An-Sheng Lee, D. Enters, J. Titschack, B. Zolitschka
Abstract Sediment facies provide fundamental information to interpret palaeoenvironments, climatic variation, archaeological aspects and natural resource potentials since they are summary products of depositional processes, environmental conditions and biological activities for a given time and location. The conventional method of facies discrimination relies on macroscopic and/or microscopic determination of sediment structures combined with basic physical, chemical and biological information. It is a qualitative measure, depending on observer-dependent sedimentological descriptions, which cannot be reanalysed readily by further studies. Quantitative laboratory measurements can overcome this disadvantage, but are in need of large sample numbers and/or high temporal resolution, and are time-, labour- and cost-intensive. In order to facilitate an observer-independent and efficient method of facies classification, our study evaluates the potential of combining four non-destructive down-core scanning techniques: magnetic susceptibility (MS), X-ray computed tomography (CT), X-ray fluorescence (XRF) and digital photography. These techniques were applied on selected sections of sediment cores recovered around the island of Norderney (East Frisian Wadden Sea, Germany). We process and integrate the acquired scanning measurements of XRF elemental intensities, represented by principal components, MS, CT density and lightness of eight sediment facies previously recognised by conventional facies analysis: moraine, eolian/fluvial, soil, peat, lagoonal, sand flat, channel fill and beach-foreshore. A novel type of density plot is introduced to visualise the digitised sediment information that allows an observer-independent differentiation of these facies types. Thus, the presented methodology provides the first step towards automated supervised facies classification with the potential to reproduce human assessments in a fully reproducible and quantitative manner.
{"title":"Facies characterisation of sediments from the East Frisian Wadden Sea (Germany): new insights from down-core scanning techniques","authors":"An-Sheng Lee, D. Enters, J. Titschack, B. Zolitschka","doi":"10.1017/njg.2021.6","DOIUrl":"https://doi.org/10.1017/njg.2021.6","url":null,"abstract":"Abstract Sediment facies provide fundamental information to interpret palaeoenvironments, climatic variation, archaeological aspects and natural resource potentials since they are summary products of depositional processes, environmental conditions and biological activities for a given time and location. The conventional method of facies discrimination relies on macroscopic and/or microscopic determination of sediment structures combined with basic physical, chemical and biological information. It is a qualitative measure, depending on observer-dependent sedimentological descriptions, which cannot be reanalysed readily by further studies. Quantitative laboratory measurements can overcome this disadvantage, but are in need of large sample numbers and/or high temporal resolution, and are time-, labour- and cost-intensive. In order to facilitate an observer-independent and efficient method of facies classification, our study evaluates the potential of combining four non-destructive down-core scanning techniques: magnetic susceptibility (MS), X-ray computed tomography (CT), X-ray fluorescence (XRF) and digital photography. These techniques were applied on selected sections of sediment cores recovered around the island of Norderney (East Frisian Wadden Sea, Germany). We process and integrate the acquired scanning measurements of XRF elemental intensities, represented by principal components, MS, CT density and lightness of eight sediment facies previously recognised by conventional facies analysis: moraine, eolian/fluvial, soil, peat, lagoonal, sand flat, channel fill and beach-foreshore. A novel type of density plot is introduced to visualise the digitised sediment information that allows an observer-independent differentiation of these facies types. Thus, the presented methodology provides the first step towards automated supervised facies classification with the potential to reproduce human assessments in a fully reproducible and quantitative manner.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"183 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77032953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The ‘Wadden Sea Archive of landscape evolution, climate change and settlement history’ project (WASA) focuses on the analysis of marine sediment archives from the East Frisian Wadden Sea region. It aims at understanding the formation of palaeolandscapes since the end of the last ice age. One part of the project studies the possible correlation and shift of archaeological settlement patterns, climate change and sea-level rise through time in order to derive archaeological expectancy maps. In this paper we present our findings for a quantifiable set of Stone Age sites in the area of the prehistorical Dornumer tidal basin, discussing them against the background of coastal environmental factors and the applied methodology of our modelling. To enable spatial analysis of these sites, we developed a palaeographic elevation model, which was subsequently flooded at 2000-year intervals between the Boreal and early Subboreal periods. Particular challenges are posed by the dynamics of marine transgression, the related changes in the natural environment and their spatial extent. As a result of our GIS-based approach, the model can be extended geographically and provides a basis for future research.
