Pub Date : 2024-07-09Print Date: 2024-12-17DOI: 10.1515/revneuro-2024-0037
Zheqi Xu, Renshi Xu
Amyotrophic lateral sclerosis (ALS) currently lacks the useful diagnostic biomarkers. The current diagnosis of ALS is mainly depended on the clinical manifestations, which contributes to the diagnostic delay and be difficult to make the accurate diagnosis at the early stage of ALS, and hinders the clinical early therapeutics. The more and more pathogenesis of ALS are found at the last 30 years, including excitotoxicity, the oxidative stress, the mitochondrial dysfunction, neuroinflammation, the altered energy metabolism, the RNA misprocessing and the most recent neuroimaging findings. The findings of these pathogenesis bring the new clues for searching the diagnostic biomarkers of ALS. At present, a large number of relevant studies about the diagnostic biomarkers are underway. The ALS pathogenesis related to the diagnostic biomarkers might lessen the diagnostic reliance on the clinical manifestations. Among them, the cortical altered signatures of ALS patients derived from both structural and functional magnetic resonance imaging and the emerging proteomic biomarkers of neuronal loss and glial activation in the cerebrospinal fluid as well as the potential biomarkers in blood, serum, urine, and saliva are leading a new phase of biomarkers. Here, we reviewed these current potential diagnostic biomarkers of ALS.
肌萎缩性脊髓侧索硬化症(ALS)目前缺乏有用的诊断生物标志物。目前对肌萎缩侧索硬化症的诊断主要依赖于临床表现,这导致了诊断的延迟,难以在肌萎缩侧索硬化症早期做出准确诊断,阻碍了临床早期治疗。近 30 年来,越来越多的 ALS 发病机制被发现,包括兴奋毒性、氧化应激、线粒体功能障碍、神经炎症、能量代谢改变、RNA 错误处理以及最新的神经影像学发现。这些发病机制的发现为寻找 ALS 的诊断生物标志物提供了新的线索。目前,大量关于诊断生物标志物的相关研究正在进行中。与诊断生物标志物相关的 ALS 发病机制可能会减少诊断对临床表现的依赖。其中,通过结构和功能磁共振成像获得的 ALS 患者皮质改变特征、脑脊液中神经元缺失和胶质激活的新兴蛋白质组生物标志物以及血液、血清、尿液和唾液中的潜在生物标志物正在引领生物标志物的新阶段。在此,我们回顾了目前这些潜在的 ALS 诊断生物标志物。
{"title":"Current potential diagnostic biomarkers of amyotrophic lateral sclerosis.","authors":"Zheqi Xu, Renshi Xu","doi":"10.1515/revneuro-2024-0037","DOIUrl":"10.1515/revneuro-2024-0037","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) currently lacks the useful diagnostic biomarkers. The current diagnosis of ALS is mainly depended on the clinical manifestations, which contributes to the diagnostic delay and be difficult to make the accurate diagnosis at the early stage of ALS, and hinders the clinical early therapeutics. The more and more pathogenesis of ALS are found at the last 30 years, including excitotoxicity, the oxidative stress, the mitochondrial dysfunction, neuroinflammation, the altered energy metabolism, the RNA misprocessing and the most recent neuroimaging findings. The findings of these pathogenesis bring the new clues for searching the diagnostic biomarkers of ALS. At present, a large number of relevant studies about the diagnostic biomarkers are underway. The ALS pathogenesis related to the diagnostic biomarkers might lessen the diagnostic reliance on the clinical manifestations. Among them, the cortical altered signatures of ALS patients derived from both structural and functional magnetic resonance imaging and the emerging proteomic biomarkers of neuronal loss and glial activation in the cerebrospinal fluid as well as the potential biomarkers in blood, serum, urine, and saliva are leading a new phase of biomarkers. Here, we reviewed these current potential diagnostic biomarkers of ALS.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"917-931"},"PeriodicalIF":4.1,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08Print Date: 2024-12-17DOI: 10.1515/revneuro-2024-0040
Sixun Yu, Xin Chen, Tao Yang, Jingmin Cheng, Enyu Liu, Lingli Jiang, Min Song, Haifeng Shu, Yuan Ma
The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.
