Herein, Ryazanian (Berriasian) macrofossils from three well cores in the Central Graben (wells B18-02, L06-02, The Netherlands) and on the Jæren High (well 7/7-2, Norway) in the southern North Sea region are described. Macrofossils are mainly represented by buchiid bivalves (Buchia volgensis) and ammonites (Surites, Lynnia and Praetollia?). The genus Lynnia is recorded for the first time outside its topotypical area, and its systematic position and stratigraphic ranges are discussed. Additionally, the studied core sections yielded coleoid remains and a single limid bivalve. Based on the stratigraphic ranges of key ammonite genera (Lynnia, Surites and Bojarkia), the zonation of the Ryazanian stage is reconsidered. Uppermost Volgian to Ryazanian ammonite faunas are quite consistent and diverse but showing a higher degree of similarity throughout the Panboreal Superrealm as compared to those from rest of the Upper Volgian and the Middle Volgian. Buchia volgensis is the only species known from the southern North Sea and East Anglia, which is in strong contrast to the high diversity of Buchia in East Greenland and the remainder of the Boreal Realm. We hypothesise that such differences in the distribution of ammonites and bivalves in general, and the absence of buchiid species other than Buchia volgensis south of East Greenland in particular, are the result of anoxic bottom water conditions in the southern Viking Strait. The unusually wide geographic range of B. volgensis, which is known from such distant areas as Mexico and the Crimea, suggests a potential higher tolerance of this species to adverse conditions.
本文描述了北海南部地区中央地陷(荷兰B18-02井、L06-02井)和Jæren High(挪威7/7-2井)3口井岩心的梁赞期(Berriasian)宏观化石。大型化石主要有具壳类双壳类(Buchia volgensis)和菊石类(Surites, Lynnia and Praetollia?)本文首次在其地貌区以外记录到山猫属,并对其系统位置和地层范围进行了讨论。此外,所研究的岩心剖面还发现了胶体遗骸和单一的双壳类软体动物。根据主要菊石属(Lynnia、Surites和Bojarkia)的地层范围,重新考虑梁赞期的分带。上伏尔加和梁赞尼亚的菊石动物群相当一致和多样,但与上伏尔加和中伏尔加的其他地区相比,在整个泛北方超级领域显示出更高程度的相似性。布希亚volgensis是唯一已知的来自北海南部和东安格利亚的物种,这与布希亚在东格陵兰岛和北方王国的高度多样性形成强烈对比。我们假设,总的来说,菊石和双壳类动物分布的差异,以及除了东格陵兰岛南部的Buchia volgensis之外的buchiid物种的缺失,是维京海峡南部缺氧底水条件的结果。volgensis的地理分布异常广泛,从墨西哥和克里米亚这样遥远的地区就知道,这表明这个物种对不利条件的潜在更高的耐受性。
{"title":"Ryazanian (Berriasian) molluscs and biostratigraphy of the Dutch and Norwegian North Sea area (south of Viking Graben)","authors":"N. Janssen, M. Rogov, V. Zakharov","doi":"10.1017/njg.2022.5","DOIUrl":"https://doi.org/10.1017/njg.2022.5","url":null,"abstract":"\u0000 Herein, Ryazanian (Berriasian) macrofossils from three well cores in the Central Graben (wells B18-02, L06-02, The Netherlands) and on the Jæren High (well 7/7-2, Norway) in the southern North Sea region are described. Macrofossils are mainly represented by buchiid bivalves (Buchia volgensis) and ammonites (Surites, Lynnia and Praetollia?). The genus Lynnia is recorded for the first time outside its topotypical area, and its systematic position and stratigraphic ranges are discussed. Additionally, the studied core sections yielded coleoid remains and a single limid bivalve. Based on the stratigraphic ranges of key ammonite genera (Lynnia, Surites and Bojarkia), the zonation of the Ryazanian stage is reconsidered. Uppermost Volgian to Ryazanian ammonite faunas are quite consistent and diverse but showing a higher degree of similarity throughout the Panboreal Superrealm as compared to those from rest of the Upper Volgian and the Middle Volgian. Buchia volgensis is the only species known from the southern North Sea and East Anglia, which is in strong contrast to the high diversity of Buchia in East Greenland and the remainder of the Boreal Realm. We hypothesise that such differences in the distribution of ammonites and bivalves in general, and the absence of buchiid species other than Buchia volgensis south of East Greenland in particular, are the result of anoxic bottom water conditions in the southern Viking Strait. The unusually wide geographic range of B. volgensis, which is known from such distant areas as Mexico and the Crimea, suggests a potential higher tolerance of this species to adverse conditions.