Pub Date : 2021-01-01Epub Date: 2021-09-28DOI: 10.1159/000519218
Isabel Gómez-Redondo, Benjamín Planells, Paula Navarrete, Alfonso Gutiérrez-Adán
During the process of sex determination, a germ-cell-containing undifferentiated gonad is converted into either a male or a female reproductive organ. Both the composition of sex chromosomes and the environment determine sex in vertebrates. It is assumed that transcription level regulation drives this cascade of mechanisms; however, transcription factors can alter gene expression beyond transcription initiation by controlling pre-mRNA splicing and thereby mRNA isoform production. Using the key time window in sex determination and gonad development in mice, it has been reported that new non-transcriptional events, such as alternative splicing, could play a key role in sex determination in mammals. We know the role of key regulatory factors, like WT1(+/-KTS) or FGFR2(b/c) in pre-mRNA splicing and sex determination, indicating that important steps in the vertebrate sex determination process probably operate at a post-transcriptional level. Here, we discuss the role of pre-mRNA splicing regulators in sex determination in vertebrates, focusing on the new RNA-seq data reported from mice fetal gonadal transcriptome.
{"title":"Role of Alternative Splicing in Sex Determination in Vertebrates.","authors":"Isabel Gómez-Redondo, Benjamín Planells, Paula Navarrete, Alfonso Gutiérrez-Adán","doi":"10.1159/000519218","DOIUrl":"https://doi.org/10.1159/000519218","url":null,"abstract":"<p><p>During the process of sex determination, a germ-cell-containing undifferentiated gonad is converted into either a male or a female reproductive organ. Both the composition of sex chromosomes and the environment determine sex in vertebrates. It is assumed that transcription level regulation drives this cascade of mechanisms; however, transcription factors can alter gene expression beyond transcription initiation by controlling pre-mRNA splicing and thereby mRNA isoform production. Using the key time window in sex determination and gonad development in mice, it has been reported that new non-transcriptional events, such as alternative splicing, could play a key role in sex determination in mammals. We know the role of key regulatory factors, like WT1(+/-KTS) or FGFR2(b/c) in pre-mRNA splicing and sex determination, indicating that important steps in the vertebrate sex determination process probably operate at a post-transcriptional level. Here, we discuss the role of pre-mRNA splicing regulators in sex determination in vertebrates, focusing on the new RNA-seq data reported from mice fetal gonadal transcriptome.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 5-6","pages":"381-391"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39466106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-10-06DOI: 10.1159/000519237
Miguel Burgos, Alicia Hurtado, Rafael Jiménez, Francisco J Barrionuevo
Non-coding RNAs (ncRNAs) are a group of RNAs that do not encode functional proteins, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and short interfering RNAs (siRNAs). In the last 2 decades an effort has been made to uncover the role of ncRNAs during development and disease, and nowadays it is clear that these molecules have a regulatory function in many of the developmental and physiological processes where they have been studied. In this review, we provide an overview of the role of ncRNAs during gonad determination and development, focusing mainly on mammals, although we also provide information from other species, in particular when there is not much information on the function of particular types of ncRNAs during mammalian sexual development.
