On réinterprète et on précise la conjecture du <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E x t Superscript 1"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>x</mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">Ext^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> localement analytique de cite{Br1} de manière fonctorielle en utilisant les <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis phi comma normal upper Gamma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>φ<!-- φ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(varphi ,Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules sur l’anneau de Robba (avec éventuellement de la <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding="application/x-tex">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torsion). Puis on démontre plusieurs cas particuliers ou partiels de cette conjecture “améliorée”, notamment pour <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G upper L 3 left-parenthesis double-struck upper Q Subscript p Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mo><!-- --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Q</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">operatorname {GL}_3(mathbb {Q}_{p})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Abstract. We reinterpret the main conjecture of cite{Br1} on the locally analytic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E x t Superscript 1"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>x</mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">Ext^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a functorial way using <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis phi comma normal upper Gamma right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>φ<!-- φ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant
我们全球而且准确的猜想E x t Ext ^ 1 引述分析当地Br1} fonctorielle地使用(φ,Γ varphi,环比上-modules 23% (Gamma)可能与-torsion t t)。然后几个特例证明这个猜想或局部的“改善”,特别是为GL 3GL (p) Q operatorname {} _3 _ (Q mathbb {} {} p)。文摘。(We the hand of 猜想reinterpret引用Br1} on the locally analytic E x (t - Ext ^ 1 in a functorial使用(φΓway) ( varphi、-modules (Gamma)也许,with -torsion t t) over the ring, 23%的making it more准确。几种prove Then we of this special黄金偏方格“改良”猜想,GL notably for 3GL (p) Q operatorname {} _3 _ (Q mathbb {} {} p)。
{"title":"Sur un problème de compatibilité local-global localement analytique","authors":"Christophe Breuil, Yiwen Ding","doi":"10.1090/memo/1442","DOIUrl":"https://doi.org/10.1090/memo/1442","url":null,"abstract":"On réinterprète et on précise la conjecture du <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E x t Superscript 1\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>x</mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Ext^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> localement analytique de cite{Br1} de manière fonctorielle en utilisant les <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis phi comma normal upper Gamma right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>φ<!-- φ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">Γ<!-- Γ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(varphi ,Gamma )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules sur l’anneau de Robba (avec éventuellement de la <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t\"> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding=\"application/x-tex\">t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-torsion). Puis on démontre plusieurs cas particuliers ou partiels de cette conjecture “améliorée”, notamment pour <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L 3 left-parenthesis double-struck upper Q Subscript p Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>GL</mml:mi> <mml:mn>3</mml:mn> </mml:msub> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>p</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">operatorname {GL}_3(mathbb {Q}_{p})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Abstract. We reinterpret the main conjecture of cite{Br1} on the locally analytic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E x t Superscript 1\"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mi>x</mml:mi> <mml:msup> <mml:mi>t</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Ext^1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a functorial way using <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis phi comma normal upper Gamma right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>φ<!-- φ --></mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"121 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136119732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Various coordinate rings of varieties appearing in the theory of Poisson Lie groups and Poisson homogeneous spaces belong to the large, axiomatically defined class of symmetric Poisson nilpotent algebras, e.g. coordinate rings of Schubert cells for symmetrizable Kac–Moody groups, affine charts of Bott-Samelson varieties, coordinate rings of double Bruhat cells (in the last case after a localization). We prove that every symmetric Poisson nilpotent algebra satisfying a mild condition on certain scalars is canonically isomorphic to a cluster algebra which coincides with the corresponding upper cluster algebra, without additional localizations by frozen variables. The constructed cluster structure is compatible with the Poisson structure in the sense of Gekhtman, Shapiro and Vainshtein. All Poisson nilpotent algebras are proved to be equivariant Poisson Unique Factorization Domains. Their seeds are constructed from sequences of Poisson-prime elements for chains of Poisson UFDs; mutation matrices are effectively determined from linear systems in terms of the underlying Poisson structure. Uniqueness, existence, mutation, and other properties are established for these sequences of Poisson-prime elements.