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"34 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88227281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cees Kasse, J. V. D. van der Woude, Hessel A G Woolderink, J. Schokker
Abstract Two new records from the Amersfoort glacial basin are investigated by means of pollen analysis. The cores are situated in the deeper part, close to the original Eemian stratotype Amersfoort 1 (Zagwijn, 1961) and at the margin of the basin. The aim is to reconstruct the Eemian and Early Weichselian vegetation development and to explore the impact of accommodation space, influx of allochthonous pollen and geomorphology on the vegetation composition. The results of the Amersfoort Basin are compared to the current Eemian stratotype in the Amsterdam Basin and other Eemian sites in the Netherlands. An almost complete Eemian to Early Weichselian sequence (E2-EWII) was retrieved from the deeper part of the Amersfoort basin. The late Saalian (LS) to early Eemian transition is not recorded in the Amersfoort basin, in contrast to the deeper Amsterdam Basin. The basin marginal core Den Treek reveals a condensed late Eemian (E5-6) and Early Weichselian (EW I-II) succession showing the importance of accommodation space. The first impact of the Eemian transgression is registered at the E3 to E4a boundary in the Amersfoort and Amsterdam basins, and highest sea level is proposed at the end of pollen zone E5. Upstream in the Eemian delta, in the palaeo-Vecht valley and IJssel Basin, the transgression is recorded later. The influx of reworked (allochthonous) pollen in clastic sediment units hampers vegetation and climatic reconstructions during the LS and Eemian. The early appearance of Picea in zone E4 and Abies in zone E5 in clastic sediment intervals can be related to long-distance transport by the river Rhine and redistribution in the Eemian delta. Local vegetation development can complicate regional biostratigraphic correlations. Alnus, considered characteristic for the late Eemian (E5-6), shows large differences over short distances in the Amersfoort Basin, related to local alder growth since Eemian E3. Carpinus, diagnostic for pollen zone E5, shows high values in the basins adjacent to higher, well-drained ice-pushed ridges, but low values in low-relief environments. Salt- to brackish-water marshes were present during high sea level in zone E5 in the Amsterdam and Amersfoort basins, while further upstream in the Rhine delta brackish to fresh-water tidal conditions dominated. In line with Zagwijn (1961), the E6 to EWI boundary is defined at the first opening of the vegetation cover with Calluna, Poaceae and Artemisia increase, often coinciding with a lithological change from organic to clastic deposition, reflecting increased landscape instability. The cores from the Amersfoort basin reveal a complete Eemian to Early Weichselian record. It is suggested to define the boundary stratotype for the base of the Weichselian Stage in the Amersfoort Basin. The current stratotype Amsterdam-Terminal reveals a fully developed LS to Eemian transition and contains the boundary stratotype for the base of the Eemian Stage.