{"title":"Non-Coding RNAs: lncRNAs, miRNAs, and piRNAs in Sexual Development.","authors":"Miguel Burgos, Alicia Hurtado, Rafael Jiménez, Francisco J Barrionuevo","doi":"10.1159/000519237","DOIUrl":"https://doi.org/10.1159/000519237","url":null,"abstract":"<p><p>Non-coding RNAs (ncRNAs) are a group of RNAs that do not encode functional proteins, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and short interfering RNAs (siRNAs). In the last 2 decades an effort has been made to uncover the role of ncRNAs during development and disease, and nowadays it is clear that these molecules have a regulatory function in many of the developmental and physiological processes where they have been studied. In this review, we provide an overview of the role of ncRNAs during gonad determination and development, focusing mainly on mammals, although we also provide information from other species, in particular when there is not much information on the function of particular types of ncRNAs during mammalian sexual development.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 5-6","pages":"335-350"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39492328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-06-23DOI: 10.1159/000515724
Satomi Kohno
All crocodilians exhibit temperature-dependent sex determination without sex chromosomes. This temperature dependency can be overridden by exposure to estrogen via estrogen receptor 1. Thus, the sex ratio of crocodilian species is vulnerable to estrogenic xenobiotics. Multiple investigations of the mechanism and effects of xenobiotics in crocodilian species have been conducted since the early 1990s. This review focuses on the impact of xenobiotics on sex determination rather than gonadal functions in crocodilians. The thermosensitive and estrogen-sensitive periods that commit the bipotential gonad to develop as an ovary end by stages 24.5 and 25.3, respectively. In contrast, it is ambiguous when the estrogen-sensitive stage begins for ovarian development, although the thermosensitive period for ovarian development initiates around developmental stage 15 at an extreme female-producing temperature of 30°C. To accurately assess the effect of xenoestrogens on sex ratio in crocodilians, it is critical to collect eggs before the sex-determining period and to incubate them under precisely controlled temperatures. A well-studied system of xenobiotic effects on crocodilians is Lake Apopka (FL, USA), an EPA superfund clean-up site heavily contaminated with Dieldrin, Endrin, and p,p'-DDE. The sum of estimated estrogenicity of xenobiotics measured in Lake Apopka was insufficient to activate the estrogen receptor 1 of Alligator mississippiensis, which is an essential receptor to induce ovarian development. Although juvenile A. mississippiensis showed gonadal alterations in sex hormone production and histology, the environmentally relevant concentration of xenobiotics in Lake Apopka was unlikely to alter the sex ratio of A. mississippiensis. Experimental exposure to xenobiotics such as 17α-ethynylestradiol, p,p'-dichlorodiphenyldichloroethylene, and 2,3,7,8-tetrachlorodibenzodioxin at environmentally relevant concentrations in ovo induced more female offspring in A. mississippiensis as compared with the control group. Bisphenol-A, atrazine, 2,4-dichlorophenoxyacetic acid, endosulfan, and Corexit did not alter the sex ratio of A. mississippiensis or Caiman latirostris under the tested conditions. Egg-incubation temperature has pronounced effects on estrogen sensitivity in crocodilian sex determination. Therefore, crocodilians are vulnerable to xenobiotic contamination and climate change in the wild. It is vital to further investigate the detailed mechanism and effects of environmental xenobiotics in crocodilian sex determination to mitigate their effect on sex ratio and conserve this ancient lineage.
所有鳄鱼都表现出没有性染色体的温度依赖性性别决定。这种温度依赖性可以通过雌激素受体1接触雌激素来克服。因此,鳄鱼物种的性别比例易受雌激素异种药物的影响。自20世纪90年代初以来,对鳄鱼物种的异种抗生素的机制和影响进行了多项研究。这篇综述的重点是外来生物对鳄鱼性别决定的影响,而不是性腺功能。使双势性腺发育为卵巢的温敏期和雌激素敏感期分别在24.5期和25.3期结束。相比之下,卵巢发育的雌激素敏感期何时开始尚不明确,尽管卵巢发育的热敏期开始于发育阶段15左右,在30°C的极端雌性生产温度下。为了准确地评估异种雌激素对鳄鱼性别比例的影响,在性别决定期之前收集卵并在精确控制的温度下孵育卵是至关重要的。Apopka湖(FL, USA)是一个被广泛研究的对鳄鱼产生外源效应的系统,它是美国环保署超级基金清理场地,被Dieldrin, Endrin和p,p'-DDE严重污染。在Apopka湖中测量到的外源激素的雌激素活性总和不足以激活密西西比短吻鳄的雌激素受体1,而雌激素受体1是诱导卵巢发育的重要受体。虽然在性激素分泌和组织学上,密西西比南猿猴幼崽表现出性腺变化,但与环境相关的外来生物浓度不太可能改变密西西比南猿猴的性别比。实验接触外源性物质如17α-ethynylestradiol, p, p' -dichlorodiphenyldichloroethylene, 2、3、7日在环境相关浓度8-tetrachlorodibenzodioxin蛋诱导更多的雌性后代a mississippiensis与对照组相比。在试验条件下,双酚a、阿特拉津、2,4-二氯苯氧乙酸、硫丹和Corexit对密西西比拟南猿猴和拉丁凯门鳄的性比没有影响。卵孵化温度对鳄鱼性别决定中的雌激素敏感性有显著影响。因此,鳄鱼在野外很容易受到外来生物污染和气候变化的影响。进一步研究环境外源物在鳄鱼性别决定中的具体机制和影响,以减轻其对性别比的影响,保护这一古老的世系是至关重要的。