{"title":"The coastal lowland of northwestern Germany as an archive of Holocene landscape evolution: basis for a spatial evaluation of Stone Age settlement patterns in the Dornumer tidal basin","authors":"T. Becker, Annette Siegmüller","doi":"10.1017/njg.2020.17","DOIUrl":"https://doi.org/10.1017/njg.2020.17","url":null,"abstract":"Abstract The ‘Wadden Sea Archive of landscape evolution, climate change and settlement history’ project (WASA) focuses on the analysis of marine sediment archives from the East Frisian Wadden Sea region. It aims at understanding the formation of palaeolandscapes since the end of the last ice age. One part of the project studies the possible correlation and shift of archaeological settlement patterns, climate change and sea-level rise through time in order to derive archaeological expectancy maps. In this paper we present our findings for a quantifiable set of Stone Age sites in the area of the prehistorical Dornumer tidal basin, discussing them against the background of coastal environmental factors and the applied methodology of our modelling. To enable spatial analysis of these sites, we developed a palaeographic elevation model, which was subsequently flooded at 2000-year intervals between the Boreal and early Subboreal periods. Particular challenges are posed by the dynamics of marine transgression, the related changes in the natural environment and their spatial extent. As a result of our GIS-based approach, the model can be extended geographically and provides a basis for future research.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"3 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89262184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annastasia Elschner, Juliane Scheder, Friederike Bungenstock, A. Bartholomä, T. Becker, R. Capperucci, D. Enters, M. Karle, F. Schlütz, A. Wehrmann, G. Hoffmann
Abstract Palaeolandscape reconstructions at the German North Sea coast are essential for the understanding of coastal changes and dynamic landscape-forming processes. This study contributes to reconstructing Holocene coastal changes in the back-barrier area of the East Frisian island of Norderney and draws conclusions on the local palaeogeography. Five sediment cores were analysed in terms of sedimentology (grain-size distribution), geochemistry (TOC, TIC, N, C/N), microfauna (foraminifers and ostracods) and 13 radiocarbon dates. In order to identify driving environmental factors and support the facies interpretation, multivariate statistics (PCA) were carried out. Additional cores from the surrounding area (WASA Project and ‘Landesamt für Bergbau, Energie und Geologie’ (LBEG) Hannover) enabled correlation of the investigated cores over a transect of ~6 km, showing six depositional environments, which can be used for landscape reconstruction. Deposition starts with periglacial (aeolian and glaciofluvial) Pleistocene sediments, with subsequent pedogenesis followed by swamp conditions that develop into a salt marsh. The overlying tidal-flat sediments are partially cut by (fossil and recent) channel deposits. A hiatus at the base of the tidal-flat deposits that spans some 3000 years hints at their reworking caused by a combination of antrophogenic coastal protection measures and the impact of storms. Furthermore, based on the profile correlation and the age data, a widespread salt-marsh area with a minimum age of ~4000 cal BP is defined for the ‘Hohes Riff’ in the southwestern back-barrier of Norderney Island.
德国北海海岸的古景观重建对于理解海岸变化和动态景观形成过程至关重要。本研究有助于重建Norderney东弗里斯兰岛后屏障区全新世海岸变化,并对当地古地理作出结论。对5个沉积物岩心进行了沉积学(粒度分布)、地球化学(TOC、TIC、N、C/N)、微动物群(有孔虫和介形虫)和13个放射性碳测年分析。为了识别驱动环境因素并支持相解释,进行了多元统计分析(PCA)。来自周边地区的其他岩心(WASA项目和“Landesamt fr Bergbau, Energie und Geologie”(LBEG) Hannover)在约6公里的样带上对所调查的岩心进行了对比,显示了6种沉积环境,可用于景观重建。沉积开始于冰缘(风成和冰川河流)更新世沉积物,随后是土壤作用,随后是沼泽条件,发展成盐沼。上覆的潮滩沉积物部分被(古的和近代的)河道沉积物切割。在潮滩沉积物的底部出现了一个跨度约3000年的断裂,这暗示着它们的改造是由海岸保护措施和风暴的影响共同造成的。此外,根据剖面对比和年龄资料,在Norderney岛西南后障壁的“Hohes Riff”中定义了一个广泛的盐沼区,最小年龄约为~4000 cal BP。
{"title":"Microfauna- and sedimentology-based facies analysis for palaeolandscape reconstruction in the back-barrier area of Norderney (NW Germany)","authors":"Annastasia Elschner, Juliane Scheder, Friederike Bungenstock, A. Bartholomä, T. Becker, R. Capperucci, D. Enters, M. Karle, F. Schlütz, A. Wehrmann, G. Hoffmann","doi":"10.1017/njg.2020.16","DOIUrl":"https://doi.org/10.1017/njg.2020.16","url":null,"abstract":"Abstract Palaeolandscape reconstructions at the German North Sea coast are essential for the understanding of coastal changes and dynamic landscape-forming processes. This study contributes to reconstructing Holocene coastal changes in the back-barrier area of the East Frisian island of Norderney and draws conclusions on the local palaeogeography. Five sediment cores were analysed in terms of sedimentology (grain-size distribution), geochemistry (TOC, TIC, N, C/N), microfauna (foraminifers and ostracods) and 13 radiocarbon dates. In order to identify driving environmental factors and support the facies interpretation, multivariate statistics (PCA) were carried out. Additional cores from the surrounding area (WASA Project and ‘Landesamt für Bergbau, Energie und Geologie’ (LBEG) Hannover) enabled correlation of the investigated cores over a transect of ~6 km, showing six depositional environments, which can be used for landscape reconstruction. Deposition starts with periglacial (aeolian and glaciofluvial) Pleistocene sediments, with subsequent pedogenesis followed by swamp conditions that develop into a salt marsh. The overlying tidal-flat sediments are partially cut by (fossil and recent) channel deposits. A hiatus at the base of the tidal-flat deposits that spans some 3000 years hints at their reworking caused by a combination of antrophogenic coastal protection measures and the impact of storms. Furthermore, based on the profile correlation and the age data, a widespread salt-marsh area with a minimum age of ~4000 cal BP is defined for the ‘Hohes Riff’ in the southwestern back-barrier of Norderney Island.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"24 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91226111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In the early 20th century, archaeological research in the terp (artificial dwelling-mound) region of the northern Netherlands focused, besides settlement history, on natural salt-marsh dynamics and sea-level rise. In particular Van Giffen used salt-marsh deposits under dated terp layers to reconstruct the rate of sedimentation of the developing salt marsh and relative sea-level rise. This line of research in archaeology was rekindled during excavations in the terp of Wijnaldum-Tjitsma between 1991 and 1993. Since then, geology has become an integral part of archaeological research in the terp region. This paper focuses on the northwestern part of the province of Friesland (Westergo), where most archaeological terp research during the past three decades has been carried out, owing to several research programmes by the Province of Friesland. The primary aim of the geoarchaeological research is to better understand the interaction between human inhabitants and the salt-marsh landscape. The sedimentary record exposed in the excavation trenches makes it possible to collect data on the development of the coastal environments of the Wadden Sea prior to habitation, including data on sea-level rise. The sea-level data collected in the geoarchaeological studies in Westergo are the topic of this paper. The measured levels of the tidal-flat/salt-marsh boundary underneath the terps make it possible to reconstruct palaeo-Mean High Water (palaeo-MHW) levels. Such sea-level index points (SLIPs), based on marine shell data points from 12 locations, now make it possible to establish a palaeo-MHW diagram for this part of the Wadden Sea, for the period between 1200 BC and AD 100. In this period the palaeo-MHW in the Westergo region rose from c.1.8 m to 0.3 m −NAP: a mean sea-level rise of c.0.12 m per century. We discuss the fact that elevation of the palaeo-MHW SLIP is not only determined by relative sea level (RSL), but also by the magnitude of the tidal amplitude. The tidal range, and therefore the MHW elevations in a tidal basin, can change from place to place and also in time. Also in a single tidal basin the tidal range is variable, due to the distortion of the tidal wave as a result of the morphology of the tidal system. Such local tidal range fluctuations – not related to sea-level rise – influence the palaeo-MHW curve of Westergo and other tidal basins in the Wadden Sea and need to be taken into account when interpreting the curve. In this paper, we will go into the causes of changes in palaeotidal ranges in meso- and macrotidal systems, analyse the tidal range variations in recent and subrecent basins and estuaries and discuss the implications of these changes on the sea-level curve of the Westergo region in NW Friesland.
20世纪初,荷兰北部terp(人工居住-丘)地区的考古研究除了关注聚落历史外,还关注天然盐沼动态和海平面上升。特别是,Van Giffen利用年代久远的台阶层下的盐沼沉积物,重建了盐沼发育的沉积速率和相对海平面的上升。1991年至1993年,在wijnaldom - tjitsma遗址的发掘中,考古学的这一研究方向重新燃起。从那时起,地质学就成为了特普地区考古研究的一个组成部分。本文的重点是弗里斯兰省的西北部(韦斯特戈),在过去的三十年中,由于弗里斯兰省的几个研究项目,大多数考古研究都在那里进行。地质考古研究的主要目的是更好地了解人类居民与盐沼景观之间的相互作用。挖掘沟中暴露的沉积记录使得收集瓦登海沿岸环境在人类居住之前发展的数据成为可能,包括海平面上升的数据。本文以韦斯特戈地区地质考古研究中收集到的海平面资料为研究对象。测量的潮滩/盐沼边界水位使重建古平均高水位(古mhw)成为可能。这种基于12个地点的海洋贝壳数据点的海平面指数点(SLIPs),现在可以为瓦登海的这一部分建立一个公元前1200年至公元100年的古mhw图。在此期间,Westergo地区的古海温从0.1.8 m上升到0.3 m - NAP,平均海平面每世纪上升0.12 m。我们讨论了古海相滑移带的高程不仅由相对海平面(RSL)决定,而且由潮汐幅值的大小决定。潮差,因此在潮汐盆地的MHW高程,可以随地点和时间而变化。在单个潮汐盆地中,由于潮汐系统的形态造成的潮汐波的扭曲,潮汐差是可变的。这种与海平面上升无关的局部潮差波动影响了韦斯特戈和瓦登海其他潮汐盆地的古海温曲线,在解释该曲线时需要考虑到这一点。本文将探讨中、大潮系统古潮差变化的原因,分析近代和次近代盆地和河口的潮差变化,并讨论这些变化对西北弗里斯兰韦斯特戈地区海平面曲线的影响。