{"title":"Eemian to Early Weichselian regional and local vegetation development and sedimentary and geomorphological controls, Amersfoort Basin, The Netherlands","authors":"Cees Kasse, J. V. D. van der Woude, Hessel A G Woolderink, J. Schokker","doi":"10.1017/njg.2022.4","DOIUrl":"https://doi.org/10.1017/njg.2022.4","url":null,"abstract":"Abstract Two new records from the Amersfoort glacial basin are investigated by means of pollen analysis. The cores are situated in the deeper part, close to the original Eemian stratotype Amersfoort 1 (Zagwijn, 1961) and at the margin of the basin. The aim is to reconstruct the Eemian and Early Weichselian vegetation development and to explore the impact of accommodation space, influx of allochthonous pollen and geomorphology on the vegetation composition. The results of the Amersfoort Basin are compared to the current Eemian stratotype in the Amsterdam Basin and other Eemian sites in the Netherlands. An almost complete Eemian to Early Weichselian sequence (E2-EWII) was retrieved from the deeper part of the Amersfoort basin. The late Saalian (LS) to early Eemian transition is not recorded in the Amersfoort basin, in contrast to the deeper Amsterdam Basin. The basin marginal core Den Treek reveals a condensed late Eemian (E5-6) and Early Weichselian (EW I-II) succession showing the importance of accommodation space. The first impact of the Eemian transgression is registered at the E3 to E4a boundary in the Amersfoort and Amsterdam basins, and highest sea level is proposed at the end of pollen zone E5. Upstream in the Eemian delta, in the palaeo-Vecht valley and IJssel Basin, the transgression is recorded later. The influx of reworked (allochthonous) pollen in clastic sediment units hampers vegetation and climatic reconstructions during the LS and Eemian. The early appearance of Picea in zone E4 and Abies in zone E5 in clastic sediment intervals can be related to long-distance transport by the river Rhine and redistribution in the Eemian delta. Local vegetation development can complicate regional biostratigraphic correlations. Alnus, considered characteristic for the late Eemian (E5-6), shows large differences over short distances in the Amersfoort Basin, related to local alder growth since Eemian E3. Carpinus, diagnostic for pollen zone E5, shows high values in the basins adjacent to higher, well-drained ice-pushed ridges, but low values in low-relief environments. Salt- to brackish-water marshes were present during high sea level in zone E5 in the Amsterdam and Amersfoort basins, while further upstream in the Rhine delta brackish to fresh-water tidal conditions dominated. In line with Zagwijn (1961), the E6 to EWI boundary is defined at the first opening of the vegetation cover with Calluna, Poaceae and Artemisia increase, often coinciding with a lithological change from organic to clastic deposition, reflecting increased landscape instability. The cores from the Amersfoort basin reveal a complete Eemian to Early Weichselian record. It is suggested to define the boundary stratotype for the base of the Weichselian Stage in the Amersfoort Basin. The current stratotype Amsterdam-Terminal reveals a fully developed LS to Eemian transition and contains the boundary stratotype for the base of the Eemian Stage.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"15 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89051865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Discussions on the age and the depositional environments of the Veldhoven Formation and its members are persistent in Belgium and the Netherlands. Uncertainties on stratigraphy and the constructive process of sediment accumulation continue today as a result of lack of data on this succession within the Roer Valley Rift System. The present study provides new information on the bio- and lithostratigraphy and facies from two boreholes based on dinoflagellate cyst taxa. The results were correlated by gamma-ray logs towards other key boreholes in the region and show a good consistency for stratigraphy and depositional environments for the members of the Veldhoven Formation. After marginal to restricted marine conditions in the latest Rupelian (early Oligocene), the start of deposition of the Veldhoven Formation marked the transition towards a higher sea level, expressed by increased glauconite contents and gamma-ray values. The Voort Member in the lower part of the Veldhoven Formation has an early to late Chattian (Late Oligocene) age and comprises predominantly shallow marine (fluctuating restricted to open marine) conditions. The lithology in the lower part of this unit is often very clayey but is coarsening upward into sands. The superjacent Wintelre Member has a latest Chattian to early Aquitanian (early Miocene) age. This member is distinct by its clayey nature which is expressed by relatively high gamma-ray values. Earlier studies suggest a deeper marine facies for the Wintelre Member compared to the Someren and Voort members. However, the dinoflagellate cyst assemblages in this unit are mostly dominated by a single genus indicating a restricted marine setting, including salinities that deviate from normal marine conditions, most probably due to minor ventilation by narrow or lack of connection to the Atlantic Ocean. A glacio-eustatic sea-level fall around the Oligocene/Miocene boundary limited the sea coverage to the strongest subsiding areas, where deposition of the Wintelre Member is recorded, while non-deposition or erosion occurred in the surrounding highs, hence creating an isolated (sub)basin. The superjacent Someren Member was deposited during the late Aquitanian to middle Burdigalian and consists of shallow to open marine clayey fine sands. Increasing clay contents indicate a gradual development towards a higher sea level, which coincide with upward increasing gamma-ray values. The biostratigraphic results of this study suggest that no major hiatuses are present in the differentially subsiding blocks of the Roer Valley Rift System during the late Oligocene to early Miocene.