{"title":"Can Xenobiotics Alter the Sex Ratio of Crocodilians in the Wild?","authors":"Satomi Kohno","doi":"10.1159/000515724","DOIUrl":"https://doi.org/10.1159/000515724","url":null,"abstract":"<p><p>All crocodilians exhibit temperature-dependent sex determination without sex chromosomes. This temperature dependency can be overridden by exposure to estrogen via estrogen receptor 1. Thus, the sex ratio of crocodilian species is vulnerable to estrogenic xenobiotics. Multiple investigations of the mechanism and effects of xenobiotics in crocodilian species have been conducted since the early 1990s. This review focuses on the impact of xenobiotics on sex determination rather than gonadal functions in crocodilians. The thermosensitive and estrogen-sensitive periods that commit the bipotential gonad to develop as an ovary end by stages 24.5 and 25.3, respectively. In contrast, it is ambiguous when the estrogen-sensitive stage begins for ovarian development, although the thermosensitive period for ovarian development initiates around developmental stage 15 at an extreme female-producing temperature of 30°C. To accurately assess the effect of xenoestrogens on sex ratio in crocodilians, it is critical to collect eggs before the sex-determining period and to incubate them under precisely controlled temperatures. A well-studied system of xenobiotic effects on crocodilians is Lake Apopka (FL, USA), an EPA superfund clean-up site heavily contaminated with Dieldrin, Endrin, and p,p'-DDE. The sum of estimated estrogenicity of xenobiotics measured in Lake Apopka was insufficient to activate the estrogen receptor 1 of Alligator mississippiensis, which is an essential receptor to induce ovarian development. Although juvenile A. mississippiensis showed gonadal alterations in sex hormone production and histology, the environmentally relevant concentration of xenobiotics in Lake Apopka was unlikely to alter the sex ratio of A. mississippiensis. Experimental exposure to xenobiotics such as 17α-ethynylestradiol, p,p'-dichlorodiphenyldichloroethylene, and 2,3,7,8-tetrachlorodibenzodioxin at environmentally relevant concentrations in ovo induced more female offspring in A. mississippiensis as compared with the control group. Bisphenol-A, atrazine, 2,4-dichlorophenoxyacetic acid, endosulfan, and Corexit did not alter the sex ratio of A. mississippiensis or Caiman latirostris under the tested conditions. Egg-incubation temperature has pronounced effects on estrogen sensitivity in crocodilian sex determination. Therefore, crocodilians are vulnerable to xenobiotic contamination and climate change in the wild. It is vital to further investigate the detailed mechanism and effects of environmental xenobiotics in crocodilian sex determination to mitigate their effect on sex ratio and conserve this ancient lineage.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 1-3","pages":"179-186"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000515724","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39100422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-07-19DOI: 10.1159/000516973
Turk Rhen, Zachary Even, Alaina Brenner, Alexandra Lodewyk, Debojyoti Das, Sunil Singh, Rebecca Simmons
Temperature-dependent sex determination (TSD) is a well-known characteristic of many reptilian species. However, the molecular processes linking ambient temperature to determination of gonad fate remain hazy. Here, we test the hypothesis that Wnt expression and signaling differ between female- and male-producing temperatures in the snapping turtle Chelydra serpentina. Canonical Wnt signaling involves secretion of glycoproteins called WNTs, which bind to and activate membrane bound receptors that trigger β-catenin stabilization and translocation to the nucleus where β-catenin interacts with TCF/LEF transcription factors to regulate expression of Wnt targets. Non-canonical Wnt signaling occurs via 2 pathways that are independent of β-catenin: one involves intracellular calcium release (the Wnt/Ca2+ pathway), while the other involves activation of RAC1, JNK, and RHOA (the Wnt/planar cell polarity pathway). We screened 20 Wnt genes for differential expression between female- and male-producing temperatures during sex determination in the snapping turtle. Exposure of embryos to the female-producing temperature decreased expression of 7 Wnt genes but increased expression of 2 Wnt genes and Rspo1 relative to embryos at the male-producing temperature. Temperature also regulated expression of putative Wnt target genes in vivo and a canonical Wnt reporter (6x TCF/LEF sites drive H2B-GFP expression) in embryonic gonadal cells in vitro. Results indicate that Wnt signaling was higher at the female- than at the male-producing temperature. Evolutionary analyses of all 20 Wnt genes revealed that thermosensitive Wnts, as opposed to insensitive Wnts, were less likely to show evidence of positive selection and experienced stronger purifying selection within TSD species.