{"title":"Revealing the mechanisms of blood-brain barrier in chronic neurodegenerative disease: an opportunity for therapeutic intervention.","authors":"Sixun Yu, Xin Chen, Tao Yang, Jingmin Cheng, Enyu Liu, Lingli Jiang, Min Song, Haifeng Shu, Yuan Ma","doi":"10.1515/revneuro-2024-0040","DOIUrl":"10.1515/revneuro-2024-0040","url":null,"abstract":"<p><p>The brain microenvironment is tightly regulated, and the blood-brain barrier (BBB) plays a pivotal role in maintaining the homeostasis of the central nervous system. It effectively safeguards brain tissue from harmful substances in peripheral blood. However, both acute pathological factors and age-related biodegradation have the potential to compromise the integrity of the BBB and are associated with chronic neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), as well as Epilepsy (EP). This association arises due to infiltration of peripheral foreign bodies including microorganisms, immune-inflammatory mediators, and plasma proteins into the central nervous system when the BBB is compromised. Nevertheless, these partial and generalized understandings do not prompt a shift from passive to active treatment approaches. Therefore, it is imperative to acquire a comprehensive and in-depth understanding of the intricate molecular mechanisms underlying vascular disease alterations associated with the onset and progression of chronic neurodegenerative disorders, as well as the subsequent homeostatic changes triggered by BBB impairment. The present article aims to systematically summarize and review recent scientific work with a specific focus on elucidating the fundamental mechanisms underlying BBB damage in AD, PD, and EP as well as their consequential impact on disease progression. These findings not only offer guidance for optimizing the physiological function of the BBB, but also provide valuable insights for developing intervention strategies aimed at early restoration of BBB structural integrity, thereby laying a solid foundation for designing drug delivery strategies centered around the BBB.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"895-916"},"PeriodicalIF":4.1,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141535749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.
{"title":"Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases.","authors":"Yifan Zhu, Fangsheng Wang, Yu Xia, Lijuan Wang, Haihong Lin, Tianyu Zhong, Xiaoling Wang","doi":"10.1515/revneuro-2024-0043","DOIUrl":"10.1515/revneuro-2024-0043","url":null,"abstract":"<p><p>Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"855-875"},"PeriodicalIF":4.1,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141421623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13Print Date: 2024-12-17DOI: 10.1515/revneuro-2024-0027
Luana Morelli, Lucrezia Serra, Fortuna Ricciardiello, Ilaria Gligora, Vincenzo Donadio, Marco Caprini, Rocco Liguori, Maria Pia Giannoccaro
Small fiber neuropathy (SFN) is a peripheral nerve condition affecting thin myelinated Aδ and unmyelinated C-fibers, characterized by severe neuropathic pain and other sensory and autonomic symptoms. A variety of medical disorders can cause SFN; however, more than 50% of cases are idiopathic (iSFN). Some investigations suggest an autoimmune etiology, backed by evidence of the efficacy of IVIG and plasma exchange. Several studies suggest that autoantibodies directed against nervous system antigens may play a role in the development of neuropathic pain. For instance, patients with CASPR2 and LGI1 antibodies often complain of pain, and in vitro and in vivo studies support their pathogenicity. Other antibodies have been associated with SFN, including those against TS-HDS, FGFR3, and Plexin-D1, and new potential targets have been proposed. Finally, a few studies reported the onset of SFN after COVID-19 infection and vaccination, investigating the presence of potential antibody targets. Despite these overall findings, the pathogenic role has been demonstrated only for some autoantibodies, and the association with specific clinical phenotypes or response to immunotherapy remains to be clarified. The purpose of this review is to summarise known autoantibody targets involved in neuropathic pain, putative attractive autoantibody targets in iSFN patients, their potential as biomarkers of response to immunotherapy and their role in the development of iSFN.