在比利时和荷兰,关于Veldhoven组及其成员的年龄和沉积环境的讨论一直持续。由于缺乏关于罗尔谷裂谷系统内这种演代的资料,地层学的不确定性和沉积物积累的建设性过程至今仍在继续。本研究提供了基于鞭毛藻囊群的两个钻孔生物和岩石地层及相的新信息。伽马测井结果与该地区其他关键钻孔进行了对比,表明Veldhoven组地层和沉积环境具有良好的一致性。在鲁佩尔晚期(早渐新世)的边缘到有限的海洋条件之后,Veldhoven组沉积的开始标志着向更高海平面的过渡,表现为海绿石含量和伽马射线值的增加。Veldhoven组下部的Voort段为早至晚夏世(晚渐新世)时代,主要为浅海(波动仅限于开阔海)条件。该单元下部的岩性通常为粘土质,但向上粗化为砂质。上覆的Wintelre段为Chattian - early Aquitanian(早中新世)时代。这个成员的独特之处在于它的粘土性质,这是由相对较高的伽马射线值表示的。早期的研究表明,与Someren和Voort组相比,Wintelre组的海相更深。然而,该单元的鞭毛藻囊群大多由单一属主导,表明受限制的海洋环境,包括偏离正常海洋环境的盐度,很可能是由于与大西洋的连接狭窄或缺乏通风而导致的。渐新世/中新世边界附近的冰川-上升海平面下降将海洋覆盖范围限制在最强的沉降区域,在那里记录了Wintelre段的沉积,而周围的高地没有发生沉积或侵蚀,因此形成了一个孤立的(次)盆地。上覆的萨默门段沉积于阿基坦期晚期至布尔迪加里亚期中期,由浅层至开阔海相粘土细砂组成。粘土含量的增加表明海平面逐渐升高,这与伽马射线值的上升一致。本研究的生物地层学结果表明,在渐新世晚期至中新世早期,罗尔谷裂谷系的差异沉降块体中没有出现大的断裂。
{"title":"Biostratigraphic ages and depositional environments of the upper Oligocene to lower Miocene Veldhoven Formation in the central Roer Valley Rift System (SE Netherlands-NE Belgium)","authors":"D. Munsterman, J. Deckers","doi":"10.1017/njg.2022.3","DOIUrl":"https://doi.org/10.1017/njg.2022.3","url":null,"abstract":"Abstract Discussions on the age and the depositional environments of the Veldhoven Formation and its members are persistent in Belgium and the Netherlands. Uncertainties on stratigraphy and the constructive process of sediment accumulation continue today as a result of lack of data on this succession within the Roer Valley Rift System. The present study provides new information on the bio- and lithostratigraphy and facies from two boreholes based on dinoflagellate cyst taxa. The results were correlated by gamma-ray logs towards other key boreholes in the region and show a good consistency for stratigraphy and depositional environments for the members of the Veldhoven Formation. After marginal to restricted marine conditions in the latest Rupelian (early Oligocene), the start of deposition of the Veldhoven Formation marked the transition towards a higher sea level, expressed by increased glauconite contents and gamma-ray values. The Voort Member in the lower part of the Veldhoven Formation has an early to late Chattian (Late Oligocene) age and comprises predominantly shallow marine (fluctuating restricted to open marine) conditions. The lithology in the lower part of this unit is often very clayey but is coarsening upward into sands. The superjacent Wintelre Member has a latest Chattian to early Aquitanian (early Miocene) age. This member is distinct by its clayey nature which is expressed by relatively high gamma-ray values. Earlier studies suggest a deeper marine facies for the Wintelre Member compared to the Someren and Voort members. However, the dinoflagellate cyst assemblages in this unit are mostly dominated by a single genus indicating a restricted marine setting, including salinities that deviate from normal marine conditions, most probably due to minor ventilation by narrow or lack of connection to the Atlantic Ocean. A glacio-eustatic sea-level fall around the Oligocene/Miocene boundary limited the sea coverage to the strongest subsiding areas, where deposition of the Wintelre Member is recorded, while non-deposition or erosion occurred in the surrounding highs, hence creating an isolated (sub)basin. The superjacent Someren Member was deposited during the late Aquitanian to middle Burdigalian and consists of shallow to open marine clayey fine sands. Increasing clay contents indicate a gradual development towards a higher sea level, which coincide with upward increasing gamma-ray values. The biostratigraphic results of this study suggest that no major hiatuses are present in the differentially subsiding blocks of the Roer Valley Rift System during the late Oligocene to early Miocene.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"49 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81114457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Capperucci, A. Bartholomä, Friederike Bungenstock, D. Enters, M. Karle, A. Wehrmann
Abstract The reconstruction of submerged palaeolandscapes and detection of settling surfaces along coastal zones became a major research topic within the last two decades. In this context, the WASA project made use of a multidisciplinary approach for defining the extension and describing the characteristics of the Late Pleistocene to Holocene deposits in the central Wadden Sea region. In addition to sub-bottom transects, more than 140 sediment cores were taken in such an area for stratigraphic reconstruction, making use of multi-proxy analysis. To harmonize these data with the existing regional core database (LBEG archive) a new core catalogue was developed, that allows the identification of the local Late Quaternary sedimentary sequences and their characteristic facies. The WASA core catalogue has been successfully applied for reviewing the published data about the stratigraphic sequence of the Wadden Sea, for a better definition in terms of stratigraphic sequences and spatial extent of the Quaternary geological evolution of the region, and for a detailed reconstruction of the coastal palaeoenvironments.