{"title":"Late-Holocene sea-level reconstruction (1200 BC–AD 100) in the Westergo terp region of the northern Netherlands","authors":"P. Vos, A. Nieuwhof","doi":"10.1017/njg.2021.1","DOIUrl":"https://doi.org/10.1017/njg.2021.1","url":null,"abstract":"Abstract In the early 20th century, archaeological research in the terp (artificial dwelling-mound) region of the northern Netherlands focused, besides settlement history, on natural salt-marsh dynamics and sea-level rise. In particular Van Giffen used salt-marsh deposits under dated terp layers to reconstruct the rate of sedimentation of the developing salt marsh and relative sea-level rise. This line of research in archaeology was rekindled during excavations in the terp of Wijnaldum-Tjitsma between 1991 and 1993. Since then, geology has become an integral part of archaeological research in the terp region. This paper focuses on the northwestern part of the province of Friesland (Westergo), where most archaeological terp research during the past three decades has been carried out, owing to several research programmes by the Province of Friesland. The primary aim of the geoarchaeological research is to better understand the interaction between human inhabitants and the salt-marsh landscape. The sedimentary record exposed in the excavation trenches makes it possible to collect data on the development of the coastal environments of the Wadden Sea prior to habitation, including data on sea-level rise. The sea-level data collected in the geoarchaeological studies in Westergo are the topic of this paper. The measured levels of the tidal-flat/salt-marsh boundary underneath the terps make it possible to reconstruct palaeo-Mean High Water (palaeo-MHW) levels. Such sea-level index points (SLIPs), based on marine shell data points from 12 locations, now make it possible to establish a palaeo-MHW diagram for this part of the Wadden Sea, for the period between 1200 BC and AD 100. In this period the palaeo-MHW in the Westergo region rose from c.1.8 m to 0.3 m −NAP: a mean sea-level rise of c.0.12 m per century. We discuss the fact that elevation of the palaeo-MHW SLIP is not only determined by relative sea level (RSL), but also by the magnitude of the tidal amplitude. The tidal range, and therefore the MHW elevations in a tidal basin, can change from place to place and also in time. Also in a single tidal basin the tidal range is variable, due to the distortion of the tidal wave as a result of the morphology of the tidal system. Such local tidal range fluctuations – not related to sea-level rise – influence the palaeo-MHW curve of Westergo and other tidal basins in the Wadden Sea and need to be taken into account when interpreting the curve. In this paper, we will go into the causes of changes in palaeotidal ranges in meso- and macrotidal systems, analyse the tidal range variations in recent and subrecent basins and estuaries and discuss the implications of these changes on the sea-level curve of the Westergo region in NW Friesland.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"35 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78867185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Knowledge of the stratigraphic development of pre-Carboniferous strata in the subsurface of the Netherlands is very limited, leaving the lithostratigraphic nomenclature for this time interval informal. In two wells from the southwestern Netherlands, Silurian strata have repeatedly been reported, suggesting that these are the oldest ever recovered in the Netherlands. The hypothesised presence of Silurian-aged strata has not been tested by biostratigraphic analysis. A similar lack of biostratigraphic control applies to the overlying Devonian succession. We present the results of a palynological study of core material from wells KTG-01 and S05-01. Relatively low-diversity and poorly preserved miospore associations were recorded. These, nonetheless, provide new insights into the regional stratigraphic development of the pre-Carboniferous of the SW Netherlands. The lower two cores from well KTG-01 are of a late Silurian (Ludlow–Pridoli Epoch) to earliest Devonian (Lochkovian) age, confirming that these are the oldest sedimentary strata ever recovered in the Netherlands. The results from the upper cored section from the pre-Carboniferous succession in well KTG-01 and the cored sections from the pre-Carboniferous succession in well S05-01 are more ambiguous. This inferred Devonian succession is, in the current informal lithostratigraphy of the Netherlands, assigned to the Banjaard group and its subordinate Bollen Claystone formation, of presumed Frasnian (i.e. early Late Devonian) age. Age-indicative Middle to Late Devonian palynomorphs were, however, not recorded, and the overall character of the poorly preserved palynological associations in wells KTG-01 and S05-01 may also suggest an Early Devonian age. In terms of lithofacies, however, the cores in well S05-01 can be correlated to the upper Frasnian – lower Famennian Falisolle Formation in the Campine Basin in Belgium. Hence, it remains plausible that an unconformity separates Silurian to Lower Devonian strata from Upper Devonian (Frasnian–Famennian) strata in the SW Netherlands. In general, the abundance of miospore associations points to the presence of a vegetated hinterland and a relatively proximal yet relatively deep marine setting during late Silurian and Early Devonian times. This differs markedly from the open marine depositional settings reported from the Brabant Massif area to the south in present-day Belgium, suggesting a sediment source to the north. The episodic presence of reworked (marine) acritarchs of Ordovician age suggests the influx of sedimentary material from uplifted elements on the present-day Brabant Massif to the south, possibly in relation to the activation of a Brabant Arch system.
