and nitrogen to form fine particulate matter that impairs health and visibility and affects climate forcings. Recent reductions in emissions of sulfur and nitrogen oxides have limited partitioning with ammonia, decreasing long-range transport. Continuing research is needed to improve understanding of how shifting emissions alter formation of secondary particulates and patterns of transport and deposition of reactive nitrogen. Satellite remote sensing has potential for monitoring atmospheric concentrations and emissions of ammonia, but there remains a need to maintain and strengthen ground-based measurements and continue development of chemical transport models. Elevated nitrogen deposition has decreased plant and soil microbial biodiversity and altered the biogeochemical function of terrestrial, freshwater, and coastal ecosystems. Further study is needed on differential effects of oxidized versus reduced nitrogen and pathways and timescales of ecosystem recovery from elevated nitrogen deposition. Decreases in deposition of reduced nitrogen could alleviate exceedances of critical loads for terrestrial and freshwater indicators in many U.S. areas. The U.S. Environmental Protection Agency should consider using critical loads as a basis for setting standards to protect public welfare and ecosystems. The U.S. and other countries might look to European experience for approaches to control emissions of reduced nitrogen from agricultural and transportation sectors.<i>Implications</i>: In this Critical Review we synthesize research on effects, air emissions, environmental transformations, and management of reduced forms of nitrogen. Emissions of reduced nitrogen affect human health, the structure and function of ecosystems, and climatic forcings. While emissions of oxidized forms of nitrogen are regulated in the U.S., controls on reduced forms are largely absent. Decreases in emissions of sulfur and nitrogen oxides coupled with increases in ammonia are shifting the gas-particle partitioning of ammonia and decreasing long-range atmospheric transport of reduced nitrogen. Effort is needed to understand, monitor, and manage emissions of reduced nitrogen in a changing environment.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":"74 6","pages":"362-415"},"PeriodicalIF":4.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As a traditional method of waste treatment, municipal solid waste incineration (MSWI) has become one of the main methods of urban waste treatment. However, as a byproduct of MSWI, a large amount of MSWI bottom ash is not reused in current practice. This study innovatively posits MSWI bottom ash as an eco-friendly adsorbent rather than a pollutant, exploring its potential application as a permeable subgrade material. The results reveal that MSWI bottom ash exhibits promising properties to serve as a permeable subgrade material to achieve the permeability and improve the sustainability for subgrade. Due to the arrangement of its particles, it shows excellent performance in shear strength and permeability, which are comparable to or surpass those of sandy soils. The average pore width of 14.200 nm allows heavy metal substances to be encapsulated within the matrix, significantly reducing their leachability, thereby aligning with environmental friendliness standards. Its adsorption capacity is about 6.60 mg/g, and the adsorption capacity per volume is 3.66 times and 2.04 times that of fly ash and clay, respectively. The mechanism analysis shows that the adsorption process is monolayer heterogeneous adsorption. This paper presents a novel perspective on reusing MSWI bottom ash and provides evidence supporting its effective utilization as a permeable subgrade material, offering substantial environmental benefits through enhanced adsorption ability.Implications: Municipal solid waste incineration (MSWI) is a common method for municipal solid waste treatment, while the MSWI bottom ash is often not reused. This paper explored the explores the feasibility of using MSWI bottom ash as a permeable road base material. The results show that the particle arrangement enables excellent shear strength and permeability, comparable to sandy soil. It meets safety requirements for the leaching of heavy metals and acts as an adsorbent for pollutants leaching from permeable pavements. Furthermore, the mechanisms underlying these behaviors of MSWI were confirmed by microstructural and mineralogical analyses. These indicate that MSWI bottom ash has great potential as a permeable road base material. This paper provides a clear understanding of the physical, mechanical and environmental properties of MSWI bottom ash, which can promote its reuse in practice.
{"title":"Use of municipal solid waste incineration (MSWI) bottom ash as a permeable subgrade material: An experimental and mechanism study.","authors":"Angran Tian, Yu Zhou, Yuru Chen, Deming Kan, Yanling Lu, Qiang Tang","doi":"10.1080/10962247.2024.2319764","DOIUrl":"10.1080/10962247.2024.2319764","url":null,"abstract":"<p><p>As a traditional method of waste treatment, municipal solid waste incineration (MSWI) has become one of the main methods of urban waste treatment. However, as a byproduct of MSWI, a large amount of MSWI bottom ash is not reused in current practice. This study innovatively posits MSWI bottom ash as an eco-friendly adsorbent rather than a pollutant, exploring its potential application as a permeable subgrade material. The results reveal that MSWI bottom ash exhibits promising properties to serve as a permeable subgrade material to achieve the permeability and improve the sustainability for subgrade. Due to the arrangement of its particles, it shows excellent performance in shear strength and permeability, which are comparable to or surpass those of sandy soils. The average pore width of 14.200 nm allows heavy metal substances to be encapsulated within the matrix, significantly reducing their leachability, thereby aligning with environmental friendliness standards. Its adsorption capacity is about 6.60 mg/g, and the adsorption capacity per volume is 3.66 times and 2.04 times that of fly ash and clay, respectively. The mechanism analysis shows that the adsorption process is monolayer heterogeneous adsorption. This paper presents a novel perspective on reusing MSWI bottom ash and provides evidence supporting its effective utilization as a permeable subgrade material, offering substantial environmental benefits through enhanced adsorption ability.<i>Implications:</i> Municipal solid waste incineration (MSWI) is a common method for municipal solid waste treatment, while the MSWI bottom ash is often not reused. This paper explored the explores the feasibility of using MSWI bottom ash as a permeable road base material. The results show that the particle arrangement enables excellent shear strength and permeability, comparable to sandy soil. It meets safety requirements for the leaching of heavy metals and acts as an adsorbent for pollutants leaching from permeable pavements. Furthermore, the mechanisms underlying these behaviors of MSWI were confirmed by microstructural and mineralogical analyses. These indicate that MSWI bottom ash has great potential as a permeable road base material. This paper provides a clear understanding of the physical, mechanical and environmental properties of MSWI bottom ash, which can promote its reuse in practice.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"291-303"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-04-01DOI: 10.1080/10962247.2024.2319761
Mahir Al-Wahaibi, J Baird