{"title":"Cluster algebra structures on Poisson nilpotent algebras","authors":"K. Goodearl, M. Yakimov","doi":"10.1090/memo/1445","DOIUrl":"https://doi.org/10.1090/memo/1445","url":null,"abstract":"Various coordinate rings of varieties appearing in the theory of Poisson Lie groups and Poisson homogeneous spaces belong to the large, axiomatically defined class of symmetric Poisson nilpotent algebras, e.g. coordinate rings of Schubert cells for symmetrizable Kac–Moody groups, affine charts of Bott-Samelson varieties, coordinate rings of double Bruhat cells (in the last case after a localization). We prove that every symmetric Poisson nilpotent algebra satisfying a mild condition on certain scalars is canonically isomorphic to a cluster algebra which coincides with the corresponding upper cluster algebra, without additional localizations by frozen variables. The constructed cluster structure is compatible with the Poisson structure in the sense of Gekhtman, Shapiro and Vainshtein. All Poisson nilpotent algebras are proved to be equivariant Poisson Unique Factorization Domains. Their seeds are constructed from sequences of Poisson-prime elements for chains of Poisson UFDs; mutation matrices are effectively determined from linear systems in terms of the underlying Poisson structure. Uniqueness, existence, mutation, and other properties are established for these sequences of Poisson-prime elements.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135707798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this monograph is to study the global existence of solutions to a coupled wave-Klein-Gordon system in space dimension two when initial data are small smooth and mildly decaying at infinity. Some physical models strictly related to general relativity have shown the importance of studying such systems but very few results are known at present in low space dimension. We study here a model two-dimensional system, in which the nonlinearity writes in terms of “null forms”, and show the global existence of small solutions. Our goal is to prove some energy estimates on the solution when a certain number of Klainerman vector fields is acting on it, and some optimal uniform estimates. The former ones are obtained using systematically quasilinear normal forms, in their para-differential version; the latter ones are recovered by deducing a new coupled system of a transport equation and an ordinary differential equation from the starting PDE system by means of a semiclassical micro-local analysis of the problem. We expect the strategy developed here to be robust enough to enable us, in the future, to treat the case of the most general nonlinearities.
{"title":"Global Existence of Small Amplitude Solutions for a Model Quadratic Quasilinear Coupled Wave-Klein-Gordon System in Two Space Dimension, with Mildly Decaying Cauchy Data","authors":"Annalaura Stingo","doi":"10.1090/memo/1441","DOIUrl":"https://doi.org/10.1090/memo/1441","url":null,"abstract":"The aim of this monograph is to study the global existence of solutions to a coupled wave-Klein-Gordon system in space dimension two when initial data are small smooth and mildly decaying at infinity. Some physical models strictly related to general relativity have shown the importance of studying such systems but very few results are known at present in low space dimension. We study here a model two-dimensional system, in which the nonlinearity writes in terms of “null forms”, and show the global existence of small solutions. Our goal is to prove some energy estimates on the solution when a certain number of Klainerman vector fields is acting on it, and some optimal uniform estimates. The former ones are obtained using systematically quasilinear normal forms, in their para-differential version; the latter ones are recovered by deducing a new coupled system of a transport equation and an ordinary differential equation from the starting PDE system by means of a semiclassical micro-local analysis of the problem. We expect the strategy developed here to be robust enough to enable us, in the future, to treat the case of the most general nonlinearities.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135948773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Equipped with the L2,qL^{2,q}-distortion distance DD _{2,q}, the space XX _{2q} of all metric measure spaces (X,d ,m ) is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on ol XX _{2q} are presented.
利用l2,q L^{2,q} -畸变距离DD _{2,q},证明了所有度量测量空间(X,d,m)的空间XX _{2q}在Alexandrov意义上具有非负曲率。详细描述了测地线和切线空间。此外,还给出了半凸泛函的类及其在ol XX _{2q}上的梯度流。
{"title":"The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces","authors":"Karl-Theodor Sturm","doi":"10.1090/memo/1443","DOIUrl":"https://doi.org/10.1090/memo/1443","url":null,"abstract":"Equipped with the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L Superscript 2 comma q\"> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">L^{2,q}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-distortion distance <inline-formula content-type=\"math/tex\"> <tex-math> DD _{2,q}</tex-math></inline-formula>, the space <inline-formula content-type=\"math/tex\"> <tex-math> XX _{2q}</tex-math></inline-formula> of all metric measure spaces <inline-formula content-type=\"math/tex\"> <tex-math> (X,d ,m )</tex-math></inline-formula> is proven to have nonnegative curvature in the sense of Alexandrov. Geodesics and tangent spaces are characterized in detail. Moreover, classes of semiconvex functionals and their gradient flows on <inline-formula content-type=\"math/tex\"> <tex-math> ol XX _{2q}</tex-math></inline-formula> are presented.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"119 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135948770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The primary goal of this work is to construct p p -adic families of modular forms of half-integral weight, by using Waldspurger’s automorphic framework to make the results as comprehensive and precise as possible. A secondary goal is to clarify the role of test vectors as defined by Gross-Prasad in the elucidation of general formulae for the Fourier coefficients of modular forms of half-integral weight in terms of toric periods of the corresponding modular forms of integral weight. As a consequence of our work, we develop a generalization of a classical formula due to Shintani, and make precise the conditions under which Shintani’s lift vanishes. We also give a number of results on test vectors for ramified representations which are of independent interest.