{"title":"Palynological indications for Silurian – earliest Devonian age strata in the Netherlands","authors":"A. Houben, G. Vis","doi":"10.1017/njg.2020.20","DOIUrl":"https://doi.org/10.1017/njg.2020.20","url":null,"abstract":"Abstract Knowledge of the stratigraphic development of pre-Carboniferous strata in the subsurface of the Netherlands is very limited, leaving the lithostratigraphic nomenclature for this time interval informal. In two wells from the southwestern Netherlands, Silurian strata have repeatedly been reported, suggesting that these are the oldest ever recovered in the Netherlands. The hypothesised presence of Silurian-aged strata has not been tested by biostratigraphic analysis. A similar lack of biostratigraphic control applies to the overlying Devonian succession. We present the results of a palynological study of core material from wells KTG-01 and S05-01. Relatively low-diversity and poorly preserved miospore associations were recorded. These, nonetheless, provide new insights into the regional stratigraphic development of the pre-Carboniferous of the SW Netherlands. The lower two cores from well KTG-01 are of a late Silurian (Ludlow–Pridoli Epoch) to earliest Devonian (Lochkovian) age, confirming that these are the oldest sedimentary strata ever recovered in the Netherlands. The results from the upper cored section from the pre-Carboniferous succession in well KTG-01 and the cored sections from the pre-Carboniferous succession in well S05-01 are more ambiguous. This inferred Devonian succession is, in the current informal lithostratigraphy of the Netherlands, assigned to the Banjaard group and its subordinate Bollen Claystone formation, of presumed Frasnian (i.e. early Late Devonian) age. Age-indicative Middle to Late Devonian palynomorphs were, however, not recorded, and the overall character of the poorly preserved palynological associations in wells KTG-01 and S05-01 may also suggest an Early Devonian age. In terms of lithofacies, however, the cores in well S05-01 can be correlated to the upper Frasnian – lower Famennian Falisolle Formation in the Campine Basin in Belgium. Hence, it remains plausible that an unconformity separates Silurian to Lower Devonian strata from Upper Devonian (Frasnian–Famennian) strata in the SW Netherlands. In general, the abundance of miospore associations points to the presence of a vegetated hinterland and a relatively proximal yet relatively deep marine setting during late Silurian and Early Devonian times. This differs markedly from the open marine depositional settings reported from the Brabant Massif area to the south in present-day Belgium, suggesting a sediment source to the north. The episodic presence of reworked (marine) acritarchs of Ordovician age suggests the influx of sedimentary material from uplifted elements on the present-day Brabant Massif to the south, possibly in relation to the activation of a Brabant Arch system.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"28 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85159226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Enters, Kristin Haynert, A. Wehrmann, H. Freund, F. Schlütz
Abstract Accelerator mass spectrometry (AMS) radiocarbon (14C) dating of Cerastoderma edule (Linnaeus 1767) and Mytilus edulis (Linnaeus 1758) shells sampled in AD 1889 near the island of Wangerooge gave a new local correction factor ΔR of −85 ± 17 14C years for the Wadden Sea area. The value is considerably higher than the available scattered data from the North Sea, which were obtained from pre-bomb growth rings of living Arctica islandica (Linnaeus 1767). This can be explained by the incorporation of 14C-depleted terrestrial carbon into the shell material which compensates the intensified exchange of CO2 between atmosphere and shallow coastal water, e.g. by tidal currents. Additionally, two examples of application of the new ΔR value in coastal research give deeper insights into the dynamics of bivalve shell preservation in the Wadden Sea and the need for further research to clarify the Holocene reintroduction of Mya arenaria (Linnaeus 1758) into European waters.
{"title":"A new ΔR value for the southern North Sea and its application in coastal research","authors":"D. Enters, Kristin Haynert, A. Wehrmann, H. Freund, F. Schlütz","doi":"10.1017/njg.2020.19","DOIUrl":"https://doi.org/10.1017/njg.2020.19","url":null,"abstract":"Abstract Accelerator mass spectrometry (AMS) radiocarbon (14C) dating of Cerastoderma edule (Linnaeus 1767) and Mytilus edulis (Linnaeus 1758) shells sampled in AD 1889 near the island of Wangerooge gave a new local correction factor ΔR of −85 ± 17 14C years for the Wadden Sea area. The value is considerably higher than the available scattered data from the North Sea, which were obtained from pre-bomb growth rings of living Arctica islandica (Linnaeus 1767). This can be explained by the incorporation of 14C-depleted terrestrial carbon into the shell material which compensates the intensified exchange of CO2 between atmosphere and shallow coastal water, e.g. by tidal currents. Additionally, two examples of application of the new ΔR value in coastal research give deeper insights into the dynamics of bivalve shell preservation in the Wadden Sea and the need for further research to clarify the Holocene reintroduction of Mya arenaria (Linnaeus 1758) into European waters.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"75 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87032318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. R. Röbke, A. Oost, Friederike Bungenstock, P. Fischer, B. Grasmeijer, H. Hadler, L. Obrocki, Julia Pagels, T. Willershäuser, A. Vött
Abstract The 1717 Christmas flood is one of the most catastrophic storm surges the Frisian coast (Netherlands and Germany) has ever experienced. With more than 13,700 casualties it is the last severe storm surge with a death toll of this order. At the same time, little is known about the hydrodynamic conditions and the morphological effects associated with this storm surge. In this study, 41 potential dyke failures in the Province of Groningen (Netherlands) associated with the 1717 Christmas flood were systematically reconstructed and mapped by using historical maps and literature and by analysing the recent topography in search of typical pothole structures and sediment fans. The dimensions of the sediment fans as derived from the topography show a good accordance with the dimensions documented by vibracore profiles, direct push tests and electrical resistivity tomography data taken at three fieldwork sites. Moreover, the fan dimensions closely agree with the dimensions as simulated using a process-based morphodynamic numerical model for one of the three sites, the village of Wierhuizen. Consequently, the recent topography is still indicative for the locations and dimensions of dyke failures and sediment fans associated with the 1717 Christmas flood. Considering the large number of detected dyke failures (41) and the large dimensions of the potholes and particularly of the sediment fans up to a few hundred metres wide and up to 0.7 m thick, this study proves significant morphological effects of the 1717 Christmas flood on the mainland of the Province of Groningen. Based on the numerical simulation approach and the comparison with field data and field observations, a maximum seaward water level of 5 m NAP for the dyke failure at Wierhuizen during the Christmas flood can be derived. A similar maximum water level is indicated for the two other fieldwork sites Vierhuizen and Kohol, which is in good agreement with the maximum storm surge level of 4.62 m NAP historically documented for the city of Emden located almost 50 km to the east of Wierhuizen. The results of the current study demonstrate that the reconstruction of historical dyke failures based on (i) historical sources, (ii) recent lidar/high-resolution topographical data, (iii) multi-proxy sedimentary field data and (iv) hydro- and morphodynamic numerical simulations is a highly promising approach to derive hydrodynamic conditions and the morphological onshore response of the 1717 Christmas flood in the Province of Groningen. This knowledge is essential to improve our understanding of extreme storm surge dynamics, their influence on the coastal landscape and the associated hazards for the coastal population.