{"title":"The WASA core catalogue of Late Quaternary depositional sequences in the central Wadden Sea – A manual for the core repository","authors":"R. Capperucci, A. Bartholomä, Friederike Bungenstock, D. Enters, M. Karle, A. Wehrmann","doi":"10.1017/njg.2022.1","DOIUrl":"https://doi.org/10.1017/njg.2022.1","url":null,"abstract":"Abstract The reconstruction of submerged palaeolandscapes and detection of settling surfaces along coastal zones became a major research topic within the last two decades. In this context, the WASA project made use of a multidisciplinary approach for defining the extension and describing the characteristics of the Late Pleistocene to Holocene deposits in the central Wadden Sea region. In addition to sub-bottom transects, more than 140 sediment cores were taken in such an area for stratigraphic reconstruction, making use of multi-proxy analysis. To harmonize these data with the existing regional core database (LBEG archive) a new core catalogue was developed, that allows the identification of the local Late Quaternary sedimentary sequences and their characteristic facies. The WASA core catalogue has been successfully applied for reviewing the published data about the stratigraphic sequence of the Wadden Sea, for a better definition in terms of stratigraphic sequences and spatial extent of the Quaternary geological evolution of the region, and for a detailed reconstruction of the coastal palaeoenvironments.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89743702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This paper presents a geoarcheological study on potential canal subsections present in the Roman-age Vecht branch of the Rhine-Meuse delta (the Netherlands).The first Roman canals in this delta were dug around 12 BC by Drusus, but their location has been the subject of debate since the 16th century, with various hypotheses proposed. Based on actual palaeogeographical knowledge of the Rhine-Meuse delta, the Utrechtse Vecht hypothesis is considered the most plausible. Within the study area, in the northern part of the Vecht system, natural sections of this river may alternate with possible artificial reaches, created at the time of Drusus. Such artificial canals, being part of an otherwise natural channel belt system, can widen and deepen overtime, eroding all or most of the recognizable features associated with their original construction. As study area was chosen a relatively straight section of the Vecht between two former lakes. Two approaches were used. The first approach centred upon mapping channel morphology and recording sediment stratigraphy of the river deposits through detailed auger coring. Results corroborated the hypothesis of an originally straight feature (landform), confirming that it might have started life as a dug course, but not providing preserved archaeological remains of this stage. The second approach was chronological, whereby a programme of 14C dating was undertaken to refine the understanding of the origin and development of this reach of the Vecht, allowing earlier chronological investigations to be further contextualised and reassessed. A significant challenge to understand age control and floodplain evolution is the degradation of the top of the clayey peat that was observed below the levee deposits; this degradation is due to the lowering of groundwater levels and causes the end of peat growth to be dated as older than it actually is. Using new radiocarbon dates we have reconstructed that the Overmeer-Nigtevecht reach of the Vecht between two former lakes started life as a straight channel. We have constrained its age to be closer to the time of Drusus’ activities (early Roman age). Although we have not found in situ remains of Drusus canal(s), these two new insights make the Vecht option, effectuated by a series of short canals, more likely to be the Drusus canal(s).
