Pub Date : 2024-09-27Print Date: 2025-02-25DOI: 10.1515/revneuro-2024-0093
Ivan Montiel, Paola C Bello-Medina, Roberto A Prado-Alcalá, Gina L Quirarte, Luis A Verdín-Ruvalcaba, Tzitzi A Marín-Juárez, Andrea C Medina
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
抑制性回避(IA)任务是一种广泛用于研究厌恶经历长期记忆形成的分子和细胞机制的范式。在这篇综述中,我们将讨论与记忆巩固有关的大鼠不同大脑结构的研究,如海马、纹状体和杏仁核,以及一些皮质区域,包括岛叶、扣带回、内侧、顶叶和前额叶皮质。这些研究表明,IA 训练会引发神经递质、激素、生长因子等的释放,激活细胞内与蛋白激酶相关的信号通路,从而诱导细胞核内的非基因组变化或转录机制,导致蛋白质的合成。我们总结了海马中描述的蛋白激酶 A、蛋白激酶 C、丝裂原活化蛋白激酶、细胞外信号调节激酶和 Ca2+/calmodulin 依赖性蛋白激酶 II 之间的时间动态和相互影响。蛋白激酶活性与结构变化和突触强化有关,从而导致记忆储存。然而,人们对高强度的 IA 训练所涉及的分子机制知之甚少,这种训练能保护记忆不受典型的失忆治疗(如蛋白质合成抑制剂)的影响,并能诱导棘突生长,这表明有一种独立于基因组途径的机制尚未被探索。这种高度情绪化的体验会导致抗消退记忆,正如在创伤后应激障碍等病理状态中观察到的那样。我们提出,在高强度 IA 训练后观察到的自旋发生变化可能是由蛋白激酶通过非基因组途径产生的。
{"title":"Involvement of kinases in memory consolidation of inhibitory avoidance training.","authors":"Ivan Montiel, Paola C Bello-Medina, Roberto A Prado-Alcalá, Gina L Quirarte, Luis A Verdín-Ruvalcaba, Tzitzi A Marín-Juárez, Andrea C Medina","doi":"10.1515/revneuro-2024-0093","DOIUrl":"10.1515/revneuro-2024-0093","url":null,"abstract":"<p><p>The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca<sup>2+</sup>/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"189-208"},"PeriodicalIF":4.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-09Print Date: 2025-02-25DOI: 10.1515/revneuro-2024-0065
Amanda Gollo Bertollo, Maiqueli Eduarda Dama Mingoti, Zuleide Maria Ignácio
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
{"title":"Neurobiological mechanisms in the kynurenine pathway and major depressive disorder.","authors":"Amanda Gollo Bertollo, Maiqueli Eduarda Dama Mingoti, Zuleide Maria Ignácio","doi":"10.1515/revneuro-2024-0065","DOIUrl":"10.1515/revneuro-2024-0065","url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"169-187"},"PeriodicalIF":4.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03Print Date: 2025-01-29DOI: 10.1515/revneuro-2024-0081
Zainab B Mohammad, Samantha C Y Yudin, Benjamin J Goldberg, Kursti L Serra, Andis Klegeris
Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.
