Pub Date : 2021-01-01Epub Date: 2021-05-25DOI: 10.1137/20m1365946
Ayelet Heimowitz, Nir Sharon, Amit Singer
We target the problem of estimating the center of mass of objects in noisy two-dimensional images. We assume that the noise dominates the image, and thus many standard approaches are vulnerable to estimation errors, e.g., the direct computation of the center of mass and the geometric median which is a robust alternative to the center of mass. In this paper, we define a novel surrogate function to the center of mass. We present a mathematical and numerical analysis of our method and show that it outperforms existing methods for estimating the center of mass of an object in various realistic scenarios. As a case study, we apply our centering method to data from single-particle cryo-electron microscopy (cryo-EM), where the goal is to reconstruct the three-dimensional structure of macromolecules. We show how to apply our approach for a better translational alignment of molecule images picked from experimental data. In this way, we facilitate the succeeding steps of reconstruction and streamline the entire cryo-EM pipeline, saving computational time and supporting resolution enhancement.
{"title":"Centering Noisy Images with Application to Cryo-EM.","authors":"Ayelet Heimowitz, Nir Sharon, Amit Singer","doi":"10.1137/20m1365946","DOIUrl":"https://doi.org/10.1137/20m1365946","url":null,"abstract":"<p><p>We target the problem of estimating the center of mass of objects in noisy two-dimensional images. We assume that the noise dominates the image, and thus many standard approaches are vulnerable to estimation errors, e.g., the direct computation of the center of mass and the geometric median which is a robust alternative to the center of mass. In this paper, we define a novel surrogate function to the center of mass. We present a mathematical and numerical analysis of our method and show that it outperforms existing methods for estimating the center of mass of an object in various realistic scenarios. As a case study, we apply our centering method to data from single-particle cryo-electron microscopy (cryo-EM), where the goal is to reconstruct the three-dimensional structure of macromolecules. We show how to apply our approach for a better translational alignment of molecule images picked from experimental data. In this way, we facilitate the succeeding steps of reconstruction and streamline the entire cryo-EM pipeline, saving computational time and supporting resolution enhancement.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"14 2","pages":"689-716"},"PeriodicalIF":2.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813033/pdf/nihms-1739531.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39591769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-05-10DOI: 10.1137/20M1340654
Qing Zou, Mathews Jacob
Several imaging algorithms including patch-based image denoising, image time series recovery, and convolutional neural networks can be thought of as methods that exploit the manifold structure of signals. While the empirical performance of these algorithms is impressive, the understanding of recovery of the signals and functions that live on manifold is less understood. In this paper, we focus on the recovery of signals that live on a union of surfaces. In particular, we consider signals living on a union of smooth band-limited surfaces in high dimensions. We show that an exponential mapping transforms the data to a union of low-dimensional subspaces. Using this relation, we introduce a sampling theoretical framework for the recovery of smooth surfaces from few samples and the learning of functions living on smooth surfaces. The low-rank property of the features is used to determine the number of measurements needed to recover the surface. Moreover, the low-rank property of the features also provides an efficient approach, which resembles a neural network, for the local representation of multidimensional functions on the surface. The direct representation of such a function in high dimensions often suffers from the curse of dimensionality; the large number of parameters would translate to the need for extensive training data. The low-rank property of the features can significantly reduce the number of parameters, which makes the computational structure attractive for learning and inference from limited labeled training data.