Economic growth has a potential impact on waste generation worldwide. Growing recognition for resources recovery from waste including production of a clean energy has led to the development of standards for, and the generation of, Solid Recovered Fuel (SRF). SRF, according to BS EN ISO 21640 is a fuel prepared from nonhazardous/treated waste to be utilized for energy recovery in incineration or co-incineration plants which meets the classification and specification. The amount of combustible fractions (i.e., plastic, textile and paper) that are present in Healthcare Waste (HCW) and Municipal Solid Waste (MSW) provides an opportunity for SRF production. HCW is defined as clinical waste generated from healthcare facilities. Limited efforts in utilizing treated HCW in production of SRF were noted, despite the fact that high content of combustible fractions, hence the novelty of this research. This research addresses the opportunities of utilizing autoclaved HCW as an alternate fuel; through a detailed chemical and physical analysis of autoclaved HCW collected from the Sultanate of Oman hospital and healthcare facilities. Furthermore, this study examines the possible uses of such materials instead of landfilling. The utilization of treated HCW as an alternative fuel is not only saving the land space, but also reduces the carbon emissions originating from landfilling. This in fact would also support the government in achieving its aspiring goal of the net zero carbon emissions by 2050 through better utilization of these materials in production of SRF as an alternative to fossil fuel combustion. The study revealed that autoclaved HCW appears to have a high quality SRF and is classified as (NCV 4, Cl 3); which complies with the potential end users' specifications. It is estimated that the combined energy output from MSW and HCW combustible fractions could cover about 12.75% of the energy requirements for Oman cement factories.Implications: The results confirm the viability of using autoclave (HCW) as an alternative fuel due to its high thermal energy content. Based on mean Net Calorific Value (NCV) of analyzed HCW that is found around 14 (MJ/Kg (ar)), and the mean Cl level (i.e., 0.814 ± 0.213% (d)); the SRF is classified as (NCV4, Cl 3). This grade is found to be well within the end users accepted range. This opens up the opportunity for creating a market demand for HCW that not only it could boost its recovery, but it could also unlock the value that can generates.
{"title":"Potential of solid recovered fuel production from autoclave treated healthcare waste in Sultanate of Oman.","authors":"Mahir Al-Wahaibi, J Baird","doi":"10.1080/10962247.2024.2319761","DOIUrl":"10.1080/10962247.2024.2319761","url":null,"abstract":"<p><p>Economic growth has a potential impact on waste generation worldwide. Growing recognition for resources recovery from waste including production of a clean energy has led to the development of standards for, and the generation of, Solid Recovered Fuel (SRF). SRF, according to BS EN ISO 21640 is a fuel prepared from nonhazardous/treated waste to be utilized for energy recovery in incineration or co-incineration plants which meets the classification and specification. The amount of combustible fractions (i.e., plastic, textile and paper) that are present in Healthcare Waste (HCW) and Municipal Solid Waste (MSW) provides an opportunity for SRF production. HCW is defined as clinical waste generated from healthcare facilities. Limited efforts in utilizing treated HCW in production of SRF were noted, despite the fact that high content of combustible fractions, hence the novelty of this research. This research addresses the opportunities of utilizing autoclaved HCW as an alternate fuel; through a detailed chemical and physical analysis of autoclaved HCW collected from the Sultanate of Oman hospital and healthcare facilities. Furthermore, this study examines the possible uses of such materials instead of landfilling. The utilization of treated HCW as an alternative fuel is not only saving the land space, but also reduces the carbon emissions originating from landfilling. This in fact would also support the government in achieving its aspiring goal of the net zero carbon emissions by 2050 through better utilization of these materials in production of SRF as an alternative to fossil fuel combustion. The study revealed that autoclaved HCW appears to have a high quality SRF and is classified as (NCV 4, Cl 3); which complies with the potential end users' specifications. It is estimated that the combined energy output from MSW and HCW combustible fractions could cover about 12.75% of the energy requirements for Oman cement factories.<i>Implications</i>: The results confirm the viability of using autoclave (HCW) as an alternative fuel due to its high thermal energy content. Based on mean Net Calorific Value (NCV) of analyzed HCW that is found around 14 (MJ/Kg <sub>(ar)</sub>), and the mean Cl level (i.e., 0.814 ± 0.213% <sub>(d)</sub>); the SRF is classified as (NCV4, Cl 3). This grade is found to be well within the end users accepted range. This opens up the opportunity for creating a market demand for HCW that not only it could boost its recovery, but it could also unlock the value that can generates.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"304-318"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-04-23DOI: 10.1080/10962247.2024.2332227
Tolulope Elizabeth Aniyikaiye, Stuart J Piketh, Joshua Nosa Edokpayi
Globally, particulate matter with an aerodynamic diameter of 2.5 µm or less poses a significant threat to human health. The first step in quantifying human health impacts caused by exposure to PM2.5 pollution is exposure assessment. Population-weighted exposure level (PWEL) estimation is one of the methods that provides a more precise exposure assessment since it incorporates the spatiotemporal distribution of population with the pollution concentration estimate. In this study, PM2.5 exposure levels in the local communities around brickmaking industries were investigated, using the population census data of the study area and 1-year data from nine PM2.5 monitoring stations installed in and around the brickmaking industries. The observed PM2.5 data was spatially interpolated using inverse distance weight (IDW). Data on PM2.5 levels across the study area were classified based on the World Health Organization interim target (IT) guidelines and the South African National ambient air quality standard (NAAQS). An annual PM2.5 population weighted exposure level of 27.6 µg/m3 was estimated for the study area. However, seasonal exposure levels of 28.9, 37.6, 26.5, and 20.7 µg/m3 were estimated for the autumn, winter, spring, and summer seasons, respectively. This implies that local communities around the brick kiln in the Vhembe District are exposed to high levels of PM2.5, especially in winter. The PM2.5 levels in the brickmaking industries as well as its other sources in the Vhembe District, therefore, need to be lowered. Findings from population exposure level to pollutants can provide valuable data for formulating policies and recommendations on exposure reduction and public health protection.Implications: PM2.5 concentration in any given environment has high spatial and temporal variability due to the presence of diffused sources in the environment. Using ambient air concentrations to directly estimate population exposure without taking into consideration the disproportionate spatial and temporal distribution of the pollutant and the population may not yield accurate results on human exposure levels. It is, therefore, important to assess the aggregated PM2.5 exposure of a populace within a given area. This study therefore examines the PM2.5 population-weighted-exposure level of the host communities of the brickmaking industry in Vhembe District, South Africa.