{"title":"Exploring neuroglial signaling: diversity of molecules implicated in microglia-to-astrocyte neuroimmune communication.","authors":"Zainab B Mohammad, Samantha C Y Yudin, Benjamin J Goldberg, Kursti L Serra, Andis Klegeris","doi":"10.1515/revneuro-2024-0081","DOIUrl":"10.1515/revneuro-2024-0081","url":null,"abstract":"<p><p>Effective communication between different cell types is essential for brain health, and dysregulation of this process leads to neuropathologies. Brain glial cells, including microglia and astrocytes, orchestrate immune defense and neuroimmune responses under pathological conditions during which interglial communication is indispensable. Our appreciation of the complexity of these processes is rapidly increasing due to recent advances in molecular biology techniques, which have identified numerous phenotypic states of both microglia and astrocytes. This review focuses on microglia-to-astrocyte communication facilitated by secreted neuroimmune modulators. The combinations of interleukin (IL)-1α, tumor necrosis factor (TNF), plus complement component C1q as well as IL-1β plus TNF are already well-established microglia-derived stimuli that induce reactive phenotypes in astrocytes. However, given the large number of inflammatory mediators secreted by microglia and the rapidly increasing number of distinct functional states recognized in astrocytes, it can be hypothesized that many more intercellular signaling molecules exist. This review identifies the following group of cytokines and gliotransmitters that, while not established as interglial mediators yet, are known to be released by microglia and elicit functional responses in astrocytes: IL-10, IL-12, IL-18, transforming growth factor (TGF)-β, interferon (IFN)-γ, C-C motif chemokine ligand (CCL)5, adenosine triphosphate (ATP), l-glutamate, and prostaglandin E2 (PGE2). The review of molecular mechanisms engaged by these mediators reveals complex, partially overlapping signaling pathways implicated in numerous neuropathologies. Additionally, lack of human-specific studies is identified as a significant knowledge gap. Further research on microglia-to-astrocyte communication is warranted, as it could discover novel interglial signaling-targeted therapies for diverse neurological disorders.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"91-117"},"PeriodicalIF":4.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-03Print Date: 2025-02-25DOI: 10.1515/revneuro-2024-0090
Milos Kostic, Nikola Zivkovic, Ana Cvetanovic, Jelena Basic, Ivana Stojanovic
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
淀粉样蛋白-β(Aβ)斑块的形成是阿尔茨海默病(AD)的神经病理学标志,然而,在认知功能未受损的老年人群的大脑中也能发现这些病理聚集体。在这种情况下,Aβ特异性免疫反应的个体差异可能是决定Aβ诱导的神经炎症水平的关键因素,因此也是决定阿尔茨海默病发病倾向的关键因素。CD4+ T 细胞是免疫反应的基石,协调着适应性免疫和先天性免疫的效应功能。然而,尽管进行了大量研究,这些细胞在 AD 发病过程中的确切作用仍未完全阐明。在各种 AD 动物模型以及患有 AD 的人类身上都观察到了致病和有益的作用。虽然 CD4+ T 细胞在 AD 中的这种功能双重性可以简单地归因于这一细胞系的巨大表型异质性,但也有人提出了疾病阶段特异性效应。因此,在这篇综述中,我们从CD4+ T细胞的抗原特异性、活化和表型特征等方面总结了目前对其在AD病理生理学中作用的认识。鉴于目前可用的疗法尚未取得令人满意的效果,这些知识具有重要的现实意义,因为它为将免疫调节作为治疗 AD 的一种疗法铺平了道路。
{"title":"Dissecting the immune response of CD4<sup>+</sup> T cells in Alzheimer's disease.","authors":"Milos Kostic, Nikola Zivkovic, Ana Cvetanovic, Jelena Basic, Ivana Stojanovic","doi":"10.1515/revneuro-2024-0090","DOIUrl":"10.1515/revneuro-2024-0090","url":null,"abstract":"<p><p>The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4<sup>+</sup> T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4<sup>+</sup> T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4<sup>+</sup> T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"139-168"},"PeriodicalIF":4.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Over the past two centuries, intensive empirical research has been conducted on the human brain. As an electroencephalogram (EEG) records millisecond-to-millisecond changes in the electrical potentials of the brain, it has enormous potential for identifying useful information about neuronal transactions. The EEG data can be modelled as graphs by considering the electrode sites as nodes and the linear and nonlinear statistical dependencies among them as edges (with weights). The graph theoretical modelling of EEG data results in functional brain networks (FBNs), which are fully connected (complete) weighted undirected/directed networks. Since various brain regions are interconnected via sparse anatomical connections, the weak links can be filtered out from the fully connected networks using a process called thresholding. Multiple researchers in the past decades proposed many thresholding methods to gather more insights about the influential neuronal connections of FBNs. This paper reviews various thresholding methods used in the literature for FBN analysis. The analysis showed that data-driven methods are unbiased since no arbitrary user-specified threshold is required. The efficacy of four data-driven thresholding methods, namely minimum spanning tree (MST), minimum connected component (MCC), union of shortest path trees (USPT), and orthogonal minimum spanning tree (OMST), in characterizing cognitive behavior of the normal human brain is analysed using directed FBNs constructed from EEG data of different cognitive load states. The experimental results indicate that both MCC and OMST thresholding methods can detect cognitive load-induced changes in the directed functional brain networks.