{"title":"Recovery of surfaces and functions in high dimensions: sampling theory and links to neural networks.","authors":"Qing Zou, Mathews Jacob","doi":"10.1137/20M1340654","DOIUrl":"10.1137/20M1340654","url":null,"abstract":"<p><p>Several imaging algorithms including patch-based image denoising, image time series recovery, and convolutional neural networks can be thought of as methods that exploit the manifold structure of signals. While the empirical performance of these algorithms is impressive, the understanding of recovery of the signals and functions that live on manifold is less understood. In this paper, we focus on the recovery of signals that live on a union of surfaces. In particular, we consider signals living on a union of smooth band-limited surfaces in high dimensions. We show that an exponential mapping transforms the data to a union of low-dimensional subspaces. Using this relation, we introduce a sampling theoretical framework for the recovery of smooth surfaces from few samples and the learning of functions living on smooth surfaces. The low-rank property of the features is used to determine the number of measurements needed to recover the surface. Moreover, the low-rank property of the features also provides an efficient approach, which resembles a neural network, for the local representation of multidimensional functions on the surface. The direct representation of such a function in high dimensions often suffers from the curse of dimensionality; the large number of parameters would translate to the need for extensive training data. The low-rank property of the features can significantly reduce the number of parameters, which makes the computational structure attractive for learning and inference from limited labeled training data.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"14 2","pages":"580-619"},"PeriodicalIF":2.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323788/pdf/nihms-1673810.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39265387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-06-30DOI: 10.1137/18m1283160
Xiuyuan Cheng, Gal Mishne
The extraction of clusters from a dataset which includes multiple clusters and a significant background component is a non-trivial task of practical importance. In image analysis this manifests for example in anomaly detection and target detection. The traditional spectral clustering algorithm, which relies on the leading K eigenvectors to detect K clusters, fails in such cases. In this paper we propose the spectral embedding norm which sums the squared values of the first I normalized eigenvectors, where I can be significantly larger than K. We prove that this quantity can be used to separate clusters from the background in unbalanced settings, including extreme cases such as outlier detection. The performance of the algorithm is not sensitive to the choice of I, and we demonstrate its application on synthetic and real-world remote sensing and neuroimaging datasets.
从包含多个聚类和重要背景成分的数据集中提取聚类是一项非常重要的实际任务。在图像分析中,这体现在异常检测和目标检测等方面。传统的光谱聚类算法依靠前 K 个特征向量来检测 K 个聚类,在这种情况下会失效。在本文中,我们提出了光谱嵌入规范,它是前 I 个归一化特征向量平方值的总和,其中 I 可以比 K 大得多。我们证明,在不平衡的环境中,包括离群点检测等极端情况下,这个量可用于从背景中分离出聚类。该算法的性能对 I 的选择并不敏感,我们在合成和现实世界的遥感和神经成像数据集上演示了该算法的应用。
{"title":"Spectral Embedding Norm: Looking Deep into the Spectrum of the Graph Laplacian.","authors":"Xiuyuan Cheng, Gal Mishne","doi":"10.1137/18m1283160","DOIUrl":"10.1137/18m1283160","url":null,"abstract":"<p><p>The extraction of clusters from a dataset which includes multiple clusters and a significant background component is a non-trivial task of practical importance. In image analysis this manifests for example in anomaly detection and target detection. The traditional spectral clustering algorithm, which relies on the leading <i>K</i> eigenvectors to detect <i>K</i> clusters, fails in such cases. In this paper we propose the <i>spectral embedding norm</i> which sums the squared values of the first <i>I</i> normalized eigenvectors, where <i>I</i> can be significantly larger than <i>K</i>. We prove that this quantity can be used to separate clusters from the background in unbalanced settings, including extreme cases such as outlier detection. The performance of the algorithm is not sensitive to the choice of <i>I</i>, and we demonstrate its application on synthetic and real-world remote sensing and neuroimaging datasets.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"13 2","pages":"1015-1048"},"PeriodicalIF":2.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204716/pdf/nihms-1594853.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10320693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-03-12DOI: 10.1137/19m1265132
Tom Needham, Sebastian Kurtek
In the shape analysis approach to computer vision problems, one treats shapes as points in an infinite-dimensional Riemannian manifold, thereby facilitating algorithms for statistical calculations such as geodesic distance between shapes and averaging of a collection of shapes. The performance of these algorithms depends heavily on the choice of the Riemannian metric. In the setting of plane curve shapes, attention has largely been focused on a two-parameter family of first order Sobolev metrics, referred to as elastic metrics. They are particularly useful due to the existence of simplifying coordinate transformations for particular parameter values, such as the well-known square-root velocity transform. In this paper, we extend the transformations appearing in the existing literature to a family of isometries, which take any elastic metric to the flat L2 metric. We also extend the transforms to treat piecewise linear curves and demonstrate the existence of optimal matchings over the diffeomorphism group in this setting. We conclude the paper with multiple examples of shape geodesics for open and closed curves. We also show the benefits of our approach in a simple classification experiment.