{"title":"The role of antibodies in small fiber neuropathy: a review of currently available evidence.","authors":"Luana Morelli, Lucrezia Serra, Fortuna Ricciardiello, Ilaria Gligora, Vincenzo Donadio, Marco Caprini, Rocco Liguori, Maria Pia Giannoccaro","doi":"10.1515/revneuro-2024-0027","DOIUrl":"10.1515/revneuro-2024-0027","url":null,"abstract":"<p><p>Small fiber neuropathy (SFN) is a peripheral nerve condition affecting thin myelinated Aδ and unmyelinated C-fibers, characterized by severe neuropathic pain and other sensory and autonomic symptoms. A variety of medical disorders can cause SFN; however, more than 50% of cases are idiopathic (iSFN). Some investigations suggest an autoimmune etiology, backed by evidence of the efficacy of IVIG and plasma exchange. Several studies suggest that autoantibodies directed against nervous system antigens may play a role in the development of neuropathic pain. For instance, patients with CASPR2 and LGI1 antibodies often complain of pain, and <i>in vitro</i> and <i>in vivo</i> studies support their pathogenicity. Other antibodies have been associated with SFN, including those against TS-HDS, FGFR3, and Plexin-D1, and new potential targets have been proposed. Finally, a few studies reported the onset of SFN after COVID-19 infection and vaccination, investigating the presence of potential antibody targets. Despite these overall findings, the pathogenic role has been demonstrated only for some autoantibodies, and the association with specific clinical phenotypes or response to immunotherapy remains to be clarified. The purpose of this review is to summarise known autoantibody targets involved in neuropathic pain, putative attractive autoantibody targets in iSFN patients, their potential as biomarkers of response to immunotherapy and their role in the development of iSFN.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"877-893"},"PeriodicalIF":4.1,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Migraine is a multidimensional disease affecting a large portion of the human population presenting with a variety of symptoms. In the era of personalized medicine, successful migraine treatment presents a challenge, as several studies have shown the impact of a patient's genetic profile on therapy response. However, with the emergence of contemporary treatment options, there is promise for improved outcomes. A literature search was conducted in PubMed and Scopus, in order to obtain studies investigating the impact of genetic factors on migraine therapy outcome. Overall, 23 studies were included in the current review, exhibiting diversity in the treatments used and the genetic variants investigated. Divergent genes were assessed for each category of migraine treatment. Several genetic factors were identified to contribute to the heterogeneous response to treatment. SNPs related to pharmacodynamic receptors, pharmacogenetics and migraine susceptibility loci were the most investigated variants, revealing some interesting significant results. To date, various associations have been recorded correlating the impact of genetic factors on migraine treatment responses. More extensive research needs to take place with the aim of shedding light on the labyrinthine effects of genetic variations on migraine treatment, and, consequently, these findings can promptly affect migraine treatment and improve migraine patients' life quality in the vision of precise medicine.
{"title":"The impact of genetic factors on the response to migraine therapy.","authors":"Daniil Tsirelis, Alexandros Tsekouras, Polyxeni Stamati, Ioannis Liampas, Elli Zoupa, Metaxia Dastamani, Zisis Tsouris, Anastasios Papadimitriou, Efthimios Dardiotis, Vasileios Siokas","doi":"10.1515/revneuro-2024-0045","DOIUrl":"10.1515/revneuro-2024-0045","url":null,"abstract":"<p><p>Migraine is a multidimensional disease affecting a large portion of the human population presenting with a variety of symptoms. In the era of personalized medicine, successful migraine treatment presents a challenge, as several studies have shown the impact of a patient's genetic profile on therapy response. However, with the emergence of contemporary treatment options, there is promise for improved outcomes. A literature search was conducted in PubMed and Scopus, in order to obtain studies investigating the impact of genetic factors on migraine therapy outcome. Overall, 23 studies were included in the current review, exhibiting diversity in the treatments used and the genetic variants investigated. Divergent genes were assessed for each category of migraine treatment. Several genetic factors were identified to contribute to the heterogeneous response to treatment. SNPs related to pharmacodynamic receptors, pharmacogenetics and migraine susceptibility loci were the most investigated variants, revealing some interesting significant results. To date, various associations have been recorded correlating the impact of genetic factors on migraine treatment responses. More extensive research needs to take place with the aim of shedding light on the labyrinthine effects of genetic variations on migraine treatment, and, consequently, these findings can promptly affect migraine treatment and improve migraine patients' life quality in the vision of precise medicine.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"789-812"},"PeriodicalIF":3.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141297175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-10Print Date: 2024-10-28DOI: 10.1515/revneuro-2024-0016