{"title":"A spatial approach to assessing PM<sub>2.5</sub> exposure level of a brickmaking community in South Africa.","authors":"Tolulope Elizabeth Aniyikaiye, Stuart J Piketh, Joshua Nosa Edokpayi","doi":"10.1080/10962247.2024.2332227","DOIUrl":"10.1080/10962247.2024.2332227","url":null,"abstract":"<p><p>Globally, particulate matter with an aerodynamic diameter of 2.5 µm or less poses a significant threat to human health. The first step in quantifying human health impacts caused by exposure to PM<sub>2.5</sub> pollution is exposure assessment. Population-weighted exposure level (PWEL) estimation is one of the methods that provides a more precise exposure assessment since it incorporates the spatiotemporal distribution of population with the pollution concentration estimate. In this study, PM<sub>2.5</sub> exposure levels in the local communities around brickmaking industries were investigated, using the population census data of the study area and 1-year data from nine PM<sub>2.5</sub> monitoring stations installed in and around the brickmaking industries. The observed PM<sub>2.5</sub> data was spatially interpolated using inverse distance weight (IDW). Data on PM<sub>2.5</sub> levels across the study area were classified based on the World Health Organization interim target (IT) guidelines and the South African National ambient air quality standard (NAAQS). An annual PM<sub>2.5</sub> population weighted exposure level of 27.6 µg/m<sup>3</sup> was estimated for the study area. However, seasonal exposure levels of 28.9, 37.6, 26.5, and 20.7 µg/m<sup>3</sup> were estimated for the autumn, winter, spring, and summer seasons, respectively. This implies that local communities around the brick kiln in the Vhembe District are exposed to high levels of PM<sub>2.5</sub>, especially in winter. The PM<sub>2.5</sub> levels in the brickmaking industries as well as its other sources in the Vhembe District, therefore, need to be lowered. Findings from population exposure level to pollutants can provide valuable data for formulating policies and recommendations on exposure reduction and public health protection.<i>Implications</i>: PM<sub>2.5</sub> concentration in any given environment has high spatial and temporal variability due to the presence of diffused sources in the environment. Using ambient air concentrations to directly estimate population exposure without taking into consideration the disproportionate spatial and temporal distribution of the pollutant and the population may not yield accurate results on human exposure levels. It is, therefore, important to assess the aggregated PM<sub>2.5</sub> exposure of a populace within a given area. This study therefore examines the PM<sub>2.5</sub> population-weighted-exposure level of the host communities of the brickmaking industry in Vhembe District, South Africa.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"345-358"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140186072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-04-01DOI: 10.1080/10962247.2024.2319773
Paule Lapeyre, Rodrigo Brenner Miguel, Michael Christopher Nagorski, Jean-Philippe Gagnon, Martin Chamberland, Caroline Turcotte, Kyle J Daun
Mid-wavelength infrared (MWIR) imaging Fourier transform spectrometers (IFTSs) are a promising technology for measuring flare combustion efficiency (CE) and destruction removal efficiency (DRE). These devices generate spectrally resolved intensity images of the flare plume, which may then be used to infer column densities of relevant species along each pixel line-of-sight. In parallel, a 2D projected velocity field may be inferred from the apparent motion of flow features between successive images. Finally, the column densities and velocity field are combined to estimate the mass flow rates for the species needed to calculate the CE or DRE. Since the MWIR IFTS can measure key carbon-containing species in the flare plume, it is possible to measure CE without knowing the fuel flow rate, which is important for fenceline measurements. This work demonstrates this approach on a laboratory heated vent, and then deploys the technique on two working flares: a combustor burning natural gas at a known rate, and a steam-assisted flare at a petrochemical refinery. Analysis of the IFTS data highlights the potential of this approach, but also areas for future development to transform this approach into a reliable technique for quantifying flare emissions.Implications: Our research is motivated by the need to assess hydrocarbon emissions from flaring, which is a critical problem of global significance. For example, recent studies have shown that methane destruction efficiency of flaring from upstream oil may be significantly lower than the commonly assumed figure of 98%; work by Plant et al. , in particular, suggest that this discrepancy amounts to CO2 emissions from 2 to 8 million automobiles annually, considering the US alone. Similarly, the international energy agency (IEA) estimates a global flare efficiency of 92%, which translates in 8 million tons of CH4 emitted by flares in 2020. Highlighted by these studies and supported by the World Bank initiatives toward zero routine flaring emissions, there is an urgent need for oil and gas industry to assess their flare methane emission, and overall hydrocarbon emissions. At the very least, it is critical to identify problematic flare operating conditions and means to mitigate flare emissions. Focusing on remote quantification of plume species, the measurement technique and quantification method presented in this paper is a considerable step forward in that direction by computing combustion efficiency and key components for destruction efficiency.