{"title":"Simplifying Transforms for General Elastic Metrics on the Space of Plane Curves.","authors":"Tom Needham, Sebastian Kurtek","doi":"10.1137/19m1265132","DOIUrl":"https://doi.org/10.1137/19m1265132","url":null,"abstract":"<p><p>In the shape analysis approach to computer vision problems, one treats shapes as points in an infinite-dimensional Riemannian manifold, thereby facilitating algorithms for statistical calculations such as geodesic distance between shapes and averaging of a collection of shapes. The performance of these algorithms depends heavily on the choice of the Riemannian metric. In the setting of plane curve shapes, attention has largely been focused on a two-parameter family of first order Sobolev metrics, referred to as elastic metrics. They are particularly useful due to the existence of simplifying coordinate transformations for particular parameter values, such as the well-known square-root velocity transform. In this paper, we extend the transformations appearing in the existing literature to a family of isometries, which take any elastic metric to the flat <i>L</i> <sup>2</sup> metric. We also extend the transforms to treat piecewise linear curves and demonstrate the existence of optimal matchings over the diffeomorphism group in this setting. We conclude the paper with multiple examples of shape geodesics for open and closed curves. We also show the benefits of our approach in a simple classification experiment.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"13 1","pages":"445-473"},"PeriodicalIF":2.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1137/19m1265132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39316946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01Epub Date: 2020-11-19DOI: 10.1137/19m1304210
Anthony Yezzi, Ganesh Sundaramoorthi, Minas Benyamin
Following the seminal work of Nesterov, accelerated optimization methods have been used to powerfully boost the performance of first-order, gradient based parameter estimation in scenarios where second-order optimization strategies are either inapplicable or impractical. Not only does accelerated gradient descent converge considerably faster than traditional gradient descent, but it also performs a more robust local search of the parameter space by initially overshooting and then oscillating back as it settles into a final configuration, thereby selecting only local minimizers with a basis of attraction large enough to contain the initial overshoot. This behavior has made accelerated and stochastic gradient search methods particularly popular within the machine learning community. In their recent PNAS 2016 paper, A Variational Perspective on Accelerated Methods in Optimization, Wibisono, Wilson, and Jordan demonstrate how a broad class of accelerated schemes can be cast in a variational framework formulated around the Bregman divergence, leading to continuum limit ODEs. We show how their formulation may be further extended to infinite dimensional manifolds (starting here with the geometric space of curves and surfaces) by substituting the Bregman divergence with inner products on the tangent space and explicitly introducing a distributed mass model which evolves in conjunction with the object of interest during the optimization process. The coevolving mass model, which is introduced purely for the sake of endowing the optimization with helpful dynamics, also links the resulting class of accelerated PDE based optimization schemes to fluid dynamical formulations of optimal mass transport.