Mariana Ferreira, Patrícia Carneiro, Vera Marisa Costa, Félix Carvalho, Andreas Meisel, João Paulo Capela
The prevalence of stroke and traumatic brain injury is increasing worldwide. However, current treatments do not fully cure or stop their progression, acting mostly on symptoms. Amphetamine and methylphenidate are stimulants already approved for attention deficit hyperactivity disorder and narcolepsy treatment, with neuroprotective potential and benefits when used in appropriate doses. This review aimed to summarize pre-clinical and clinical trials testing either amphetamine or methylphenidate for the treatment of stroke and traumatic brain injury. We used PubMed as a database and included the following keywords ((methylphenidate) OR (Ritalin) OR (Concerta) OR (Biphentin) OR (amphetamine) OR (Adderall)) AND ((stroke) OR (brain injury) OR (neuroplasticity)). Overall, studies provided inconsistent results regarding cognitive and motor function. Neurite outgrowth, synaptic proteins, dendritic complexity, and synaptic plasticity increases were reported in pre-clinical studies along with function improvement. Clinical trials have demonstrated that, depending on the brain region, there is an increase in motor activity, attention, and memory due to the stimulation of the functionally depressed catecholamine system and the activation of neuronal remodeling proteins. Nevertheless, more clinical trials and pre-clinical studies are needed to understand the drugs' full potential for their use in these brain diseases namely, to ascertain the treatment time window, ideal dosage, long-term effects, and mechanisms, while avoiding their addictive potential.
{"title":"Amphetamine and methylphenidate potential on the recovery from stroke and traumatic brain injury: a review.","authors":"Mariana Ferreira, Patrícia Carneiro, Vera Marisa Costa, Félix Carvalho, Andreas Meisel, João Paulo Capela","doi":"10.1515/revneuro-2024-0016","DOIUrl":"10.1515/revneuro-2024-0016","url":null,"abstract":"<p><p>The prevalence of stroke and traumatic brain injury is increasing worldwide. However, current treatments do not fully cure or stop their progression, acting mostly on symptoms. Amphetamine and methylphenidate are stimulants already approved for attention deficit hyperactivity disorder and narcolepsy treatment, with neuroprotective potential and benefits when used in appropriate doses. This review aimed to summarize pre-clinical and clinical trials testing either amphetamine or methylphenidate for the treatment of stroke and traumatic brain injury. We used PubMed as a database and included the following keywords ((methylphenidate) OR (Ritalin) OR (Concerta) OR (Biphentin) OR (amphetamine) OR (Adderall)) AND ((stroke) OR (brain injury) OR (neuroplasticity)). Overall, studies provided inconsistent results regarding cognitive and motor function. Neurite outgrowth, synaptic proteins, dendritic complexity, and synaptic plasticity increases were reported in pre-clinical studies along with function improvement. Clinical trials have demonstrated that, depending on the brain region, there is an increase in motor activity, attention, and memory due to the stimulation of the functionally depressed catecholamine system and the activation of neuronal remodeling proteins. Nevertheless, more clinical trials and pre-clinical studies are needed to understand the drugs' full potential for their use in these brain diseases namely, to ascertain the treatment time window, ideal dosage, long-term effects, and mechanisms, while avoiding their addictive potential.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"709-746"},"PeriodicalIF":3.4,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141285108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07Print Date: 2024-10-28DOI: 10.1515/revneuro-2024-0054
Cristina Trejo-Solís, Norma Serrano-García, Rosa Angelica Castillo-Rodríguez, Diana Xochiquetzal Robledo-Cadena, Dolores Jimenez-Farfan, Álvaro Marín-Hernández, Daniela Silva-Adaya, Citlali Ekaterina Rodríguez-Pérez, Juan Carlos Gallardo-Pérez
Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.