意义说明:我们的研究是因为需要评估燃烧产生的碳氢化合物排放,这是一个具有全球意义的关键问题。例如,最近的研究表明,上游石油燃烧的甲烷销毁效率可能大大低于通常假定的 98% 的数字;Plant 等人的工作11G.Plant、E.A.Kort、A.R.Brandt、Y.Chen、G.Fordice、A.M.Gorchov Negron、S.Schwietzke、M.Smith 和 D.Zavala-Araiza,"低效和未燃烧的天然气燃烧均排放大量甲烷",《科学》,第 377 卷,第 1566-1571 页,2022 年。同样,国际能源机构 (IEA) 估计全球火炬效率为 92%22 https://www.iea.org/energy-system/fossil-fuels/gas-flaring3https://www.worldbank.org/en/programs/zero-routine-flaring-by-20304D.R。Caulton、P.B. Shepson、M.O.L. Cambaliza、D. McCabe、E. Baum 和 B.H. Stirm,"与页岩气井相关的天然气火炬的甲烷销毁效率",《环境科学与技术》,第 48 卷,第 9548-9554 页,2014.5M-A。Gagnon, S.S. Tremblay, P.Lagueux and M. Chamberland, "Standoff thermal hyperspectral imaging for flare and smokestack characterization in industrial environments," in 5th workshop on Hyperspectral Image and Signal Processing:这些研究表明,在世界银行3 实现常规燃烧零排放倡议的支持下,石油和天然气行业亟需评估其燃烧后的甲烷排放量和整体碳氢化合物排放量。至少,确定有问题的火炬操作条件和减少火炬排放的方法至关重要。本文介绍的测量技术和量化方法侧重于烟羽种类的远程量化,通过计算燃烧效率和销毁效率的关键成分4,5,在此方向上迈出了一大步。
{"title":"Quantifying flare combustion efficiency using an imaging Fourier transform spectrometer.","authors":"Paule Lapeyre, Rodrigo Brenner Miguel, Michael Christopher Nagorski, Jean-Philippe Gagnon, Martin Chamberland, Caroline Turcotte, Kyle J Daun","doi":"10.1080/10962247.2024.2319773","DOIUrl":"10.1080/10962247.2024.2319773","url":null,"abstract":"<p><p>Mid-wavelength infrared (MWIR) imaging Fourier transform spectrometers (IFTSs) are a promising technology for measuring flare combustion efficiency (CE) and destruction removal efficiency (DRE). These devices generate spectrally resolved intensity images of the flare plume, which may then be used to infer column densities of relevant species along each pixel line-of-sight. In parallel, a 2D projected velocity field may be inferred from the apparent motion of flow features between successive images. Finally, the column densities and velocity field are combined to estimate the mass flow rates for the species needed to calculate the CE or DRE. Since the MWIR IFTS can measure key carbon-containing species in the flare plume, it is possible to measure CE without knowing the fuel flow rate, which is important for fenceline measurements. This work demonstrates this approach on a laboratory heated vent, and then deploys the technique on two working flares: a combustor burning natural gas at a known rate, and a steam-assisted flare at a petrochemical refinery. Analysis of the IFTS data highlights the potential of this approach, but also areas for future development to transform this approach into a reliable technique for quantifying flare emissions.<i>Implications</i>: Our research is motivated by the need to assess hydrocarbon emissions from flaring, which is a critical problem of global significance. For example, recent studies have shown that methane destruction efficiency of flaring from upstream oil may be significantly lower than the commonly assumed figure of 98%; work by Plant et al. , in particular, suggest that this discrepancy amounts to CO<sub>2</sub> emissions from 2 to 8 million automobiles annually, considering the US alone. Similarly, the international energy agency (IEA) estimates a global flare efficiency of 92%, which translates in 8 million tons of CH<sub>4</sub> emitted by flares in 2020. Highlighted by these studies and supported by the World Bank initiatives toward zero routine flaring emissions, there is an urgent need for oil and gas industry to assess their flare methane emission, and overall hydrocarbon emissions. At the very least, it is critical to identify problematic flare operating conditions and means to mitigate flare emissions. Focusing on remote quantification of plume species, the measurement technique and quantification method presented in this paper is a considerable step forward in that direction by computing combustion efficiency and key components for destruction efficiency.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"319-334"},"PeriodicalIF":2.7,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-04DOI: 10.1080/10962247.2024.2319770
Kevin Percy, Tom Dann
The lower mainland of British Columbia is a geographic region that comprises the districts of Metro Vancouver and the Lower Fraser Valley. It is situated in a complex topographical and coastal location in southwestern British Columbia. Metro Vancouver is Canada's third largest population center. Accessing the Canadian National Air Pollution Surveillance Program (NAPS) database we calculated air pollutant statistics using the Canadian Ambient Air Quality Standards (CAAQS) averaging times, numerical forms, and numerical levels for the years 2001to 2020. Man Kendall and Sen statistical methods were used to test for the presence of trends and the slope of those trends in fine particulate matter (PM2.5), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and volatile organic compound (VOC) ambient air concentrations. We did not determine a significant trend in 98th percentile of the daily 24-hr average PM2.5 concentrations. We did determine significant negative trends in the annual average of the daily 24-hr average PM2.5 concentrations at 6 of the 9 locations. Episodic, multi-day duration elevated PM2.5 concentrations related to forest fires were a significant influence on PM2.5 ambient concentrations. Annual 4th highest daily maximum 8-hr average O3 concentrations showed no trend at 14 of 18 locations, declined at 3 locations, and increased at one location. We determined statistically significant declines in peak and average NO2 and SO2 concentrations, and in time-integrated annual VOC concentrations.Implications: This non-parametric, statistical analysis determines 20-year trends in British Columbia lower mainland ambient air quality for PM2.5, O3, NO2, SO2 and VOC, assesses air quality against Canadian Ambient Air Quality Standards, and highlights the importance of event-based wildfire-sourced PM2.5.