在涅斯捷罗夫的开创性工作之后,加速优化方法已被用于在二阶优化策略不适用或不切实际的情况下,有力地提高基于梯度的一阶参数估计的性能。与传统梯度下降法相比,加速梯度下降法不仅收敛速度快得多,而且对参数空间进行的局部搜索更加稳健,最初会出现超调,然后在最终配置中振荡回调,从而只选择局部最小值,其吸引力基础大到足以包含最初的超调。这种行为使得加速和随机梯度搜索方法在机器学习界特别流行。在最近发表的 2016 年美国国家科学院院刊论文《优化加速方法的变分视角》(A Variational Perspective on Accelerated Methods in Optimization)中,Wibisono、Wilson 和 Jordan 展示了如何在围绕布雷格曼发散(Bregman divergence)制定的变分框架中采用一大类加速方案,从而引出连续极限 ODE。我们展示了如何通过用切线空间上的内积代替布雷格曼发散,并明确引入分布式质量模型,在优化过程中与感兴趣的对象共同演化,从而将他们的公式进一步扩展到无限维流形(这里从曲线和曲面的几何空间开始)。引入共同演化的质量模型纯粹是为了赋予优化以有益的动态性,同时也将由此产生的基于 PDE 的加速优化方案与最优质量传输的流体动力学公式联系起来。
{"title":"Accelerated Optimization in the PDE Framework Formulations for the Active Contour Case.","authors":"Anthony Yezzi, Ganesh Sundaramoorthi, Minas Benyamin","doi":"10.1137/19m1304210","DOIUrl":"10.1137/19m1304210","url":null,"abstract":"<p><p>Following the seminal work of Nesterov, accelerated optimization methods have been used to powerfully boost the performance of first-order, gradient based parameter estimation in scenarios where second-order optimization strategies are either inapplicable or impractical. Not only does accelerated gradient descent converge considerably faster than traditional gradient descent, but it also performs a more robust local search of the parameter space by initially overshooting and then oscillating back as it settles into a final configuration, thereby selecting only local minimizers with a basis of attraction large enough to contain the initial overshoot. This behavior has made accelerated and stochastic gradient search methods particularly popular within the machine learning community. In their recent PNAS 2016 paper, <i>A Variational Perspective on Accelerated Methods in Optimization</i>, Wibisono, Wilson, and Jordan demonstrate how a broad class of accelerated schemes can be cast in a variational framework formulated around the Bregman divergence, leading to continuum limit ODEs. We show how their formulation may be further extended to infinite dimensional manifolds (starting here with the geometric space of curves and surfaces) by substituting the Bregman divergence with inner products on the tangent space and explicitly introducing a distributed mass model which evolves in conjunction with the object of interest during the optimization process. The coevolving mass model, which is introduced purely for the sake of endowing the optimization with helpful dynamics, also links the resulting class of accelerated PDE based optimization schemes to fluid dynamical formulations of optimal mass transport.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"13 4","pages":"2029-2062"},"PeriodicalIF":2.1,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320808/pdf/nihms-1676294.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39265386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-05-08DOI: 10.1137/17M1123237
Bin Li, Chenyang Shen, Yujie Chi, Ming Yang, Yifei Lou, Linghong Zhou, Xun Jia
Multi-energy computed tomography (CT) is an emerging medical image modality with a number of potential applications in diagnosis and therapy. However, high system cost and technical barriers obstruct its step into routine clinical practice. In this study, we propose a framework to realize multi-energy cone beam CT (ME-CBCT) on the CBCT system that is widely available and has been routinely used for radiotherapy image guidance. In our method, a kVp switching technique is realized, which acquires x-ray projections with kVp levels cycling through a number of values. For this kVp-switching based ME-CBCT acquisition, x-ray projections of each energy channel are only a subset of all the acquired projections. This leads to an undersampling issue, posing challenges to the reconstruction problem. We propose a spatial spectral non-local means (ssNLM) method to reconstruct ME-CBCT, which employs image correlations along both spatial and spectral directions to suppress noisy and streak artifacts. To address the intensity scale difference at different energy channels, a histogram matching method is incorporated. Our method is different from conventionally used NLM methods in that spectral dimension is included, which helps to effectively remove streak artifacts appearing at different directions in images with different energy channels. Convergence analysis of our algorithm is provided. A comprehensive set of simulation and real experimental studies demonstrate feasibility of our ME-CBCT scheme and the capability of achieving superior image quality compared to conventional filtered backprojection-type (FBP) and NLM reconstruction methods.
