首页 > 最新文献

Optimization Letters最新文献

英文 中文
Tensor denoising via dual Schatten norms 利用双夏腾范数进行张量去噪
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-27 DOI: 10.1007/s11590-023-02068-8
Maryam Bagherian
{"title":"Tensor denoising via dual Schatten norms","authors":"Maryam Bagherian","doi":"10.1007/s11590-023-02068-8","DOIUrl":"https://doi.org/10.1007/s11590-023-02068-8","url":null,"abstract":"","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135537030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A neurodynamic approach for joint chance constrained rectangular geometric optimization 关节机会约束矩形几何优化的神经动力学方法
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-26 DOI: 10.1007/s11590-023-02050-4
Siham Tassouli, Abdel Lisser
{"title":"A neurodynamic approach for joint chance constrained rectangular geometric optimization","authors":"Siham Tassouli, Abdel Lisser","doi":"10.1007/s11590-023-02050-4","DOIUrl":"https://doi.org/10.1007/s11590-023-02050-4","url":null,"abstract":"","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134960073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prediction of annual CO2 emissions at the country and sector levels, based on a matrix completion optimization problem 基于矩阵完成优化问题,预测国家和部门的年二氧化碳排放量
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-26 DOI: 10.1007/s11590-023-02052-2
Francesco Biancalani, Giorgio Gnecco, Rodolfo Metulini, Massimo Riccaboni
Abstract In the recent past, annual CO $$_2$$ 2 emissions at the international level were examined from various perspectives, motivated by rising concerns about pollution and climate change. Nevertheless, to the best of the authors’ knowledge, the problem of dealing with the potential inaccuracy/missingness of such data at the country and economic sector levels has been overlooked. Thereby, in this article we apply a supervised machine learning technique called Matrix Completion (MC) to predict, for each country in the available database, annual CO $$_2$$ 2 emissions data at the sector level, based on past data related to all the sectors, and more recent data related to a subset of sectors. The core idea of MC consists in the formulation of a suitable optimization problem, namely the minimization of a proper trade-off between the approximation error over a set of observed elements of a matrix (training set) and a proxy of the rank of the reconstructed matrix, e.g., its nuclear norm. In the article, we apply MC to the imputation of (artificially) missing elements of country-specific matrices whose elements come from annual CO $$_2$$ 2 emission levels related to different sectors, after proper pre-processing at the sector level. Results highlight typically a better performance of the combination of MC with suitably-constructed baseline estimates with respect to the baselines alone. Potential applications of our analysis arise in the prediction of currently missing elements of matrices of annual CO $$_2$$ 2 emission levels and in the construction of counterfactuals, useful to estimate the effects of policy changes able to influence the annual CO $$_2$$ 2 emission levels of specific sectors in selected countries.
摘要近年来,每年CO $$_2$$ 由于人们对污染和气候变化的担忧日益加剧,我们从不同的角度审视了国际层面的碳排放。然而,据作者所知,在国家和经济部门一级处理这种数据可能不准确/缺失的问题被忽视了。因此,在本文中,我们应用一种称为矩阵完成(MC)的监督机器学习技术来预测可用数据库中每个国家的年度CO $$_2$$ 2 .行业层面的排放数据,基于与所有行业相关的过去数据,以及与部分行业相关的近期数据。MC的核心思想在于提出一个合适的优化问题,即在矩阵(训练集)的一组观测元素的近似误差与重构矩阵的秩的代理(例如,它的核范数)之间的适当权衡之间最小化。在本文中,我们将MC应用于(人为)缺失元素的国家特定矩阵,其元素来自年度CO $$_2$$ 2 .不同行业相关的排放水平,在行业层面经过适当的预处理。结果突出表明,相对于单独的基线,MC与适当构建的基线估计相结合通常具有更好的性能。我们的分析的潜在应用出现在预测年度CO矩阵中目前缺失的元素 $$_2$$ 2 .排放水平和反事实的构建,有助于估计能够影响年度CO的政策变化的影响 $$_2$$ 2 .选定国家特定部门的排放水平。
{"title":"Prediction of annual CO2 emissions at the country and sector levels, based on a matrix completion optimization problem","authors":"Francesco Biancalani, Giorgio Gnecco, Rodolfo Metulini, Massimo Riccaboni","doi":"10.1007/s11590-023-02052-2","DOIUrl":"https://doi.org/10.1007/s11590-023-02052-2","url":null,"abstract":"Abstract In the recent past, annual CO $$_2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msub> </mml:math> emissions at the international level were examined from various perspectives, motivated by rising concerns about pollution and climate change. Nevertheless, to the best of the authors’ knowledge, the problem of dealing with the potential inaccuracy/missingness of such data at the country and economic sector levels has been overlooked. Thereby, in this article we apply a supervised machine learning technique called Matrix Completion (MC) to predict, for each country in the available database, annual CO $$_2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msub> </mml:math> emissions data at the sector level, based on past data related to all the sectors, and more recent data related to a subset of sectors. The core idea of MC consists in the formulation of a