{"title":"The option of Roman canal construction by Drusus in the Vecht river area (the Netherlands): a geoarchaeological approach","authors":"J. Verhagen, S. Kluiving, H. Kars","doi":"10.1017/njg.2022.2","DOIUrl":"https://doi.org/10.1017/njg.2022.2","url":null,"abstract":"Abstract This paper presents a geoarcheological study on potential canal subsections present in the Roman-age Vecht branch of the Rhine-Meuse delta (the Netherlands).The first Roman canals in this delta were dug around 12 BC by Drusus, but their location has been the subject of debate since the 16th century, with various hypotheses proposed. Based on actual palaeogeographical knowledge of the Rhine-Meuse delta, the Utrechtse Vecht hypothesis is considered the most plausible. Within the study area, in the northern part of the Vecht system, natural sections of this river may alternate with possible artificial reaches, created at the time of Drusus. Such artificial canals, being part of an otherwise natural channel belt system, can widen and deepen overtime, eroding all or most of the recognizable features associated with their original construction. As study area was chosen a relatively straight section of the Vecht between two former lakes. Two approaches were used. The first approach centred upon mapping channel morphology and recording sediment stratigraphy of the river deposits through detailed auger coring. Results corroborated the hypothesis of an originally straight feature (landform), confirming that it might have started life as a dug course, but not providing preserved archaeological remains of this stage. The second approach was chronological, whereby a programme of 14C dating was undertaken to refine the understanding of the origin and development of this reach of the Vecht, allowing earlier chronological investigations to be further contextualised and reassessed. A significant challenge to understand age control and floodplain evolution is the degradation of the top of the clayey peat that was observed below the levee deposits; this degradation is due to the lowering of groundwater levels and causes the end of peat growth to be dated as older than it actually is. Using new radiocarbon dates we have reconstructed that the Overmeer-Nigtevecht reach of the Vecht between two former lakes started life as a straight channel. We have constrained its age to be closer to the time of Drusus’ activities (early Roman age). Although we have not found in situ remains of Drusus canal(s), these two new insights make the Vecht option, effectuated by a series of short canals, more likely to be the Drusus canal(s).","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88745705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The post-glacial development of the North Sea basin is characterised by a gradual retrogradation of the coastal zone and subsequent flooding of former landscapes under relative sea-level rise. Depositional processes resulted in the burial of coastal zone deposits and corresponding bio-coenoses leading, in parts, to their preservation. Thus, the sedimentary sequences of the Wadden Sea coast, which preserve evidence of Pleistocene and Holocene landscapes including flora, fauna and traces of human settlements, are excellent archives for palaeoenvironmental reconstructions (Verhart
{"title":"Drowned palaeo-landscapes: archaeological and geoscientific research at the southern North Sea coast","authors":"F. Bittmann, Friederike Bungenstock, A. Wehrmann","doi":"10.1017/njg.2021.15","DOIUrl":"https://doi.org/10.1017/njg.2021.15","url":null,"abstract":"The post-glacial development of the North Sea basin is characterised by a gradual retrogradation of the coastal zone and subsequent flooding of former landscapes under relative sea-level rise. Depositional processes resulted in the burial of coastal zone deposits and corresponding bio-coenoses leading, in parts, to their preservation. Thus, the sedimentary sequences of the Wadden Sea coast, which preserve evidence of Pleistocene and Holocene landscapes including flora, fauna and traces of human settlements, are excellent archives for palaeoenvironmental reconstructions (Verhart","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"461 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79833352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Muntendam-Bos, G. Hoedeman, K. Polychronopoulou, D. Draganov, C. Weemstra, W. van der Zee, R. Bakker, H. Roest
Abstract We present an overview of induced seismicity due to subsurface engineering in the Netherlands. Our overview includes events induced by gas extraction, underground gas storage, geothermal heat extraction, salt solution mining and post-mining water ingress. Compared to natural seismicity, induced events are usually small (magnitudes ≤ 4.0). However, due to the soft topsoils in combination with shallow hypocentres, in the Netherlands events exceeding magnitude 1.5–2.0 may be felt by the public. These events can potentially damage houses and infrastructure, and undermine public acceptance. Felt events were induced by gas production in the north of the Netherlands and by post-mining water ingress in the south-east. Notorious examples are the earthquakes induced by gas production from the large Groningen gas field with magnitudes up to 3.6. Here, extensive non-structural damage incurred and public support was revoked. As a consequence, production will be terminated in 2022 leaving approximately 800 billion cubic metres of gas unexploited. The magnitudes of the events observed at underground gas storage, geothermal heat production and salt solution mining projects have so far been very limited (magnitudes ≤ 1.7). However, in the future larger events cannot be excluded. Project- or industry-specific risk governance protocols, extensive gathering of subsurface data and adequate seismic monitoring are therefore essential to allow sustainable use of the Dutch subsurface now and over the decades to come.