{"title":"Long-term trends in British Columbia lower mainland air quality: Criteria air pollutants and VOC.","authors":"Kevin Percy, Tom Dann","doi":"10.1080/10962247.2024.2319770","DOIUrl":"10.1080/10962247.2024.2319770","url":null,"abstract":"<p><p>The lower mainland of British Columbia is a geographic region that comprises the districts of Metro Vancouver and the Lower Fraser Valley. It is situated in a complex topographical and coastal location in southwestern British Columbia. Metro Vancouver is Canada's third largest population center. Accessing the Canadian National Air Pollution Surveillance Program (NAPS) database we calculated air pollutant statistics using the Canadian Ambient Air Quality Standards (CAAQS) averaging times, numerical forms, and numerical levels for the years 2001to 2020. Man Kendall and Sen statistical methods were used to test for the presence of trends and the slope of those trends in fine particulate matter (PM<sub>2.5</sub>), ozone (O<sub>3</sub>), nitrogen dioxide (NO<sub>2</sub>), sulfur dioxide (SO<sub>2</sub>), and volatile organic compound (VOC) ambient air concentrations. We did not determine a significant trend in 98<sup>th</sup> percentile of the daily 24-hr average PM<sub>2.5</sub> concentrations. We did determine significant negative trends in the annual average of the daily 24-hr average PM<sub>2.5</sub> concentrations at 6 of the 9 locations. Episodic, multi-day duration elevated PM<sub>2.5</sub> concentrations related to forest fires were a significant influence on PM<sub>2.5</sub> ambient concentrations. Annual 4<sup>th</sup> highest daily maximum 8-hr average O<sub>3</sub> concentrations showed no trend at 14 of 18 locations, declined at 3 locations, and increased at one location. We determined statistically significant declines in peak and average NO<sub>2</sub> and SO<sub>2</sub> concentrations, and in time-integrated annual VOC concentrations.<i>Implications</i>: This non-parametric, statistical analysis determines 20-year trends in British Columbia lower mainland ambient air quality for PM<sub>2.5</sub>, O<sub>3</sub>, NO<sub>2</sub>, SO<sub>2</sub> and VOC, assesses air quality against Canadian Ambient Air Quality Standards, and highlights the importance of event-based wildfire-sourced PM<sub>2.5</sub>.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"261-278"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139747658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-03-24DOI: 10.1080/10962247.2024.2316821
Selnur Uçaroğlu, Behice Gamze Gümrah
Water-based paint sludge generated from the automotive industry is considered a hazardous waste due to its high carbon content and is challenging and costly to manage. This study investigates the management of water-based paint sludge through the composting process, considering its high carbon content. The water-based paint sludge was composted in five separate reactors with the addition of treatment sludge from the same industry as co-substrate and inoculum, as well as sunflower stalks as a bulking agent. The ratio of paint sludge added to the compost mixtures varied between 40% and 80%. The highest temperature was achieved in reactors where industrial sludge was added, and the bulking agent was used at a rate of 20% (R3 and R5). The most efficient composting process was conducted with the addition of 60% water-based paint sludge, 20% treatment sludge, and 20% sunflower stalks (w/w, wet weight basis) (R3). During this process, reductions in organic matter content were observed due to organic matter mineralization, resulting in a decrease in moisture during the maturation phase and consequently reducing waste volumes. The composting process can be a useful tool in addressing the challenges of paint sludge management. Utilizing the composting process not only reduces waste volumes, thereby minimizing environmental impacts, but also offers a sustainable approach to paint sludge management by lowering disposal costs. It is also possible to achieve more effective results by composting paint sludge with different recipes and the use of various bulking agents.Implications: Composting is a method that can be used to achieve stabilization, reduce the quantity, and enable biodrying of water-based paint sludge generated from the automotive industry. In this study, different ratios of paint sludge were mixed with treatment sludge from the same industry as co-substrate and inoculum, while sunflower stalks were added as a bulking agent, and a composting process was conducted. The addition of industrial wastewater treatment sludge and sunflower stalks has increased the efficiency of the paint sludge composting process. In the management of paint sludge, the composting process has emerged as a significant alternative that reduces disposal costs and environmental impacts.
{"title":"Management of water-based paint sludge originating from the automotive industry via composting.","authors":"Selnur Uçaroğlu, Behice Gamze Gümrah","doi":"10.1080/10962247.2024.2316821","DOIUrl":"10.1080/10962247.2024.2316821","url":null,"abstract":"<p><p>Water-based paint sludge generated from the automotive industry is considered a hazardous waste due to its high carbon content and is challenging and costly to manage. This study investigates the management of water-based paint sludge through the composting process, considering its high carbon content. The water-based paint sludge was composted in five separate reactors with the addition of treatment sludge from the same industry as co-substrate and inoculum, as well as sunflower stalks as a bulking agent. The ratio of paint sludge added to the compost mixtures varied between 40% and 80%. The highest temperature was achieved in reactors where industrial sludge was added, and the bulking agent was used at a rate of 20% (R3 and R5). The most efficient composting process was conducted with the addition of 60% water-based paint sludge, 20% treatment sludge, and 20% sunflower stalks (w/w, wet weight basis) (R3). During this process, reductions in organic matter content were observed due to organic matter mineralization, resulting in a decrease in moisture during the maturation phase and consequently reducing waste volumes. The composting process can be a useful tool in addressing the challenges of paint sludge management. Utilizing the composting process not only reduces waste volumes, thereby minimizing environmental impacts, but also offers a sustainable approach to paint sludge management by lowering disposal costs. It is also possible to achieve more effective results by composting paint sludge with different recipes and the use of various bulking agents.<i>Implications:</i> Composting is a method that can be used to achieve stabilization, reduce the quantity, and enable biodrying of water-based paint sludge generated from the automotive industry. In this study, different ratios of paint sludge were mixed with treatment sludge from the same industry as co-substrate and inoculum, while sunflower stalks were added as a bulking agent, and a composting process was conducted. The addition of industrial wastewater treatment sludge and sunflower stalks has increased the efficiency of the paint sludge composting process. In the management of paint sludge, the composting process has emerged as a significant alternative that reduces disposal costs and environmental impacts.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"279-289"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139708268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-26DOI: 10.1080/10962247.2024.2312889
Ajitesh Singh Chandel