{"title":"Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma.","authors":"Cristina Trejo-Solís, Norma Serrano-García, Rosa Angelica Castillo-Rodríguez, Diana Xochiquetzal Robledo-Cadena, Dolores Jimenez-Farfan, Álvaro Marín-Hernández, Daniela Silva-Adaya, Citlali Ekaterina Rodríguez-Pérez, Juan Carlos Gallardo-Pérez","doi":"10.1515/revneuro-2024-0054","DOIUrl":"10.1515/revneuro-2024-0054","url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"813-838"},"PeriodicalIF":3.4,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29Print Date: 2024-10-28DOI: 10.1515/revneuro-2023-0159
Chris Chun Hei Lo, Peter Yat Ming Woo, Vincent C K Cheung
Disorders of consciousness (DoC) are generally diagnosed by clinical assessment, which is a predominantly motor-driven process and accounts for up to 40 % of non-communication being misdiagnosed as unresponsive wakefulness syndrome (UWS) (previously known as prolonged/persistent vegetative state). Given the consequences of misdiagnosis, a more reliable and objective multimodal protocol to diagnosing DoC is needed, but has not been produced due to concerns regarding their interpretation and reliability. Of the techniques commonly used to detect consciousness in DoC, task-based paradigms (active paradigms) produce the most unequivocal result when findings are positive. It is well-established that command following (CF) reliably reflects preserved consciousness. Task-based electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can detect motor-independent CF and reveal preserved covert consciousness in up to 14 % of UWS patients. Accordingly, to improve the diagnostic accuracy of DoC, we propose a practical multimodal clinical decision framework centered on task-based EEG and fMRI, and complemented by measures like transcranial magnetic stimulation (TMS-EEG).
{"title":"Task-based EEG and fMRI paradigms in a multimodal clinical diagnostic framework for disorders of consciousness.","authors":"Chris Chun Hei Lo, Peter Yat Ming Woo, Vincent C K Cheung","doi":"10.1515/revneuro-2023-0159","DOIUrl":"10.1515/revneuro-2023-0159","url":null,"abstract":"<p><p>Disorders of consciousness (DoC) are generally diagnosed by clinical assessment, which is a predominantly motor-driven process and accounts for up to 40 % of non-communication being misdiagnosed as unresponsive wakefulness syndrome (UWS) (previously known as prolonged/persistent vegetative state). Given the consequences of misdiagnosis, a more reliable and objective multimodal protocol to diagnosing DoC is needed, but has not been produced due to concerns regarding their interpretation and reliability. Of the techniques commonly used to detect consciousness in DoC, task-based paradigms (active paradigms) produce the most unequivocal result when findings are positive. It is well-established that command following (CF) reliably reflects preserved consciousness. Task-based electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can detect motor-independent CF and reveal preserved covert consciousness in up to 14 % of UWS patients. Accordingly, to improve the diagnostic accuracy of DoC, we propose a practical multimodal clinical decision framework centered on task-based EEG and fMRI, and complemented by measures like transcranial magnetic stimulation (TMS-EEG).</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"775-787"},"PeriodicalIF":3.4,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16Print Date: 2024-10-28DOI: 10.1515/revneuro-2024-0009
Anna Borne, Marcela Perrone-Bertolotti, Sarah Ferrand-Sorbets, Christine Bulteau, Monica Baciu
Rasmussen's encephalitis is a rare neurological pathology affecting one cerebral hemisphere, therefore, posing unique challenges. Patients may undergo hemispherectomy, a surgical procedure after which cognitive development occurs in the isolated contralateral hemisphere. This rare situation provides an excellent opportunity to evaluate brain plasticity and cognitive recovery at a hemispheric level. This literature review synthesizes the existing body of research on cognitive recovery following hemispherectomy in Rasmussen patients, considering cognitive domains and modulatory factors that influence cognitive outcomes. While language function has traditionally been the focus of postoperative assessments, there is a growing acknowledgment of the need to broaden the scope of language investigation in interaction with other cognitive domains and to consider cognitive scaffolding in development and recovery. By synthesizing findings reported in the literature, we delineate how language functions may find support from the right hemisphere after left hemispherectomy, but also how, beyond language, global cognitive functioning is affected. We highlight the critical influence of several factors on postoperative cognitive outcomes, including the timing of hemispherectomy and the baseline preoperative cognitive status, pointing to early surgical intervention as predictive of better cognitive outcomes. However, further specific studies are needed to confirm this correlation. This review aims to emphasize a better understanding of mechanisms underlying hemispheric specialization and plasticity in humans, which are particularly important for both clinical and research advancements. This narrative review underscores the need for an integrative approach based on cognitive scaffolding to provide a comprehensive understanding of mechanisms underlying the reorganization in Rasmussen patients after hemispherectomy.