{"title":"Comparison of data-driven thresholding methods using directed functional brain networks.","authors":"Thilaga Manickam, Vijayalakshmi Ramasamy, Nandagopal Doraisamy","doi":"10.1515/revneuro-2024-0020","DOIUrl":"10.1515/revneuro-2024-0020","url":null,"abstract":"<p><p>Over the past two centuries, intensive empirical research has been conducted on the human brain. As an electroencephalogram (EEG) records millisecond-to-millisecond changes in the electrical potentials of the brain, it has enormous potential for identifying useful information about neuronal transactions. The EEG data can be modelled as graphs by considering the electrode sites as nodes and the linear and nonlinear statistical dependencies among them as edges (with weights). The graph theoretical modelling of EEG data results in functional brain networks (FBNs), which are fully connected (complete) weighted undirected/directed networks. Since various brain regions are interconnected via sparse anatomical connections, the weak links can be filtered out from the fully connected networks using a process called thresholding. Multiple researchers in the past decades proposed many thresholding methods to gather more insights about the influential neuronal connections of FBNs. This paper reviews various thresholding methods used in the literature for FBN analysis. The analysis showed that data-driven methods are unbiased since no arbitrary user-specified threshold is required. The efficacy of four data-driven thresholding methods, namely minimum spanning tree (MST), minimum connected component (MCC), union of shortest path trees (USPT), and orthogonal minimum spanning tree (OMST), in characterizing cognitive behavior of the normal human brain is analysed using directed FBNs constructed from EEG data of different cognitive load states. The experimental results indicate that both MCC and OMST thresholding methods can detect cognitive load-induced changes in the directed functional brain networks.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"119-138"},"PeriodicalIF":4.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20Print Date: 2025-01-29DOI: 10.1515/revneuro-2024-0080
Abdul Aziz Mohamed Yusoff, Siti Zulaikha Nashwa Mohd Khair
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
{"title":"Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases.","authors":"Abdul Aziz Mohamed Yusoff, Siti Zulaikha Nashwa Mohd Khair","doi":"10.1515/revneuro-2024-0080","DOIUrl":"10.1515/revneuro-2024-0080","url":null,"abstract":"<p><p>Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"53-90"},"PeriodicalIF":4.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31Print Date: 2025-01-29DOI: 10.1515/revneuro-2024-0058
Genghong Tu, Nan Jiang, Weizhong Chen, Lining Liu, Min Hu, Bagen Liao
Autism spectrum disorder is a pervasive and heterogeneous neurodevelopmental condition characterized by social communication difficulties and rigid, repetitive behaviors. Owing to the complex pathogenesis of autism, effective drugs for treating its core features are lacking. Nonpharmacological approaches, including education, social-communication, behavioral and psychological methods, and exercise interventions, play important roles in supporting the needs of autistic individuals. The advantages of exercise intervention, such as its low cost, easy implementation, and high acceptance, have garnered increasing attention. Exercise interventions can effectively improve the core features and co-occurring conditions of autism, but the underlying neurobiological mechanisms are unclear. Abnormal changes in the gut microbiome, neuroinflammation, neurogenesis, and synaptic plasticity may individually or interactively be responsible for atypical brain structure and connectivity, leading to specific autistic experiences and characteristics. Interestingly, exercise can affect these biological processes and reshape brain network connections, which may explain how exercise alleviates core features and co-occurring conditions in autistic individuals. In this review, we describe the definition, diagnostic approach, epidemiology, and current support strategies for autism; highlight the benefits of exercise interventions; and call for individualized programs for different subtypes of autistic individuals. Finally, the possible neurobiological mechanisms by which exercise improves autistic features are comprehensively summarized to inform the development of optimal exercise interventions and specific targets to meet the needs of autistic individuals.