{"title":"An overview of induced seismicity in the Netherlands","authors":"A. Muntendam-Bos, G. Hoedeman, K. Polychronopoulou, D. Draganov, C. Weemstra, W. van der Zee, R. Bakker, H. Roest","doi":"10.1017/njg.2021.14","DOIUrl":"https://doi.org/10.1017/njg.2021.14","url":null,"abstract":"Abstract We present an overview of induced seismicity due to subsurface engineering in the Netherlands. Our overview includes events induced by gas extraction, underground gas storage, geothermal heat extraction, salt solution mining and post-mining water ingress. Compared to natural seismicity, induced events are usually small (magnitudes ≤ 4.0). However, due to the soft topsoils in combination with shallow hypocentres, in the Netherlands events exceeding magnitude 1.5–2.0 may be felt by the public. These events can potentially damage houses and infrastructure, and undermine public acceptance. Felt events were induced by gas production in the north of the Netherlands and by post-mining water ingress in the south-east. Notorious examples are the earthquakes induced by gas production from the large Groningen gas field with magnitudes up to 3.6. Here, extensive non-structural damage incurred and public support was revoked. As a consequence, production will be terminated in 2022 leaving approximately 800 billion cubic metres of gas unexploited. The magnitudes of the events observed at underground gas storage, geothermal heat production and salt solution mining projects have so far been very limited (magnitudes ≤ 1.7). However, in the future larger events cannot be excluded. Project- or industry-specific risk governance protocols, extensive gathering of subsurface data and adequate seismic monitoring are therefore essential to allow sustainable use of the Dutch subsurface now and over the decades to come.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"30 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85770495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Previous investigation of isolated landforms, on the eastern margin of the East Anglian Fenland, England, has demonstrated that they represent an ice-marginal delta and alluvial fan complex deposited at the margin of an ice lobe that entered the Fenland during the ‘Tottenhill glaciation’ (termed the ‘Skertchly Line’). They have been attributed, based on regional correlations, to a glaciation during the Late Wolstonian (i.e. Late Saalian) Substage (Drenthe Stadial, early Marine Isotope Stage (MIS) 6). This paper aimed to test this correlation by directly optically luminescence dating, for the first time, sediments found within the Skertchly Line at Shouldham Thorpe, Norfolk, and Maidscross Hill, Suffolk, together with those in associated kame terrace deposits at Watlington, Norfolk. Ages ranged from 244 ± 10 ka to 12.8 ± 0.46 ka, all the results being younger than MIS 8 with some clearly showing the landforms have been subsequently subjected to periglacial processes, particularly during the Late Devensian Substage (∼MIS 2). Most of the remainder fall within the range 169–212 ka and could be assigned to MIS 6, thus confirming the previously proposed age of the glaciation. The local and regional implications of these conclusions are discussed, the maximum ice limit being linked to that of the Amersfoort–Nijmegen glaciotectonic ridge limit in the central Netherlands.