1717年的圣诞节洪水是弗里斯兰海岸(荷兰和德国)有史以来最具灾难性的风暴潮之一。造成超过13700人伤亡,这是最后一次造成如此严重死亡人数的风暴潮。与此同时,人们对这次风暴潮的水动力条件和形态影响知之甚少。在这项研究中,通过使用历史地图和文献,并通过分析最近的地形,寻找典型的坑洞结构和沉积物扇,系统地重建了格罗宁根省(荷兰)与1717年圣诞节洪水相关的41个潜在堤坝失效。根据地形得出的沉积物扇的尺寸与振动核剖面、直推试验和三个野外工作地点的电阻率层析成像数据所记录的尺寸吻合良好。此外,风机的尺寸与使用基于过程的形态动力学数值模型模拟的三个地点之一的Wierhuizen村的尺寸非常吻合。因此,最近的地形仍然指示着与1717年圣诞节洪水有关的堤坝破坏和沉积物扇的位置和规模。考虑到检测到的大量堤坝破坏(41)和大尺寸的坑洞,特别是高达几百米宽,高达0.7米厚的沉积物扇,本研究证明了1717年圣诞节洪水对格罗宁根省大陆的显著形态影响。采用数值模拟方法,并与实测资料和现场观测结果进行比较,得出了圣诞节期间维尔惠曾堤防溃决的最大入海水位为5 m NAP。另外两个实地考察地点Vierhuizen和Kohol也显示了类似的最高水位,这与历史上记录的位于Wierhuizen以东约50公里的Emden市的最高风暴潮水位4.62 m NAP很好地一致。目前的研究结果表明,基于(i)历史资料,(ii)最近的激光雷达/高分辨率地形数据,(iii)多代理沉积场数据和(iv)水文和形态动力学数值模拟的历史堤防破坏重建是一种非常有前途的方法,可以获得1717年格罗宁根省圣诞节洪水的水动力条件和陆上形态响应。这些知识对于提高我们对极端风暴潮动力学、它们对沿海景观的影响以及对沿海人口的相关危害的理解至关重要。
{"title":"Dyke failures in the Province of Groningen (Netherlands) associated with the 1717 Christmas flood: a reconstruction based on geoscientific field data and numerical simulations","authors":"B. R. Röbke, A. Oost, Friederike Bungenstock, P. Fischer, B. Grasmeijer, H. Hadler, L. Obrocki, Julia Pagels, T. Willershäuser, A. Vött","doi":"10.1017/njg.2020.18","DOIUrl":"https://doi.org/10.1017/njg.2020.18","url":null,"abstract":"Abstract The 1717 Christmas flood is one of the most catastrophic storm surges the Frisian coast (Netherlands and Germany) has ever experienced. With more than 13,700 casualties it is the last severe storm surge with a death toll of this order. At the same time, little is known about the hydrodynamic conditions and the morphological effects associated with this storm surge. In this study, 41 potential dyke failures in the Province of Groningen (Netherlands) associated with the 1717 Christmas flood were systematically reconstructed and mapped by using historical maps and literature and by analysing the recent topography in search of typical pothole structures and sediment fans. The dimensions of the sediment fans as derived from the topography show a good accordance with the dimensions documented by vibracore profiles, direct push tests and electrical resistivity tomography data taken at three fieldwork sites. Moreover, the fan dimensions closely agree with the dimensions as simulated using a process-based morphodynamic numerical model for one of the three sites, the village of Wierhuizen. Consequently, the recent topography is still indicative for the locations and dimensions of dyke failures and sediment fans associated with the 1717 Christmas flood. Considering the large number of detected dyke failures (41) and the large dimensions of the potholes and particularly of the sediment fans up to a few hundred metres wide and up to 0.7 m thick, this study proves significant morphological effects of the 1717 Christmas flood on the mainland of the Province of Groningen. Based on the numerical simulation approach and the comparison with field data and field observations, a maximum seaward water level of 5 m NAP for the dyke failure at Wierhuizen during the Christmas flood can be derived. A similar maximum water level is indicated for the two other fieldwork sites Vierhuizen and Kohol, which is in good agreement with the maximum storm surge level of 4.62 m NAP historically documented for the city of Emden located almost 50 km to the east of Wierhuizen. The results of the current study demonstrate that the reconstruction of historical dyke failures based on (i) historical sources, (ii) recent lidar/high-resolution topographical data, (iii) multi-proxy sedimentary field data and (iv) hydro- and morphodynamic numerical simulations is a highly promising approach to derive hydrodynamic conditions and the morphological onshore response of the 1717 Christmas flood in the Province of Groningen. This knowledge is essential to improve our understanding of extreme storm surge dynamics, their influence on the coastal landscape and the associated hazards for the coastal population.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"29 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88230021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This paper focuses on unravelling the 1st millennium AD in the present-day Netherlands and the applicability of modelling when studying the past. By presenting the results of several studies analysing changes (or persistence) in connectivity and habitation patterns, the significance of these findings for (spatial) modelling is derived. The transition between the Roman and early-medieval periods is particularly interesting in this respect as it is characterised by severe pan-European political, socio-economic and demographic changes. Additionally, recent studies in geosciences increasingly point to marked climatic and landscape changes, such as river avulsions and floods, occurring at the same time. The extent to which these environmental and cultural dynamics were entwined and mutually influential is generally unknown, especially on larger-scale levels. Lowlands, such as the Netherlands, are especially suited to study these complex interactions since boundary conditions, i.e. the set of conditions required for maintaining the existing equilibrium in a region, in such areas are particularly sensitive to change. In this paper the combined results of several recently developed landscape-archaeological models are presented. These models spatially analyse natural and cultural dynamics in five manifestations: route networks, long-distance transport, settlement patterns, palaeodemographics and land-use systems. Combined, these manifestations provide information on connectivity, persistence and habitation, key concepts for the cultural landscape as a whole. Results show that only by integrating these modelling outcomes is it possible to reconstruct boundary conditions and high-resolution spatio-temporal frameworks for cultural-landscape change. Equally, these models invite reflection on their applicability and, as such, point to the need for new theoretical framing and the development of more multi-proxy, evidence-based and transdisciplinary research approaches in archaeology. The evident interrelationship between cultural and natural-landscape dynamics necessitates a more integrated and transparent research attitude, covering multiple scales and studying the cultural landscape as a whole. Only then can models reflect historical reality as closely as possible.