<p><p>Solid waste has surfaced as an eminent and critical concern of environmental and social significance on a global scale, and Ethiopia, a developing country with limited income, has also encountered unfavorable outcomes due to substandard waste management practices. When pinpointing a fitting landfill location in the town of Bule Hora, various ecological, economic, and societal aspects must be considered; these may result in discord and exacerbate a multifaceted and lengthy process. Hence, this research aims to identify prospective landfill sites within the town and utilize geospatial methods, such as Multi-Criteria Evaluation and Analytic Hierarchy Process, to accomplish its objectives. The utilization of geospatial technology and multi-criteria evaluation provides an efficient manner to simultaneously address all bottlenecks involved in the selection of an appropriate landfill location. Geospatial technology evaluates and manages environmental constraints, whereas multi-criteria assessment categorizes choices based on their desirability. Furthermore, by employing a restriction map adhering to established standards, seven landfill sites have successfully been identified within the town. The Land Suitability Index assesses site suitability based on ecological factors, while the Total Hauling Distance evaluates sites within an economic framework. AHP determines weightings through 25.4 pairwise comparisons, resulting in a consistency ratio of 1.95%. The cartographic analysis is conducted using ESRI ArcGIS version 10.8 software. The findings of this study reveal that 98.69% of the area under study is subject to restrictions. The study recommends the implementation of geospatial methods for identifying suitable landfill sites, which would aid in the decision-making process and prevent hasty decisions from triggering environmental degradation. Proper waste disposal would augment the quality of life for residents by diminishing health hazards. The study endeavors to serve as a reference for other developing countries in selecting appropriate landfill sites.<i>Implications</i>: The town of Bule Hora also faces the problem of waste disposal; there is no scientifically selected suitable landfill. Residents of the town of Bule Hora practice waste disposal in open fields, near settlements, water bodies, roads, agricultural land, and other places. The main sources of solid waste in the town are homes, shops, hotels, restaurants, open markets, hospitals, educational institutions, private clinics, etc. Water pollution can potentially lead to the spread of waterborne diseases. According to reports from the Bule Horas Health Department, many people are affected by water-related diseases every year. These open landfill systems with no regard for settlement, topography, geology, surface, or groundwater conditions are the consequences of these unsuitable habitats and health problems. To reduce these problems, this study plays an important role in determining th
{"title":"Geo-spatial technology based on a multi-criteria evaluation technique used to find potential landfill sites in the town of Bule Hora in southern Ethiopia.","authors":"Ajitesh Singh Chandel","doi":"10.1080/10962247.2024.2312889","DOIUrl":"10.1080/10962247.2024.2312889","url":null,"abstract":"<p><p>Solid waste has surfaced as an eminent and critical concern of environmental and social significance on a global scale, and Ethiopia, a developing country with limited income, has also encountered unfavorable outcomes due to substandard waste management practices. When pinpointing a fitting landfill location in the town of Bule Hora, various ecological, economic, and societal aspects must be considered; these may result in discord and exacerbate a multifaceted and lengthy process. Hence, this research aims to identify prospective landfill sites within the town and utilize geospatial methods, such as Multi-Criteria Evaluation and Analytic Hierarchy Process, to accomplish its objectives. The utilization of geospatial technology and multi-criteria evaluation provides an efficient manner to simultaneously address all bottlenecks involved in the selection of an appropriate landfill location. Geospatial technology evaluates and manages environmental constraints, whereas multi-criteria assessment categorizes choices based on their desirability. Furthermore, by employing a restriction map adhering to established standards, seven landfill sites have successfully been identified within the town. The Land Suitability Index assesses site suitability based on ecological factors, while the Total Hauling Distance evaluates sites within an economic framework. AHP determines weightings through 25.4 pairwise comparisons, resulting in a consistency ratio of 1.95%. The cartographic analysis is conducted using ESRI ArcGIS version 10.8 software. The findings of this study reveal that 98.69% of the area under study is subject to restrictions. The study recommends the implementation of geospatial methods for identifying suitable landfill sites, which would aid in the decision-making process and prevent hasty decisions from triggering environmental degradation. Proper waste disposal would augment the quality of life for residents by diminishing health hazards. The study endeavors to serve as a reference for other developing countries in selecting appropriate landfill sites.<i>Implications</i>: The town of Bule Hora also faces the problem of waste disposal; there is no scientifically selected suitable landfill. Residents of the town of Bule Hora practice waste disposal in open fields, near settlements, water bodies, roads, agricultural land, and other places. The main sources of solid waste in the town are homes, shops, hotels, restaurants, open markets, hospitals, educational institutions, private clinics, etc. Water pollution can potentially lead to the spread of waterborne diseases. According to reports from the Bule Horas Health Department, many people are affected by water-related diseases every year. These open landfill systems with no regard for settlement, topography, geology, surface, or groundwater conditions are the consequences of these unsuitable habitats and health problems. To reduce these problems, this study plays an important role in determining th","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"207-239"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-28DOI: 10.1080/10962247.2024.2316070
Seok-Young Oh, Soo-Won Cha, Hyungwoo Lee
In this study, biodegradable dust suppressants were prepared using glycerol and biomass-based oily compounds, including palm oil, biodiesel, and soybean oil. The suppressing ability of the glycerol and the oily compound mixture was evaluated using wind tunnel tests, and factors affecting the suppression of the particles were determined. The replacement of sodium dodecyl sulfate with coco glucoside and lauryl glucoside significantly enhanced the biodegradability of the suppressants (2.02 vs. 9.01 and 8.54 mg/L of BOD5). The glycerol and soybean oil mixture exhibited excellent performance owing to the relatively high viscosity of the suppressants, and the optimal dilution ratio was 1:50 and 1:1000 for sand and granite-weathered soil, respectively. More than 98% of suppression was obtained under the optimal conditions. The effect of the particle properties (particularly permeability) was significant, even though the viscosity of the suppressants was responsible for the suppression of the particles. Our results suggest that the mixture of glycerol and biomass-based oily compounds could be a promising suppressant for reducing the mobility of ultrafine particles in the atmosphere.Implications: Since the early 2010s, anthropogenic fugitive dust from industrial activities has become a serious environmental issue due to its serious hazards to the environment and human health in South Korea. So far, several dust suppressants (mostly salts) were made and used for field application. However, due to their toxic effects, it is necessary to develop a new eco-friendly suppressant that can be biodegraded in the soil and that is not hazardous to human health or the environment. Previously we have developed an eco-friendly dust suppressant with low toxicity and high suppression ability using ingredients and by-products of biodiesel production, marine biomass, and commercial vegetable oils (Tsgot and Oh 2021, J. Air Waste Manag. Assoc. 71:1386-1396). However, due to the low biodegradability of surfactant, the synthesized dust suppressants showed limited biodegradability. As a follow-up to our previous study, we employed readily biodegradable surfactants as additives to enhance the biodegradability of the dust suppressants with the same excellent suppressing ability. To determine the optimal conditions, the synthesis and preparation of the dust suppressants was conducted using biodegradable surfactants, including coco glucoside and lauryl glucoside. The factors affecting the suppressing ability of the suppressants were examined via wind tunnel tests. These factors include the dilution factors, the viscosity of the suppressants, and the type of suppressed particles. Possible suppressing mechanisms were also discussed.