{"title":"Insights on cognitive reorganization after hemispherectomy in Rasmussen's encephalitis. A narrative review.","authors":"Anna Borne, Marcela Perrone-Bertolotti, Sarah Ferrand-Sorbets, Christine Bulteau, Monica Baciu","doi":"10.1515/revneuro-2024-0009","DOIUrl":"10.1515/revneuro-2024-0009","url":null,"abstract":"<p><p>Rasmussen's encephalitis is a rare neurological pathology affecting one cerebral hemisphere, therefore, posing unique challenges. Patients may undergo hemispherectomy, a surgical procedure after which cognitive development occurs in the isolated contralateral hemisphere. This rare situation provides an excellent opportunity to evaluate brain plasticity and cognitive recovery at a hemispheric level. This literature review synthesizes the existing body of research on cognitive recovery following hemispherectomy in Rasmussen patients, considering cognitive domains and modulatory factors that influence cognitive outcomes. While language function has traditionally been the focus of postoperative assessments, there is a growing acknowledgment of the need to broaden the scope of language investigation in interaction with other cognitive domains and to consider cognitive scaffolding in development and recovery. By synthesizing findings reported in the literature, we delineate how language functions may find support from the right hemisphere after left hemispherectomy, but also how, beyond language, global cognitive functioning is affected. We highlight the critical influence of several factors on postoperative cognitive outcomes, including the timing of hemispherectomy and the baseline preoperative cognitive status, pointing to early surgical intervention as predictive of better cognitive outcomes. However, further specific studies are needed to confirm this correlation. This review aims to emphasize a better understanding of mechanisms underlying hemispheric specialization and plasticity in humans, which are particularly important for both clinical and research advancements. This narrative review underscores the need for an integrative approach based on cognitive scaffolding to provide a comprehensive understanding of mechanisms underlying the reorganization in Rasmussen patients after hemispherectomy.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"747-774"},"PeriodicalIF":3.4,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140946043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14Print Date: 2024-08-27DOI: 10.1515/revneuro-2024-0034
Haoyu Guo, Jinfeng Han, Mingyue Xiao, Hong Chen
Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.
{"title":"Functional alterations in overweight/obesity: focusing on the reward and executive control network.","authors":"Haoyu Guo, Jinfeng Han, Mingyue Xiao, Hong Chen","doi":"10.1515/revneuro-2024-0034","DOIUrl":"10.1515/revneuro-2024-0034","url":null,"abstract":"<p><p>Overweight (OW) and obesity (OB) have become prevalent issues in the global public health arena. Serving as a prominent risk factor for various chronic diseases, overweight/obesity not only poses serious threats to people's physical and mental health but also imposes significant medical and economic burdens on society as a whole. In recent years, there has been a growing focus on basic scientific research dedicated to seeking the neural evidence underlying overweight/obesity, aiming to elucidate its causes and effects by revealing functional alterations in brain networks. Among them, dysfunction in the reward network (RN) and executive control network (ECN) during both resting state and task conditions is considered pivotal in neuroscience research on overweight/obesity. Their aberrations contribute to explaining why persons with overweight/obesity exhibit heightened sensitivity to food rewards and eating disinhibition. This review centers on the reward and executive control network by analyzing and organizing the resting-state and task-based fMRI studies of functional brain network alterations in overweight/obesity. Building upon this foundation, the authors further summarize a reward-inhibition dual-system model, with a view to establishing a theoretical framework for future exploration in this field.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":"697-707"},"PeriodicalIF":3.4,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}