suitable optimization problem, namely the minimization of a proper trade-off between the approximation error over a set of observed elements of a matrix (training set) and a proxy of the rank of the reconstructed matrix, e.g., its nuclear norm. In the article, we apply MC to the imputation of (artificially) missing elements of country-specific matrices whose elements come from annual CO $$_2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msub> </mml:math> emission levels related to different sectors, after proper pre-processing at the sector level. Results highlight typically a better performance of the combination of MC with suitably-constructed baseline estimates with respect to the baselines alone. Potential applications of our analysis arise in the prediction of currently missing elements of matrices of annual CO $$_2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msub> </mml:math> emission levels and in the construction of counterfactuals, useful to estimate the effects of policy changes able to influence the annual CO $$_2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow /> <mml:mn>2</mml:mn> </mml:msub> </mml:math> emission levels of specific sectors in selected countries.","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kernel $$ell ^1$$-norm principal component analysis for denoising 核$$ell ^1$$ -范数主成分分析去噪
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-25 DOI: 10.1007/s11590-023-02051-3
Xiao Ling, Anh Bui, Paul Brooks
{"title":"Kernel $$ell ^1$$-norm principal component analysis for denoising","authors":"Xiao Ling, Anh Bui, Paul Brooks","doi":"10.1007/s11590-023-02051-3","DOIUrl":"https://doi.org/10.1007/s11590-023-02051-3","url":null,"abstract":"","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135817007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A maximal-clique-based set-covering approach to overlapping community detection 基于最大集团的集合覆盖重叠社区检测方法
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-25 DOI: 10.1007/s11590-023-02054-0
Michael J. Brusco, Douglas Steinley, Ashley L. Watts
{"title":"A maximal-clique-based set-covering approach to overlapping community detection","authors":"Michael J. Brusco, Douglas Steinley, Ashley L. Watts","doi":"10.1007/s11590-023-02054-0","DOIUrl":"https://doi.org/10.1007/s11590-023-02054-0","url":null,"abstract":"","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep reinforcement learning for approximate policy iteration: convergence analysis and a post-earthquake disaster response case study 近似策略迭代的深度强化学习:收敛分析和震后灾难响应案例研究
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-23 DOI: 10.1007/s11590-023-02062-0
A. Gosavi, L. H. Sneed, L. A. Spearing
{"title":"Deep reinforcement learning for approximate policy iteration: convergence analysis and a post-earthquake disaster response case study","authors":"A. Gosavi, L. H. Sneed, L. A. Spearing","doi":"10.1007/s11590-023-02062-0","DOIUrl":"https://doi.org/10.1007/s11590-023-02062-0","url":null,"abstract":"","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135966863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher-order optimality conditions of robust Benson proper efficient solutions in uncertain vector optimization problems 不确定向量优化问题鲁棒Benson固有有效解的高阶最优性条件
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-23 DOI: 10.1007/s11590-023-02061-1
Qilin Wang, Jing Jin, Yuwen Zhai
{"title":"Higher-order optimality conditions of robust Benson proper efficient solutions in uncertain vector optimization problems","authors":"Qilin Wang, Jing Jin, Yuwen Zhai","doi":"10.1007/s11590-023-02061-1","DOIUrl":"https://doi.org/10.1007/s11590-023-02061-1","url":null,"abstract":"","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135966855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On optimal universal first-order methods for minimizing heterogeneous sums 非均匀和最小化的最优通用一阶方法
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-22 DOI: 10.1007/s11590-023-02060-2
Benjamin Grimmer
{"title":"On optimal universal first-order methods for minimizing heterogeneous sums","authors":"Benjamin Grimmer","doi":"10.1007/s11590-023-02060-2","DOIUrl":"https://doi.org/10.1007/s11590-023-02060-2","url":null,"abstract":"","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136061604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Special issue dedicated to the 8th International Conference on Variable Neighborhood Search (ICVNS 2021) 第八届可变邻域搜索国际会议(ICVNS 2021)特刊
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-21 DOI: 10.1007/s11590-023-02059-9
Nenad Mladenović, Angelo Sifaleras, Andrei Sleptchenko
Abstract This special issue contains 15 papers submitted by the participants of the 8th International Conference on Variable Neighborhood Search (ICVNS 2021), which was held in Abu Dhabi, U.A.E., online due to COVID-19 restrictions, on March 22–24, 2021.