{"title":"Biodegradable dust suppressants prepared from biomass-based materials: The role of viscosity and suppressed particles.","authors":"Seok-Young Oh, Soo-Won Cha, Hyungwoo Lee","doi":"10.1080/10962247.2024.2316070","DOIUrl":"10.1080/10962247.2024.2316070","url":null,"abstract":"<p><p>In this study, biodegradable dust suppressants were prepared using glycerol and biomass-based oily compounds, including palm oil, biodiesel, and soybean oil. The suppressing ability of the glycerol and the oily compound mixture was evaluated using wind tunnel tests, and factors affecting the suppression of the particles were determined. The replacement of sodium dodecyl sulfate with coco glucoside and lauryl glucoside significantly enhanced the biodegradability of the suppressants (2.02 vs. 9.01 and 8.54 mg/L of BOD<sub>5</sub>). The glycerol and soybean oil mixture exhibited excellent performance owing to the relatively high viscosity of the suppressants, and the optimal dilution ratio was 1:50 and 1:1000 for sand and granite-weathered soil, respectively. More than 98% of suppression was obtained under the optimal conditions. The effect of the particle properties (particularly permeability) was significant, even though the viscosity of the suppressants was responsible for the suppression of the particles. Our results suggest that the mixture of glycerol and biomass-based oily compounds could be a promising suppressant for reducing the mobility of ultrafine particles in the atmosphere.<i>Implications:</i> Since the early 2010s, anthropogenic fugitive dust from industrial activities has become a serious environmental issue due to its serious hazards to the environment and human health in South Korea. So far, several dust suppressants (mostly salts) were made and used for field application. However, due to their toxic effects, it is necessary to develop a new eco-friendly suppressant that can be biodegraded in the soil and that is not hazardous to human health or the environment. Previously we have developed an eco-friendly dust suppressant with low toxicity and high suppression ability using ingredients and by-products of biodiesel production, marine biomass, and commercial vegetable oils (Tsgot and Oh 2021, <i>J. Air Waste Manag. Assoc</i>. 71:1386-1396). However, due to the low biodegradability of surfactant, the synthesized dust suppressants showed limited biodegradability. As a follow-up to our previous study, we employed readily biodegradable surfactants as additives to enhance the biodegradability of the dust suppressants with the same excellent suppressing ability. To determine the optimal conditions, the synthesis and preparation of the dust suppressants was conducted using biodegradable surfactants, including coco glucoside and lauryl glucoside. The factors affecting the suppressing ability of the suppressants were examined via wind tunnel tests. These factors include the dilution factors, the viscosity of the suppressants, and the type of suppressed particles. Possible suppressing mechanisms were also discussed.</p>","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"253-260"},"PeriodicalIF":2.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-08DOI: 10.1080/10962247.2023.2290727
Zhimin Ye, Zhonghua Xiao, Qing Gong, Yuxuan Peng, Jiaxiang Li, Xueyuan Zhao, Biao Zhang, Songlin Wang
<p><p>Undersized fraction from aged municipal solid waste (UFAMSW), as a kind of soil-like material, has been proved effective in providing a large amount of organic matter and nutrients for soil and plants. The characteristics and effectiveness of heavy metal pollution removal in UFAMSW attracted tremendous research interest from scientists recently. In this study, the heavy metal removal efficiencies and bioavailability of washing on contaminated UFAMSW were evaluated with three washing reagents including ethylene diamine tetra acetic acid (EDTA), citric acid (CA), and humic acid (HA). The effects of chelating agent concentration, pH, and washing time on metal removal were investigated and response surface methodology (RSM) was employed to optimize the washing conditions. The results indicated that the removal efficiencies of Cu, Zn, and Mn could be 53.68%, 52.12%, and 30.63% by EDTA/HA washing and 42.36%, 39.67% and 28.49% by CA/HA washing, respectively. The European Community Bureau of Reference (BCR) sequential extraction was applied to analyze the fraction change of heavy metals in UFAMSW before and after washing, and it was found that chelating agent combined with HA could contribute to the removal of the exchangeable fraction. Physical and chemical properties of UFAMSW were improved to some extent after washing with mixed HA and chelating agent and could achieve the quality standard of landscape gardening soil. Accordingly, the mixture of HA and other chelating agents could be a promising washing process for preparation of landscape gardening soil using UFAMSW.<i>Implications</i>: Our manuscript studies the removal of heavy metals from the contaminated undersized fraction from aged municipal solid waste (UFAMSW). UFAMSW, as a kind of soil-like material, has been proved effective in providing a large amount of organic matter and nutrients for soil and plants however often limited by heavy metal pollution. The UFAMSW used in this experiment was collected after the excavation and screening-sorting of aged refuse from Changshankou Domestic Waste Sanitary Landfill in Wuhan City, Hubei Province, Southern China. This study investigated the effects of EDTA, CA, HA, mixed EDTA/HA, and mixed CA/HA washing on heavy metal removal (Cu, Zn, and Mn), bioavailability of residual heavy metal and properties. The effects of chelating agent concentration, pH, and washing time on metal removal were investigated and then response surface methodology was employed to optimize the washing conditions. The results showed that washing by CA/HA and EDTA/HA, had a higher removal efficiency of heavy metals (Cu, Zn, and Mn) in UFAMSW compared to single HA. Meanwhile, HA has a higher removal for exchangeable fraction of heavy metals, the exchangeable concentration of Cu, Zn, and Mn in CA/HA and EDTA/HA washed UFAMSW were lower compared with UFAMSW washed by single CA and EDTA. Thus, mixing HA with EDTA or CA makes a less risk to environmental and the removal efficiency i