{"title":"Evolutionary Turnover in Wnt Gene Expression but Conservation of Wnt Signaling during Ovary Determination in a TSD Reptile.","authors":"Turk Rhen, Zachary Even, Alaina Brenner, Alexandra Lodewyk, Debojyoti Das, Sunil Singh, Rebecca Simmons","doi":"10.1159/000516973","DOIUrl":"https://doi.org/10.1159/000516973","url":null,"abstract":"<p><p>Temperature-dependent sex determination (TSD) is a well-known characteristic of many reptilian species. However, the molecular processes linking ambient temperature to determination of gonad fate remain hazy. Here, we test the hypothesis that Wnt expression and signaling differ between female- and male-producing temperatures in the snapping turtle Chelydra serpentina. Canonical Wnt signaling involves secretion of glycoproteins called WNTs, which bind to and activate membrane bound receptors that trigger β-catenin stabilization and translocation to the nucleus where β-catenin interacts with TCF/LEF transcription factors to regulate expression of Wnt targets. Non-canonical Wnt signaling occurs via 2 pathways that are independent of β-catenin: one involves intracellular calcium release (the Wnt/Ca2+ pathway), while the other involves activation of RAC1, JNK, and RHOA (the Wnt/planar cell polarity pathway). We screened 20 Wnt genes for differential expression between female- and male-producing temperatures during sex determination in the snapping turtle. Exposure of embryos to the female-producing temperature decreased expression of 7 Wnt genes but increased expression of 2 Wnt genes and Rspo1 relative to embryos at the male-producing temperature. Temperature also regulated expression of putative Wnt target genes in vivo and a canonical Wnt reporter (6x TCF/LEF sites drive H2B-GFP expression) in embryonic gonadal cells in vitro. Results indicate that Wnt signaling was higher at the female- than at the male-producing temperature. Evolutionary analyses of all 20 Wnt genes revealed that thermosensitive Wnts, as opposed to insensitive Wnts, were less likely to show evidence of positive selection and experienced stronger purifying selection within TSD species.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 1-3","pages":"47-68"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000516973","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39200092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-11-09DOI: 10.1159/000519891
Roberta Migale, Michelle Neumann, Robin Lovell-Badge
The development of sexually dimorphic gonads is a unique process that starts with the specification of the bipotential genital ridges and culminates with the development of fully differentiated ovaries and testes in females and males, respectively. Research on sex determination has been mostly focused on the identification of sex determination genes, the majority of which encode for proteins and specifically transcription factors such as SOX9 in the testes and FOXL2 in the ovaries. Our understanding of which factors may be critical for sex determination have benefited from the study of human disorders of sex development (DSD) and animal models, such as the mouse and the goat, as these often replicate the same phenotypes observed in humans when mutations or chromosomic rearrangements arise in protein-coding genes. Despite the advances made so far in explaining the role of key factors such as SRY, SOX9, and FOXL2 and the genes they control, what may regulate these factors upstream is not entirely understood, often resulting in the inability to correctly diagnose DSD patients. The role of non-coding DNA, which represents 98% of the human genome, in sex determination has only recently begun to be fully appreciated. In this review, we summarize the current knowledge on the long-range regulation of 2 important sex determination genes, SOX9 and FOXL2, and discuss the challenges that lie ahead and the many avenues of research yet to be explored in the sex determination field.