{"title":"MULTI-ENERGY CONE-BEAM CT RECONSTRUCTION WITH A SPATIAL SPECTRAL NONLOCAL MEANS ALGORITHM.","authors":"Bin Li, Chenyang Shen, Yujie Chi, Ming Yang, Yifei Lou, Linghong Zhou, Xun Jia","doi":"10.1137/17M1123237","DOIUrl":"https://doi.org/10.1137/17M1123237","url":null,"abstract":"Multi-energy computed tomography (CT) is an emerging medical image modality with a number of potential applications in diagnosis and therapy. However, high system cost and technical barriers obstruct its step into routine clinical practice. In this study, we propose a framework to realize multi-energy cone beam CT (ME-CBCT) on the CBCT system that is widely available and has been routinely used for radiotherapy image guidance. In our method, a kVp switching technique is realized, which acquires x-ray projections with kVp levels cycling through a number of values. For this kVp-switching based ME-CBCT acquisition, x-ray projections of each energy channel are only a subset of all the acquired projections. This leads to an undersampling issue, posing challenges to the reconstruction problem. We propose a spatial spectral non-local means (ssNLM) method to reconstruct ME-CBCT, which employs image correlations along both spatial and spectral directions to suppress noisy and streak artifacts. To address the intensity scale difference at different energy channels, a histogram matching method is incorporated. Our method is different from conventionally used NLM methods in that spectral dimension is included, which helps to effectively remove streak artifacts appearing at different directions in images with different energy channels. Convergence analysis of our algorithm is provided. A comprehensive set of simulation and real experimental studies demonstrate feasibility of our ME-CBCT scheme and the capability of achieving superior image quality compared to conventional filtered backprojection-type (FBP) and NLM reconstruction methods.","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"11 2","pages":"1205-1229"},"PeriodicalIF":2.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1137/17M1123237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36568105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-06-05DOI: 10.1137/17M1153649
Thomas P Matthews, Joemini Poudel, Lei Li, Lihong V Wang, Mark A Anastasio
Accurate estimation of the initial pressure distribution in photoacoustic computed tomography (PACT) depends on knowledge of the sound speed distribution. However, the sound speed distribution is typically unknown. Further, the initial pressure and sound speed distributions cannot both, in general, be stably recovered from PACT measurements alone. In this work, a joint reconstruction (JR) method for the initial pressure distribution and a low-dimensional parameterized model of the sound speed distribution is proposed. By employing a priori information about the structure of the sound speed distribution, both the initial pressure and sound speed can be accurately recovered. The JR problem is solved by use of a proximal optimization method that allows constraints and non-smooth regularization functions for the initial pressure distribution. The gradients of the cost function with respect to the initial pressure and sound speed distributions are calculated by use of an adjoint state method that has the same per-iteration computational cost as calculating the gradient with respect to the initial pressure distribution alone. This approach is evaluated through 2D computer-simulation studies for a small animal imaging model and by application to experimental in vivo measurements of a mouse.
{"title":"Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography.","authors":"Thomas P Matthews, Joemini Poudel, Lei Li, Lihong V Wang, Mark A Anastasio","doi":"10.1137/17M1153649","DOIUrl":"10.1137/17M1153649","url":null,"abstract":"<p><p>Accurate estimation of the initial pressure distribution in photoacoustic computed tomography (PACT) depends on knowledge of the sound speed distribution. However, the sound speed distribution is typically unknown. Further, the initial pressure and sound speed distributions cannot both, in general, be stably recovered from PACT measurements alone. In this work, a joint reconstruction (JR) method for the initial pressure distribution and a low-dimensional parameterized model of the sound speed distribution is proposed. By employing <i>a priori</i> information about the structure of the sound speed distribution, both the initial pressure and sound speed can be accurately recovered. The JR problem is solved by use of a proximal optimization method that allows constraints and non-smooth regularization functions for the initial pressure distribution. The gradients of the cost function with respect to the initial pressure and sound speed distributions are calculated by use of an adjoint state method that has the same per-iteration computational cost as calculating the gradient with respect to the initial pressure distribution alone. This approach is evaluated through 2D computer-simulation studies for a small animal imaging model and by application to experimental in vivo measurements of a mouse.