由于受新冠肺炎疫情限制,第八届可变邻域搜索国际会议(ICVNS 2021)于2021年3月22日至24日在阿联酋阿布扎比在线召开,本特刊收录了与会人员提交的15篇论文。
{"title":"Special issue dedicated to the 8th International Conference on Variable Neighborhood Search (ICVNS 2021)","authors":"Nenad Mladenović, Angelo Sifaleras, Andrei Sleptchenko","doi":"10.1007/s11590-023-02059-9","DOIUrl":"https://doi.org/10.1007/s11590-023-02059-9","url":null,"abstract":"Abstract This special issue contains 15 papers submitted by the participants of the 8th International Conference on Variable Neighborhood Search (ICVNS 2021), which was held in Abu Dhabi, U.A.E., online due to COVID-19 restrictions, on March 22–24, 2021.","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136154354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dependence in constrained Bayesian optimization 约束贝叶斯优化中的相关性
4区 数学 Q2 MATHEMATICS, APPLIED Pub Date : 2023-09-20 DOI: 10.1007/s11590-023-02047-z
Shiqiang Zhang, Robert M. Lee, Behrang Shafei, David Walz, Ruth Misener
Abstract Constrained Bayesian optimization optimizes a black-box objective function subject to black-box constraints. For simplicity, most existing works assume that multiple constraints are independent. To ask, when and how does dependence between constraints help? , we remove this assumption and implement probability of feasibility with dependence (Dep-PoF) by applying multiple output Gaussian processes (MOGPs) as surrogate models and using expectation propagation to approximate the probabilities. We compare Dep-PoF and the independent version PoF. We propose two new acquisition functions incorporating Dep-PoF and test them on synthetic and practical benchmarks. Our results are largely negative: incorporating dependence between the constraints does not help much. Empirically, incorporating dependence between constraints may be useful if: (i) the solution is on the boundary of the feasible region(s) or (ii) the feasible set is very small. When these conditions are satisfied, the predictive covariance matrix from the MOGP may be poorly approximated by a diagonal matrix and the off-diagonal matrix elements may become important. Dep-PoF may apply to settings where (i) the constraints and their dependence are totally unknown and (ii) experiments are so expensive that any slightly better Bayesian optimization procedure is preferred. But, in most cases, Dep-PoF is indistinguishable from PoF.
约束贝叶斯优化是对受黑箱约束的黑箱目标函数进行优化。为简单起见,大多数现有的工作都假定多个约束是独立的。要问,约束之间的依赖何时以及如何起作用?,我们消除了这一假设,并通过将多输出高斯过程(mogp)作为代理模型,并使用期望传播来近似概率,实现了具有相关性的可行性概率(deep - pof)。我们比较了deep -PoF和独立版本的PoF。我们提出了两个包含deep - pof的新采集函数,并在综合和实际基准上进行了测试。我们的结果在很大程度上是负面的:合并约束之间的依赖并没有多大帮助。从经验上讲,如果:(i)解在可行域的边界上,或者(ii)可行集非常小,那么结合约束之间的依赖可能是有用的。当满足这些条件时,MOGP的预测协方差矩阵可能难以用对角矩阵近似,而非对角矩阵元素可能变得重要。deep - pof可能适用于以下情况:(i)约束条件及其依赖性完全未知;(ii)实验成本太高,任何稍好一点的贝叶斯优化过程都是首选。但是,在大多数情况下,deep -PoF与PoF难以区分。
{"title":"Dependence in constrained Bayesian optimization","authors":"Shiqiang Zhang, Robert M. Lee, Behrang Shafei, David Walz, Ruth Misener","doi":"10.1007/s11590-023-02047-z","DOIUrl":"https://doi.org/10.1007/s11590-023-02047-z","url":null,"abstract":"Abstract Constrained Bayesian optimization optimizes a black-box objective function subject to black-box constraints. For simplicity, most existing works assume that multiple constraints are independent. To ask, when and how does dependence between constraints help? , we remove this assumption and implement probability of feasibility with dependence (Dep-PoF) by applying multiple output Gaussian processes (MOGPs) as surrogate models and using expectation propagation to approximate the probabilities. We compare Dep-PoF and the independent version PoF. We propose two new acquisition functions incorporating Dep-PoF and test them on synthetic and practical benchmarks. Our results are largely negative: incorporating dependence between the constraints does not help much. Empirically, incorporating dependence between constraints may be useful if: (i) the solution is on the boundary of the feasible region(s) or (ii) the feasible set is very small. When these conditions are satisfied, the predictive covariance matrix from the MOGP may be poorly approximated by a diagonal matrix and the off-diagonal matrix elements may become important. Dep-PoF may apply to settings where (i) the constraints and their dependence are totally unknown and (ii) experiments are so expensive that any slightly better Bayesian optimization procedure is preferred. But, in most cases, Dep-PoF is indistinguishable from PoF.","PeriodicalId":49720,"journal":{"name":"Optimization Letters","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136307342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Optimization Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1