{"title":"Revealing the past through modelling? Reflections on connectivity, habitation and persistence in the Dutch Delta during the 1st millennium AD","authors":"Rowin J. van Lanen","doi":"10.1017/njg.2020.12","DOIUrl":"https://doi.org/10.1017/njg.2020.12","url":null,"abstract":"Abstract This paper focuses on unravelling the 1st millennium AD in the present-day Netherlands and the applicability of modelling when studying the past. By presenting the results of several studies analysing changes (or persistence) in connectivity and habitation patterns, the significance of these findings for (spatial) modelling is derived. The transition between the Roman and early-medieval periods is particularly interesting in this respect as it is characterised by severe pan-European political, socio-economic and demographic changes. Additionally, recent studies in geosciences increasingly point to marked climatic and landscape changes, such as river avulsions and floods, occurring at the same time. The extent to which these environmental and cultural dynamics were entwined and mutually influential is generally unknown, especially on larger-scale levels. Lowlands, such as the Netherlands, are especially suited to study these complex interactions since boundary conditions, i.e. the set of conditions required for maintaining the existing equilibrium in a region, in such areas are particularly sensitive to change. In this paper the combined results of several recently developed landscape-archaeological models are presented. These models spatially analyse natural and cultural dynamics in five manifestations: route networks, long-distance transport, settlement patterns, palaeodemographics and land-use systems. Combined, these manifestations provide information on connectivity, persistence and habitation, key concepts for the cultural landscape as a whole. Results show that only by integrating these modelling outcomes is it possible to reconstruct boundary conditions and high-resolution spatio-temporal frameworks for cultural-landscape change. Equally, these models invite reflection on their applicability and, as such, point to the need for new theoretical framing and the development of more multi-proxy, evidence-based and transdisciplinary research approaches in archaeology. The evident interrelationship between cultural and natural-landscape dynamics necessitates a more integrated and transparent research attitude, covering multiple scales and studying the cultural landscape as a whole. Only then can models reflect historical reality as closely as possible.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88290890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Kasse, Hessel A G Woolderink, M. E. Kloos, W. Hoek
Abstract The Younger Dryas cold period caused major changes in vegetation and depositional environments. This study focuses on the aeolian river-connected dunes along the former, Weichselian Late Glacial, course of the Scheldt River in the southern Netherlands. Aeolian dunes along the Scheldt have received little attention, as they are partly covered by Holocene peat and marine deposits. The spatial distribution of the dunes is reconstructed by digital elevation model analysis and coring transects. Dunes are present on the high eastern bank of the Scheldt and in the subsurface of the polder area west of the Brabantse Wal escarpment. A reach-specific higher channel gradient probably caused a channel pattern change from meandering to braiding during the Younger Dryas. This enabled deflation from the braid plain and accumulation in source-bordering river dunes east of the incised and terraced, subsurface Late Pleistocene Scheldt valley. The age of the dune formation is established by pollen analysis and radiocarbon dating of underlying and overlying peat beds. The peat layer below the dune at Zomerbaan is attributed to the Allerød and early Younger Dryas periods. Dune formation occurred predominantly during the second part of the Younger Dryas stadial, both on and in front (west) of the Brabantse Wal escarpment. Wind direction was reconstructed by geomorphic analysis and sedimentary structures on lacquer peels. A southwesterly wind direction is demonstrated by the parabolic dune morphology. For the first time, Younger Dryas wind direction is reconstructed based on adhesion ripple cross-laminated sets on lacquer peels. Sand-transporting south-southwesterly winds were dominant during the Younger Dryas, most likely during summer.