{"title":"The neurobiological mechanisms underlying the effects of exercise interventions in autistic individuals.","authors":"Genghong Tu, Nan Jiang, Weizhong Chen, Lining Liu, Min Hu, Bagen Liao","doi":"10.1515/revneuro-2024-0058","DOIUrl":"10.1515/revneuro-2024-0058","url":null,"abstract":"<p><p>Autism spectrum disorder is a pervasive and heterogeneous neurodevelopmental condition characterized by social communication difficulties and rigid, repetitive behaviors. Owing to the complex pathogenesis of autism, effective drugs for treating its core features are lacking. Nonpharmacological approaches, including education, social-communication, behavioral and psychological methods, and exercise interventions, play important roles in supporting the needs of autistic individuals. The advantages of exercise intervention, such as its low cost, easy implementation, and high acceptance, have garnered increasing attention. Exercise interventions can effectively improve the core features and co-occurring conditions of autism, but the underlying neurobiological mechanisms are unclear. Abnormal changes in the gut microbiome, neuroinflammation, neurogenesis, and synaptic plasticity may individually or interactively be responsible for atypical brain structure and connectivity, leading to specific autistic experiences and characteristics. Interestingly, exercise can affect these biological processes and reshape brain network connections, which may explain how exercise alleviates core features and co-occurring conditions in autistic individuals. In this review, we describe the definition, diagnostic approach, epidemiology, and current support strategies for autism; highlight the benefits of exercise interventions; and call for individualized programs for different subtypes of autistic individuals. Finally, the possible neurobiological mechanisms by which exercise improves autistic features are comprehensively summarized to inform the development of optimal exercise interventions and specific targets to meet the needs of autistic individuals.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"27-51"},"PeriodicalIF":4.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23Print Date: 2024-12-17DOI: 10.1515/revneuro-2024-0039
Weihao Ye, Shang Xu, Ying Liu, Ziming Ye
Central nervous system (CNS) diseases, such as stroke, traumatic brain injury, dementia, and demyelinating diseases, are generally characterized by high morbidity and mortality, which impose a heavy economic burden on patients and their caregivers throughout their lives as well as on public health. The occurrence and development of CNS diseases are closely associated with a series of pathophysiological changes including inflammation, blood-brain barrier disruption, and abnormal coagulation. Endothelial glycocalyx (EG) plays a key role in these changes, making it a novel intervention target for CNS diseases. Herein, we review the current understanding of the role of EG in common CNS diseases, from the perspective of individual pathways/cytokines in pathophysiological and systematic processes. Furthermore, we emphasize the recent developments in therapeutic agents targeted toward protection or restoration of EG. Some of these treatments have yielded unexpected pharmacological results, as previously unknown mechanisms underlying the degradation and destruction of EG has been brought to light. Furthermore, the anti-inflammatory, anticoagulative, and antioxidation effects of EG and its protective role exerted via the blood-brain barrier have been recognized.
{"title":"Role of endothelial glycocalyx in central nervous system diseases and evaluation of the targeted therapeutic strategies for its protection: a review of clinical and experimental data.","authors":"Weihao Ye, Shang Xu, Ying Liu, Ziming Ye","doi":"10.1515/revneuro-2024-0039","DOIUrl":"10.1515/revneuro-2024-0039","url":null,"abstract":"<p><p>Central nervous system (CNS) diseases, such as stroke, traumatic brain injury, dementia, and demyelinating diseases, are generally characterized by high morbidity and mortality, which impose a heavy economic burden on patients and their caregivers throughout their lives as well as on public health. The occurrence and development of CNS diseases are closely associated with a series of pathophysiological changes including inflammation, blood-brain barrier disruption, and abnormal coagulation. Endothelial glycocalyx (EG) plays a key role in these changes, making it a novel intervention target for CNS diseases. Herein, we review the current understanding of the role of EG in common CNS diseases, from the perspective of individual pathways/cytokines in pathophysiological and systematic processes. Furthermore, we emphasize the recent developments in therapeutic agents targeted toward protection or restoration of EG. Some of these treatments have yielded unexpected pharmacological results, as previously unknown mechanisms underlying the degradation and destruction of EG has been brought to light. Furthermore, the anti-inflammatory, anticoagulative, and antioxidation effects of EG and its protective role exerted via the blood-brain barrier have been recognized.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"839-853"},"PeriodicalIF":4.1,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22Print Date: 2025-01-29DOI: 10.1515/revneuro-2024-0046
Man Wang, Yan Hua, Yulong Bai
Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.