{"title":"Long-Range Regulation of Key Sex Determination Genes.","authors":"Roberta Migale, Michelle Neumann, Robin Lovell-Badge","doi":"10.1159/000519891","DOIUrl":"https://doi.org/10.1159/000519891","url":null,"abstract":"<p><p>The development of sexually dimorphic gonads is a unique process that starts with the specification of the bipotential genital ridges and culminates with the development of fully differentiated ovaries and testes in females and males, respectively. Research on sex determination has been mostly focused on the identification of sex determination genes, the majority of which encode for proteins and specifically transcription factors such as SOX9 in the testes and FOXL2 in the ovaries. Our understanding of which factors may be critical for sex determination have benefited from the study of human disorders of sex development (DSD) and animal models, such as the mouse and the goat, as these often replicate the same phenotypes observed in humans when mutations or chromosomic rearrangements arise in protein-coding genes. Despite the advances made so far in explaining the role of key factors such as SRY, SOX9, and FOXL2 and the genes they control, what may regulate these factors upstream is not entirely understood, often resulting in the inability to correctly diagnose DSD patients. The role of non-coding DNA, which represents 98% of the human genome, in sex determination has only recently begun to be fully appreciated. In this review, we summarize the current knowledge on the long-range regulation of 2 important sex determination genes, SOX9 and FOXL2, and discuss the challenges that lie ahead and the many avenues of research yet to be explored in the sex determination field.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 5-6","pages":"360-380"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39603784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-11-25DOI: 10.1159/000520367
Francis Poulat, Nitzan Gonen
{"title":"Preface to the Special Issue on The Non-Coding Genome in Sex Determination.","authors":"Francis Poulat, Nitzan Gonen","doi":"10.1159/000520367","DOIUrl":"https://doi.org/10.1159/000520367","url":null,"abstract":"","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 5-6","pages":"293-294"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39659167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-10-28DOI: 10.1159/000519244
Meshi Ridnik, Stefan Schoenfelder, Nitzan Gonen
Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.
{"title":"Cis-Regulatory Control of Mammalian Sex Determination.","authors":"Meshi Ridnik, Stefan Schoenfelder, Nitzan Gonen","doi":"10.1159/000519244","DOIUrl":"10.1159/000519244","url":null,"abstract":"<p><p>Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 5-6","pages":"317-334"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8743899/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39823885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-07-20DOI: 10.1159/000515281
Yuta Sakae, Minoru Tanaka
Animals determine their sex genetically (GSD: genetic sex determination) and/or environmentally (ESD: environmental sex determination). Medaka (Oryzias latipes) employ a XX/XY GSD system, however, they display female-to-male sex reversal in response to various environmental changes such as temperature, hypoxia, and green light. Interestingly, we found that 5 days of starvation during sex differentiation caused female-to-male sex reversal. In this situation, the metabolism of pantothenate and fatty acid synthesis plays an important role in sex reversal. Metabolism is associated with other biological factors such as germ cells, HPG axis, lipids, and epigenetics, and supplys substances and acts as signal transducers. In this review, we discuss the importance of metabolism during sex differentiation and how metabolism contributes to sex differentiation.