{"title":"Luminescence dating of a late Middle Pleistocene glacial advance in eastern England","authors":"P. Gibbard, M. Bateman, J. Leathard, R. West","doi":"10.1017/njg.2021.13","DOIUrl":"https://doi.org/10.1017/njg.2021.13","url":null,"abstract":"Abstract Previous investigation of isolated landforms, on the eastern margin of the East Anglian Fenland, England, has demonstrated that they represent an ice-marginal delta and alluvial fan complex deposited at the margin of an ice lobe that entered the Fenland during the ‘Tottenhill glaciation’ (termed the ‘Skertchly Line’). They have been attributed, based on regional correlations, to a glaciation during the Late Wolstonian (i.e. Late Saalian) Substage (Drenthe Stadial, early Marine Isotope Stage (MIS) 6). This paper aimed to test this correlation by directly optically luminescence dating, for the first time, sediments found within the Skertchly Line at Shouldham Thorpe, Norfolk, and Maidscross Hill, Suffolk, together with those in associated kame terrace deposits at Watlington, Norfolk. Ages ranged from 244 ± 10 ka to 12.8 ± 0.46 ka, all the results being younger than MIS 8 with some clearly showing the landforms have been subsequently subjected to periglacial processes, particularly during the Late Devensian Substage (∼MIS 2). Most of the remainder fall within the range 169–212 ka and could be assigned to MIS 6, thus confirming the previously proposed age of the glaciation. The local and regional implications of these conclusions are discussed, the maximum ice limit being linked to that of the Amersfoort–Nijmegen glaciotectonic ridge limit in the central Netherlands.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"102 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76875312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In the aftermath of the Permo-Triassic mass extinction event, several reptile lineages radiated to form major components of marine faunas during the entire Mesozoic. The Lower Muschelkalk, which was deposited within a shallow inland sea in the Germanic Basin during the Middle Triassic, is one of the most important regions for understanding the early evolution of Mesozoic marine reptiles. Here, we present a new specimen from the Lower Muschelkalk of Winterswijk in the Netherlands, comprising an isolated left dentary that is morphologically distinct from any well-known Triassic vertebrate. We provide a detailed description of the jaw and the teeth using histological and micro-computed tomographic analyses. The anterior teeth are fang-like and curved, whereas the posterior teeth are wider and triangular-shaped. Tooth implantation is thecodont and teeth are ankylosed to the base of the alveolus. Replacement teeth are developed directly lingual to the functional teeth, starting with the formation of a resorption cavity on the dorsal surface of the alveolar margin. The replacement pattern cannot be observed in detail but is regular in the posterior part of the dentary with each tooth being alternated with an empty alveolus. The specimen can likely be assigned to Eosauropterygia based on its jaw morphology and dental morphology and replacement pattern, and it is remarkably similar to maxillae referred to the enigmatic Lamprosauroides goepperti from the Lower Muschelkalk of Poland. The dentary from Winterswijk lacks enlarged, ‘alveolarised’ crypts and corresponding distinct dental lamina foramina (DLFs) for the replacement teeth, a configuration that is typical of Sauropterygia, but which was likely not omnipresent in this clade. The specimen also exhibits loosely folded plicidentine at the roots of the teeth, likely representing the first identification of this feature in Sauropterygia.
{"title":"An enigmatic lower jaw from the Lower Muschelkalk (Anisian, Middle Triassic) of Winterswijk provides insights into dental configuration, tooth replacement and histology","authors":"Stephan N. F. Spiekman, N. Klein","doi":"10.1017/njg.2021.12","DOIUrl":"https://doi.org/10.1017/njg.2021.12","url":null,"abstract":"Abstract In the aftermath of the Permo-Triassic mass extinction event, several reptile lineages radiated to form major components of marine faunas during the entire Mesozoic. The Lower Muschelkalk, which was deposited within a shallow inland sea in the Germanic Basin during the Middle Triassic, is one of the most important regions for understanding the early evolution of Mesozoic marine reptiles. Here, we present a new specimen from the Lower Muschelkalk of Winterswijk in the Netherlands, comprising an isolated left dentary that is morphologically distinct from any well-known Triassic vertebrate. We provide a detailed description of the jaw and the teeth using histological and micro-computed tomographic analyses. The anterior teeth are fang-like and curved, whereas the posterior teeth are wider and triangular-shaped. Tooth implantation is thecodont and teeth are ankylosed to the base of the alveolus. Replacement teeth are developed directly lingual to the functional teeth, starting with the formation of a resorption cavity on the dorsal surface of the alveolar margin. The replacement pattern cannot be observed in detail but is regular in the posterior part of the dentary with each tooth being alternated with an empty alveolus. The specimen can likely be assigned to Eosauropterygia based on its jaw morphology and dental morphology and replacement pattern, and it is remarkably similar to maxillae referred to the enigmatic Lamprosauroides goepperti from the Lower Muschelkalk of Poland. The dentary from Winterswijk lacks enlarged, ‘alveolarised’ crypts and corresponding distinct dental lamina foramina (DLFs) for the replacement teeth, a configuration that is typical of Sauropterygia, but which was likely not omnipresent in this clade. The specimen also exhibits loosely folded plicidentine at the roots of the teeth, likely representing the first identification of this feature in Sauropterygia.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"22 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84702596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}