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"11 2","pages":"1560-1588"},"PeriodicalIF":2.1,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447310/pdf/nihms-1015338.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37127613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-01Epub Date: 2018-05-31DOI: 10.1137/17M1153509
Joakim Andén, Amit Singer
In cryo-electron microscopy, the three-dimensional (3D) electric potentials of an ensemble of molecules are projected along arbitrary viewing directions to yield noisy two-dimensional images. The volume maps representing these potentials typically exhibit a great deal of structural variability, which is described by their 3D covariance matrix. Typically, this covariance matrix is approximately low rank and can be used to cluster the volumes or estimate the intrinsic geometry of the conformation space. We formulate the estimation of this covariance matrix as a linear inverse problem, yielding a consistent least-squares estimator. For n images of size N-by-N pixels, we propose an algorithm for calculating this covariance estimator with computational complexity , where the condition number κ is empirically in the range 10-200. Its efficiency relies on the observation that the normal equations are equivalent to a deconvolution problem in six dimensions. This is then solved by the conjugate gradient method with an appropriate circulant preconditioner. The result is the first computationally efficient algorithm for consistent estimation of the 3D covariance from noisy projections. It also compares favorably in runtime with respect to previously proposed nonconsistent estimators. Motivated by the recent success of eigenvalue shrinkage procedures for high-dimensional covariance matrix estimation, we incorporate a shrinkage procedure that improves accuracy at lower signal-to-noise ratios. We evaluate our methods on simulated datasets and achieve classification results comparable to state-of-the-art methods in shorter running time. We also present results on clustering volumes in an experimental dataset, illustrating the power of the proposed algorithm for practical determination of structural variability.
在冷冻电子显微镜中,分子系综的三维(3D)电势沿着任意观察方向投影,以产生有噪声的二维图像。代表这些电位的体积图通常表现出很大的结构可变性,这通过它们的3D协方差矩阵来描述。通常,该协方差矩阵是近似低秩的,并且可以用于对体积进行聚类或估计构象空间的固有几何形状。我们把这个协方差矩阵的估计公式化为一个线性逆问题,得到一个一致的最小二乘估计量。对于n×n像素大小的n个图像,我们提出了一种计算复杂度为O(n n 4+κn 6 log n)的协方差估计器的算法,其中条件数κ在10-200的范围内。它的效率依赖于观察到的正规方程相当于六个维度上的反褶积问题。然后通过共轭梯度法和适当的循环预处理器来解决这个问题。该结果是用于从噪声投影一致估计3D协方差的第一个计算有效的算法。与之前提出的非一致性估计器相比,它在运行时也比较有利。受高维协方差矩阵估计特征值收缩程序最近成功的启发,我们引入了一种收缩程序,该程序在较低的信噪比下提高了精度。我们在模拟数据集上评估了我们的方法,并在较短的运行时间内获得了与最先进方法相当的分类结果。我们还展示了在实验数据集中对体积进行聚类的结果,说明了所提出的算法在实际确定结构变异性方面的能力。
{"title":"Structural Variability from Noisy Tomographic Projections.","authors":"Joakim Andén, Amit Singer","doi":"10.1137/17M1153509","DOIUrl":"10.1137/17M1153509","url":null,"abstract":"<p><p>In cryo-electron microscopy, the three-dimensional (3D) electric potentials of an ensemble of molecules are projected along arbitrary viewing directions to yield noisy two-dimensional images. The volume maps representing these potentials typically exhibit a great deal of structural variability, which is described by their 3D covariance matrix. Typically, this covariance matrix is approximately low rank and can be used to cluster the volumes or estimate the intrinsic geometry of the conformation space. We formulate the estimation of this covariance matrix as a linear inverse problem, yielding a consistent least-squares estimator. For <i>n</i> images of size <i>N</i>-by-<i>N</i> pixels, we propose an algorithm for calculating this covariance estimator with computational complexity <math><mrow><mi>O</mi> <mo>(</mo> <mi>n</mi> <msup><mi>N</mi> <mn>4</mn></msup> <mo>+</mo> <msqrt><mi>κ</mi></msqrt> <msup><mi>N</mi> <mn>6</mn></msup> <mo>log</mo> <mi>N</mi> <mo>)</mo></mrow> </math> , where the condition number <i>κ</i> is empirically in the range 10-200. Its efficiency relies on the observation that the normal equations are equivalent to a deconvolution problem in six dimensions. This is then solved by the conjugate gradient method with an appropriate circulant preconditioner. The result is the first computationally efficient algorithm for consistent estimation of the 3D covariance from noisy projections. It also compares favorably in runtime with respect to previously proposed nonconsistent estimators. Motivated by the recent success of eigenvalue shrinkage procedures for high-dimensional covariance matrix estimation, we incorporate a shrinkage procedure that improves accuracy at lower signal-to-noise ratios. We evaluate our methods on simulated datasets and achieve classification results comparable to state-of-the-art methods in shorter running time. We also present results on clustering volumes in an experimental dataset, illustrating the power of the proposed algorithm for practical determination of structural variability.