{"title":"Metabolism and Sex Differentiation in Animals from a Starvation Perspective.","authors":"Yuta Sakae, Minoru Tanaka","doi":"10.1159/000515281","DOIUrl":"https://doi.org/10.1159/000515281","url":null,"abstract":"<p><p>Animals determine their sex genetically (GSD: genetic sex determination) and/or environmentally (ESD: environmental sex determination). Medaka (Oryzias latipes) employ a XX/XY GSD system, however, they display female-to-male sex reversal in response to various environmental changes such as temperature, hypoxia, and green light. Interestingly, we found that 5 days of starvation during sex differentiation caused female-to-male sex reversal. In this situation, the metabolism of pantothenate and fatty acid synthesis plays an important role in sex reversal. Metabolism is associated with other biological factors such as germ cells, HPG axis, lipids, and epigenetics, and supplys substances and acts as signal transducers. In this review, we discuss the importance of metabolism during sex differentiation and how metabolism contributes to sex differentiation.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 1-3","pages":"168-178"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000515281","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39202600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-06-15DOI: 10.1159/000515221
Lisa E Schwanz, Arthur Georges
In this review, we consider the insight that has been gained through theoretical examination of environmental sex determination (ESD) and thermolability - how theory has progressed our understanding of the ecological and evolutionary dynamics associated with ESD, the transitional pathways between different modes of sex determination, and the underlying mechanisms. Following decades of theory on the adaptive benefits of ESD, several hypotheses seem promising. These hypotheses focus on the importance of differential fitness (sex-specific effects of temperature on fitness) in generating selection for ESD, but highlight alternative ways differential fitness arises: seasonal impacts on growth, sex-specific ages of maturation, and sex-biased dispersal. ESD has the potential to generate biased sex ratios quite easily, leading to complex feedbacks between the ecology and evolution of ESD. Frequency-dependent selection on sex acts on ESD-related traits, driving local adaptation or plasticity to restore equilibrium sex ratio. However, migration and overlapping generations ("mixing") diminish local adaptation and leave each cohort/population with the potential for biased sex ratios. Incorporating mechanism into ecology and evolution models reveals similarities between different sex-determining systems. Dosage and gene regulatory network models of sexual development are beginning to shed light on how temperature sensitivity and thresholds may arise. The unavoidable temperature sensitivity in sex-determining systems inherent to these models suggests that evolutionary transitions between genotypic sex determination (GSD) and temperature-dependent sex determination, and between different forms of GSD, are simple and elegant. Theoretical models are often best-served by considering a single piece of a puzzle; however, there is much to gain from reflecting on all of the pieces together in one integrative picture.
{"title":"Sexual Development and the Environment: Conclusions from 40 Years of Theory.","authors":"Lisa E Schwanz, Arthur Georges","doi":"10.1159/000515221","DOIUrl":"https://doi.org/10.1159/000515221","url":null,"abstract":"<p><p>In this review, we consider the insight that has been gained through theoretical examination of environmental sex determination (ESD) and thermolability - how theory has progressed our understanding of the ecological and evolutionary dynamics associated with ESD, the transitional pathways between different modes of sex determination, and the underlying mechanisms. Following decades of theory on the adaptive benefits of ESD, several hypotheses seem promising. These hypotheses focus on the importance of differential fitness (sex-specific effects of temperature on fitness) in generating selection for ESD, but highlight alternative ways differential fitness arises: seasonal impacts on growth, sex-specific ages of maturation, and sex-biased dispersal. ESD has the potential to generate biased sex ratios quite easily, leading to complex feedbacks between the ecology and evolution of ESD. Frequency-dependent selection on sex acts on ESD-related traits, driving local adaptation or plasticity to restore equilibrium sex ratio. However, migration and overlapping generations (\"mixing\") diminish local adaptation and leave each cohort/population with the potential for biased sex ratios. Incorporating mechanism into ecology and evolution models reveals similarities between different sex-determining systems. Dosage and gene regulatory network models of sexual development are beginning to shed light on how temperature sensitivity and thresholds may arise. The unavoidable temperature sensitivity in sex-determining systems inherent to these models suggests that evolutionary transitions between genotypic sex determination (GSD) and temperature-dependent sex determination, and between different forms of GSD, are simple and elegant. Theoretical models are often best-served by considering a single piece of a puzzle; however, there is much to gain from reflecting on all of the pieces together in one integrative picture.</p>","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 1-3","pages":"7-22"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000515221","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39234452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01Epub Date: 2021-07-14DOI: 10.1159/000517937
Nicole Valenzuela, Manfred Schartl
{"title":"Preface to the Special Issue on Sexual Development and the Environment.","authors":"Nicole Valenzuela, Manfred Schartl","doi":"10.1159/000517937","DOIUrl":"https://doi.org/10.1159/000517937","url":null,"abstract":"","PeriodicalId":49536,"journal":{"name":"Sexual Development","volume":"15 1-3","pages":"5-6"},"PeriodicalIF":2.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000517937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39277227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}