老化城市固体废弃物中的下脚料(UFAMSW)作为一种类似土壤的物质,已被证明能有效地为土壤和植物提供大量有机物和养分。近年来,UFAMSW 去除重金属污染的特性和效果引起了科学家们极大的研究兴趣。本研究采用乙二胺四乙酸(EDTA)、柠檬酸(CA)和腐植酸(HA)等三种洗涤试剂,评估了洗涤受污染的超滤膜和絮凝剂对重金属的去除率和生物利用率。研究了螯合剂浓度、pH 值和洗涤时间对金属去除的影响,并采用响应面法(RSM)对洗涤条件进行了优化。结果表明,EDTA/HA 洗涤对铜、锌和锰的去除率分别为 53.68%、52.12% 和 30.63%,CA/HA 洗涤对铜、锌和锰的去除率分别为 42.36%、39.67% 和 28.49%。应用欧洲共同体参考局(BCR)的顺序萃取法分析了超滤膜中重金属在洗涤前后的变化,结果发现螯合剂与 HA 的结合有助于去除可交换部分。用 HA 和螯合剂混合洗涤后,UFAMSW 的理化性质得到了一定程度的改善,可以达到园林土壤的质量标准。因此,HA 和其他螯合剂的混合物可能是使用 UFAMSW 制备园林土壤的一种很有前景的洗涤工艺:我们的手稿研究了从受污染的老化城市固体废弃物(UFAMSW)中去除重金属。事实证明,UFAMSW 作为一种类似土壤的材料,能有效地为土壤和植物提供大量有机物和养分,但往往受到重金属污染的限制。本实验中使用的 UFAMSW 是在中国南方湖北省武汉市长山口生活垃圾卫生填埋场挖掘并筛选分拣陈年垃圾后收集的。本研究考察了 EDTA、CA、HA、EDTA/HA 混合洗涤、CA/HA 混合洗涤对重金属(铜、锌、锰)去除率、残留重金属生物利用率及性质的影响。研究了螯合剂浓度、pH 值和洗涤时间对金属去除率的影响,然后采用响应面法优化了洗涤条件。结果表明,与单一 HA 相比,CA/HA 和 EDTA/HA 对 UFAMSW 中重金属(铜、锌和锰)的去除率更高。同时,HA 对重金属的可交换部分具有更高的去除率,CA/HA 和 EDTA/HA 洗涤的 UFAMSW 中 Cu、Zn 和 Mn 的可交换浓度低于单一 CA 和 EDTA 洗涤的 UFAMSW。因此,将 HA 与 EDTA 或 CA 混合使用对环境的风险较小,去除效率也可以接受。此外,CA/HA 和 EDTA/HA 水洗往往能改善土壤理化性质和土壤肥力。因此,将 HA 与不同的洗涤剂混合是使用 UFAMSW 制备园林土壤的潜在方法。
{"title":"Preparation of landscape gardening soil using undersized fraction from aged MSW by EDTA or citric acid coupled with humic acid: Effect assessment, properties, and optimization.","authors":"Zhimin Ye, Zhonghua Xiao, Qing Gong, Yuxuan Peng, Jiaxiang Li, Xueyuan Zhao, Biao Zhang, Songlin Wang","doi":"10.1080/10962247.2023.2290727","DOIUrl":"10.1080/10962247.2023.2290727","url":null,"abstract":"<p><p>Undersized fraction from aged municipal solid waste (UFAMSW), as a kind of soil-like material, has been proved effective in providing a large amount of organic matter and nutrients for soil and plants. The characteristics and effectiveness of heavy metal pollution removal in UFAMSW attracted tremendous research interest from scientists recently. In this study, the heavy metal removal efficiencies and bioavailability of washing on contaminated UFAMSW were evaluated with three washing reagents including ethylene diamine tetra acetic acid (EDTA), citric acid (CA), and humic acid (HA). The effects of chelating agent concentration, pH, and washing time on metal removal were investigated and response surface methodology (RSM) was employed to optimize the washing conditions. The results indicated that the removal efficiencies of Cu, Zn, and Mn could be 53.68%, 52.12%, and 30.63% by EDTA/HA washing and 42.36%, 39.67% and 28.49% by CA/HA washing, respectively. The European Community Bureau of Reference (BCR) sequential extraction was applied to analyze the fraction change of heavy metals in UFAMSW before and after washing, and it was found that chelating agent combined with HA could contribute to the removal of the exchangeable fraction. Physical and chemical properties of UFAMSW were improved to some extent after washing with mixed HA and chelating agent and could achieve the quality standard of landscape gardening soil. Accordingly, the mixture of HA and other chelating agents could be a promising washing process for preparation of landscape gardening soil using UFAMSW.<i>Implications</i>: Our manuscript studies the removal of heavy metals from the contaminated undersized fraction from aged municipal solid waste (UFAMSW). UFAMSW, as a kind of soil-like material, has been proved effective in providing a large amount of organic matter and nutrients for soil and plants however often limited by heavy metal pollution. The UFAMSW used in this experiment was collected after the excavation and screening-sorting of aged refuse from Changshankou Domestic Waste Sanitary Landfill in Wuhan City, Hubei Province, Southern China. This study investigated the effects of EDTA, CA, HA, mixed EDTA/HA, and mixed CA/HA washing on heavy metal removal (Cu, Zn, and Mn), bioavailability of residual heavy metal and properties. The effects of chelating agent concentration, pH, and washing time on metal removal were investigated and then response surface methodology was employed to optimize the washing conditions. The results showed that washing by CA/HA and EDTA/HA, had a higher removal efficiency of heavy metals (Cu, Zn, and Mn) in UFAMSW compared to single HA. Meanwhile, HA has a higher removal for exchangeable fraction of heavy metals, the exchangeable concentration of Cu, Zn, and Mn in CA/HA and EDTA/HA washed UFAMSW were lower compared with UFAMSW washed by single CA and EDTA. Thus, mixing HA with EDTA or CA makes a less risk to environmental and the removal efficiency i","PeriodicalId":49171,"journal":{"name":"Journal of the Air & Waste Management Association","volume":" ","pages":"192-205"},"PeriodicalIF":2.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139703871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}