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"11 2","pages":"1441-1492"},"PeriodicalIF":4.6,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294454/pdf/nihms975632.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36830690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-07-27DOI: 10.1137/16M1058601
Marc Niethammer, Kilian M Pohl, Firdaus Janoos, William M Wells
Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image-noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating the uncertainty in label assignment is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. On the other hand, most computationally efficient methods fail to estimate label uncertainty. We therefore propose in this paper the Active Mean Fields (AMF) approach, a technique based on Bayesian modeling that uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncertainty. Based on a variational formulation, the resulting convex model combines any label-likelihood measure with a prior on the length of the segmentation boundary. A specific implementation of that model is the Chan-Vese segmentation model (CV), in which the binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary. Furthermore, the Euler-Lagrange equations derived from the AMF model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly-efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on synthetic data as well as on real natural and medical images. For a quantitative evaluation, we apply our approach to the icgbench dataset.
{"title":"ACTIVE MEAN FIELDS FOR PROBABILISTIC IMAGE SEGMENTATION: CONNECTIONS WITH CHAN-VESE AND RUDIN-OSHER-FATEMI MODELS.","authors":"Marc Niethammer, Kilian M Pohl, Firdaus Janoos, William M Wells","doi":"10.1137/16M1058601","DOIUrl":"https://doi.org/10.1137/16M1058601","url":null,"abstract":"<p><p>Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image-noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating the uncertainty in label assignment is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. On the other hand, most computationally efficient methods fail to estimate label uncertainty. We therefore propose in this paper the Active Mean Fields (AMF) approach, a technique based on Bayesian modeling that uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncertainty. Based on a variational formulation, the resulting convex model combines any label-likelihood measure with a prior on the length of the segmentation boundary. A specific implementation of that model is the Chan-Vese segmentation model (CV), in which the binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary. Furthermore, the Euler-Lagrange equations derived from the AMF model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly-efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on synthetic data as well as on real natural and medical images. For a quantitative evaluation, we apply our approach to the icgbench dataset.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"10 3","pages":"1069-1103"},"PeriodicalIF":2.1,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1137/16M1058601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35625157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-01-01Epub Date: 2017-11-16DOI: 10.1137/16M1107619
Kenji Mitsuhashi, Joemini Poudel, Thomas P Matthews, Alejandro Garcia-Uribe, Lihong V Wang, Mark A Anastasio
Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications.
{"title":"A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography.","authors":"Kenji Mitsuhashi, Joemini Poudel, Thomas P Matthews, Alejandro Garcia-Uribe, Lihong V Wang, Mark A Anastasio","doi":"10.1137/16M1107619","DOIUrl":"10.1137/16M1107619","url":null,"abstract":"<p><p>Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications.</p>","PeriodicalId":49528,"journal":{"name":"SIAM Journal on Imaging Sciences","volume":"10 4","pages":"2022-2048"},"PeriodicalIF":2.1,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1137/16M1107619","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35781227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}