{"title":"A review of the application of exercise intervention on improving cognition in patients with Alzheimer's disease: mechanisms and clinical studies.","authors":"Man Wang, Yan Hua, Yulong Bai","doi":"10.1515/revneuro-2024-0046","DOIUrl":"10.1515/revneuro-2024-0046","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common form of dementia, leading to sustained cognitive decline. An increasing number of studies suggest that exercise is an effective strategy to promote the improvement of cognition in AD. Mechanisms of the benefits of exercise intervention on cognitive function may include modulation of vascular factors by affecting cardiovascular risk factors, regulating cardiorespiratory health, and enhancing cerebral blood flow. Exercise also promotes neurogenesis by stimulating neurotrophic factors, affecting neuroplasticity in the brain. Additionally, regular exercise improves the neuropathological characteristics of AD by improving mitochondrial function, and the brain redox status. More and more attention has been paid to the effect of Aβ and tau pathology as well as sleep disorders on cognitive function in persons diagnosed with AD. Besides, there are various forms of exercise intervention in cognitive improvement in patients with AD, including aerobic exercise, resistance exercise, and multi-component exercise. Consequently, the purpose of this review is to summarize the findings of the mechanisms of exercise intervention on cognitive function in patients with AD, and also discuss the application of different exercise interventions in cognitive impairment in AD to provide a theoretical basis and reference for the selection of exercise intervention in cognitive rehabilitation in AD.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"1-25"},"PeriodicalIF":4.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15Print Date: 2024-12-17DOI: 10.1515/revneuro-2024-0025
Eng Han How, Shar-Maine Chin, Chuin Hau Teo, Ishwar S Parhar, Tomoko Soga
Major depressive disorder (MDD) patients commonly encounter multiple types of functional disabilities, such as social, physical, and role functioning. MDD is related to an accreted risk of brain atrophy, aging-associated brain diseases, and mortality. Based on recently available studies, there are correlations between notable biological brain aging and MDD in adulthood. Despite several clinical and epidemiological studies that associate MDD with aging phenotypes, the underlying mechanisms in the brain remain unknown. The key areas in the study of biological brain aging in MDD are structural brain aging, impairment in functional connectivity, and the impact on cognitive function and age-related disorders. Various measurements have been used to determine the severity of brain aging, such as the brain age gap estimate (BrainAGE) or brain-predicted age difference (BrainPAD). This review summarized the current results of brain imaging data on the similarities between the manifestation of brain structural changes and the age-associated processes in MDD. This review also provided recent evidence of BrainPAD or BrainAGE scores in MDD, brain structural abnormalities, and functional connectivity, which are commonly observed between MDD and age-associated processes. It serves as a basis of current reference for future research on the potential areas of investigation for diagnostic, preventive, and potentially therapeutic purposes for brain aging in MDD.
{"title":"Accelerated biological brain aging in major depressive disorder.","authors":"Eng Han How, Shar-Maine Chin, Chuin Hau Teo, Ishwar S Parhar, Tomoko Soga","doi":"10.1515/revneuro-2024-0025","DOIUrl":"10.1515/revneuro-2024-0025","url":null,"abstract":"<p><p>Major depressive disorder (MDD) patients commonly encounter multiple types of functional disabilities, such as social, physical, and role functioning. MDD is related to an accreted risk of brain atrophy, aging-associated brain diseases, and mortality. Based on recently available studies, there are correlations between notable biological brain aging and MDD in adulthood. Despite several clinical and epidemiological studies that associate MDD with aging phenotypes, the underlying mechanisms in the brain remain unknown. The key areas in the study of biological brain aging in MDD are structural brain aging, impairment in functional connectivity, and the impact on cognitive function and age-related disorders. Various measurements have been used to determine the severity of brain aging, such as the brain age gap estimate (BrainAGE) or brain-predicted age difference (BrainPAD). This review summarized the current results of brain imaging data on the similarities between the manifestation of brain structural changes and the age-associated processes in MDD. This review also provided recent evidence of BrainPAD or BrainAGE scores in MDD, brain structural abnormalities, and functional connectivity, which are commonly observed between MDD and age-associated processes. It serves as a basis of current reference for future research on the potential areas of investigation for diagnostic, preventive, and potentially therapeutic purposes for brain aging in MDD.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"959-968"},"PeriodicalIF":4.1,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}