{"title":"Toric Periods and 𝑝-adic Families of Modular Forms of Half-Integral Weight","authors":"V. Vatsal","doi":"10.1090/memo/1438","DOIUrl":"https://doi.org/10.1090/memo/1438","url":null,"abstract":"The primary goal of this work is to construct \u0000\u0000 \u0000 p\u0000 p\u0000 \u0000\u0000-adic families of modular forms of half-integral weight, by using Waldspurger’s automorphic framework to make the results as comprehensive and precise as possible. A secondary goal is to clarify the role of test vectors as defined by Gross-Prasad in the elucidation of general formulae for the Fourier coefficients of modular forms of half-integral weight in terms of toric periods of the corresponding modular forms of integral weight. As a consequence of our work, we develop a generalization of a classical formula due to Shintani, and make precise the conditions under which Shintani’s lift vanishes. We also give a number of results on test vectors for ramified representations which are of independent interest.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41455776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Generalized permutahedra are polytopes that arise in combinatorics, algebraic geometry, representation theory, topology, and optimization. They possess a rich combinatorial structure. Out of this structure we build a Hopf monoid in the category of species. Species provide a unifying framework for organizing families of combinatorial objects. Many species carry a Hopf monoid structure and are related to generalized permutahedra by means of morphisms of Hopf monoids. This includes the species of graphs, matroids, posets, set partitions, linear graphs, hypergraphs, simplicial complexes, and building sets, among others. We employ this algebraic structure to define and study polynomial invariants of the various combinatorial structures. We pay special attention to the antipode of each Hopf monoid. This map is central to the structure of a Hopf monoid, and it interacts well with its characters and polynomial invariants. It also carries information on the values of the invariants on negative integers. For our Hopf monoid of generalized permutahedra, we show that the antipode maps each polytope to the alternating sum of its faces. This fact has numerous combinatorial consequences. We highlight some main applications: We obtain uniform proofs of numerous old and new results about the Hopf algebraic and combinatorial structures of these families. In particular, we give optimal formulas for the antipode of graphs, posets, matroids, hypergraphs, and building sets. They are optimal in the sense that they provide explicit descriptions for the integers entering in the expansion of the antipode, after all coefficients have been collected and all cancellations have been taken into account. We show that reciprocity theorems of Stanley and Billera–Jia–Reiner (BJR) on chromatic polynomials of graphs, order polynomials of posets, and BJR-polynomials of matroids are instances of one such result for generalized permutahedra. We explain why the formulas for the multiplicative and compositional inverses of power series are governed by the face structure of permutahedra and associahedra, respectively, providing an answer to a question of Loday. We answer a question of Humpert and Martin on certain invariants of graphs and another of Rota on a certain class of submodular functions. We hope our work serves as a quick introduction to the theory of Hopf monoids in species, particularly to the reader interested in combinatorial applications. It may be supplemented with Marcelo Aguiar and Swapneel Mahajan’s 2010 and 2013 works, which provide longer accounts with a more algebraic focus.
{"title":"Hopf Monoids and Generalized Permutahedra","authors":"Marcelo Aguiar, Federico Ardila","doi":"10.1090/memo/1437","DOIUrl":"https://doi.org/10.1090/memo/1437","url":null,"abstract":"Generalized permutahedra are polytopes that arise in combinatorics, algebraic geometry, representation theory, topology, and optimization. They possess a rich combinatorial structure. Out of this structure we build a Hopf monoid in the category of species. Species provide a unifying framework for organizing families of combinatorial objects. Many species carry a Hopf monoid structure and are related to generalized permutahedra by means of morphisms of Hopf monoids. This includes the species of graphs, matroids, posets, set partitions, linear graphs, hypergraphs, simplicial complexes, and building sets, among others. We employ this algebraic structure to define and study polynomial invariants of the various combinatorial structures. We pay special attention to the antipode of each Hopf monoid. This map is central to the structure of a Hopf monoid, and it interacts well with its characters and polynomial invariants. It also carries information on the values of the invariants on negative integers. For our Hopf monoid of generalized permutahedra, we show that the antipode maps each polytope to the alternating sum of its faces. This fact has numerous combinatorial consequences. We highlight some main applications: We obtain uniform proofs of numerous old and new results about the Hopf algebraic and combinatorial structures of these families. In particular, we give optimal formulas for the antipode of graphs, posets, matroids, hypergraphs, and building sets. They are optimal in the sense that they provide explicit descriptions for the integers entering in the expansion of the antipode, after all coefficients have been collected and all cancellations have been taken into account. We show that reciprocity theorems of Stanley and Billera–Jia–Reiner (BJR) on chromatic polynomials of graphs, order polynomials of posets, and BJR-polynomials of matroids are instances of one such result for generalized permutahedra. We explain why the formulas for the multiplicative and compositional inverses of power series are governed by the face structure of permutahedra and associahedra, respectively, providing an answer to a question of Loday. We answer a question of Humpert and Martin on certain invariants of graphs and another of Rota on a certain class of submodular functions. We hope our work serves as a quick introduction to the theory of Hopf monoids in species, particularly to the reader interested in combinatorial applications. It may be supplemented with Marcelo Aguiar and Swapneel Mahajan’s 2010 and 2013 works, which provide longer accounts with a more algebraic focus.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134971547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>In this paper, we use homotopical algebra (or abstract homotopical methods) to study smooth homotopical problems of infinite-dimensional <inline-formula content-type="math/mathml">