{"title":"Source-bordering aeolian dune formation along the Scheldt River (southern Netherlands – northern Belgium) was caused by Younger Dryas cooling, high river gradient and southwesterly summer winds","authors":"C. Kasse, Hessel A G Woolderink, M. E. Kloos, W. Hoek","doi":"10.1017/njg.2020.15","DOIUrl":"https://doi.org/10.1017/njg.2020.15","url":null,"abstract":"Abstract The Younger Dryas cold period caused major changes in vegetation and depositional environments. This study focuses on the aeolian river-connected dunes along the former, Weichselian Late Glacial, course of the Scheldt River in the southern Netherlands. Aeolian dunes along the Scheldt have received little attention, as they are partly covered by Holocene peat and marine deposits. The spatial distribution of the dunes is reconstructed by digital elevation model analysis and coring transects. Dunes are present on the high eastern bank of the Scheldt and in the subsurface of the polder area west of the Brabantse Wal escarpment. A reach-specific higher channel gradient probably caused a channel pattern change from meandering to braiding during the Younger Dryas. This enabled deflation from the braid plain and accumulation in source-bordering river dunes east of the incised and terraced, subsurface Late Pleistocene Scheldt valley. The age of the dune formation is established by pollen analysis and radiocarbon dating of underlying and overlying peat beds. The peat layer below the dune at Zomerbaan is attributed to the Allerød and early Younger Dryas periods. Dune formation occurred predominantly during the second part of the Younger Dryas stadial, both on and in front (west) of the Brabantse Wal escarpment. Wind direction was reconstructed by geomorphic analysis and sedimentary structures on lacquer peels. A southwesterly wind direction is demonstrated by the parabolic dune morphology. For the first time, Younger Dryas wind direction is reconstructed based on adhesion ripple cross-laminated sets on lacquer peels. Sand-transporting south-southwesterly winds were dominant during the Younger Dryas, most likely during summer.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"33 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87375140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract This study presents an annually resolved dendrochronological reconstruction of hydrological impacts on the Roman and early-medieval landscape in the Low Countries of northwestern Europe. Around 600 hydrologically sensitive ring-width patterns, mostly oak (Quercus robur/petraea) as well as some ash (Fraxinus excelsior) and elm (Ulmus sp.), were selected from an initial dataset of >5000 and compiled into two chronologies that span the first millennium AD. Their content and (dis)similarities to established tree-ring chronologies from this and surrounding regions were used to assess their provenance, which in both cases is in the area where the majority of the wood was recovered. Instances of high groundwater levels and/or inundation were catalogued by identifying multi-year intervals of strongly reduced annual growth that occurred simultaneously throughout the research area. The resulting record contains 164 events dated between AD 1 and 1000, of which 21 have a recurrence frequency ≥50 years. One-third of the ≥50-yr events date between AD 185 and 282, making this the most flood-intense interval of the first millennium. The severest reconstructed impact of the first millennium dates to AD 602. A comparison to historically documented river floods/sea breaches and drought/heat spells shows that the predominant cause of the inferred impacts in the research area was river overflow. Synchronous inundation responses of oaks preserved in former bogs in Lower Saxony (NW Germany) indicate that half of the reconstructed events occurred on a supra-regional level, pointing to regional precipitation as a main forcing. River floods documented in written sources do not seem to have affected tree growth in Lower Saxony in a significant manner, indicating that the majority of documented floods most likely were caused by hydrological circumstances upstream of the catchments of the Rhine and/or Meuse. Reconstructed flood impacts during the Early Middle Ages coincide remarkably well with construction and repair of Rhine revetments at the early-medieval site of Leiderdorp-Plantage in the western Netherlands.
{"title":"Hydrological disasters in the NW-European Lowlands during the first millennium AD: a dendrochronological reconstruction","authors":"E. Jansma","doi":"10.1017/njg.2020.10","DOIUrl":"https://doi.org/10.1017/njg.2020.10","url":null,"abstract":"Abstract This study presents an annually resolved dendrochronological reconstruction of hydrological impacts on the Roman and early-medieval landscape in the Low Countries of northwestern Europe. Around 600 hydrologically sensitive ring-width patterns, mostly oak (Quercus robur/petraea) as well as some ash (Fraxinus excelsior) and elm (Ulmus sp.), were selected from an initial dataset of >5000 and compiled into two chronologies that span the first millennium AD. Their content and (dis)similarities to established tree-ring chronologies from this and surrounding regions were used to assess their provenance, which in both cases is in the area where the majority of the wood was recovered. Instances of high groundwater levels and/or inundation were catalogued by identifying multi-year intervals of strongly reduced annual growth that occurred simultaneously throughout the research area. The resulting record contains 164 events dated between AD 1 and 1000, of which 21 have a recurrence frequency ≥50 years. One-third of the ≥50-yr events date between AD 185 and 282, making this the most flood-intense interval of the first millennium. The severest reconstructed impact of the first millennium dates to AD 602. A comparison to historically documented river floods/sea breaches and drought/heat spells shows that the predominant cause of the inferred impacts in the research area was river overflow. Synchronous inundation responses of oaks preserved in former bogs in Lower Saxony (NW Germany) indicate that half of the reconstructed events occurred on a supra-regional level, pointing to regional precipitation as a main forcing. River floods documented in written sources do not seem to have affected tree growth in Lower Saxony in a significant manner, indicating that the majority of documented floods most likely were caused by hydrological circumstances upstream of the catchments of the Rhine and/or Meuse. Reconstructed flood impacts during the Early Middle Ages coincide remarkably well with construction and repair of Rhine revetments at the early-medieval site of Leiderdorp-Plantage in the western Netherlands.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"10 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75975455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}