首页 > 最新文献

Mathematical Methods in the Applied Sciences最新文献

英文 中文
Capturing Nonlocal Effects in Fractional Dynamics: Riesz Derivatives as a New Frontier in Modeling Complex Diffusion and Pattern Formation 在分数阶动力学中捕捉非局部效应:Riesz导数作为模拟复杂扩散和模式形成的新前沿
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-29 DOI: 10.1002/mma.70120
Manal Alqhtani, Kolade M. Owolabi, Khaled M. Saad, Akram A. Naji, Edson Pindza

This work addresses the numerical solution of fractional time-dependent partial differential equations (FTPDEs) that involve the Riesz fractional derivative in space. Motivated by the effectiveness of space-fractional operators in modeling anomalous diffusion and dispersion phenomena in mathematical physics, we extend this framework to describe classical Brownian motion using a fractional-order formulation based on the Riesz derivative. To this end, we develop a high-order, robust, and efficient numerical scheme for approximating the Riesz derivative, which combines both the left- and right-sided Riemann–Liouville derivatives in a symmetric formulation. We perform a comprehensive analysis of the proposed method, particularly examining its stability and convergence. Furthermore, we apply this method to explore the complex dynamics of pattern formation in two important fractional reaction-diffusion equations, which remain of significant interest in the field. Our experimental results, presented for various fractional parameter values, highlight the method's effectiveness and reveal the intricate behaviors of the system. By utilizing the Riesz fractional derivative, our approach captures the nonlocal and memory effects characteristic of fractional dynamics. This allows for more accurate modeling of phenomena where standard integer-order methods fall short, particularly in capturing the subtleties of anomalous diffusion and pattern formation. The high-order approximation scheme not only ensures numerical accuracy but also enhances computational efficiency, making it a valuable tool for researchers dealing with fractional partial differential equations.

这项工作解决了分数阶时变偏微分方程(FTPDEs)的数值解,其中涉及空间中的Riesz分数阶导数。由于空间分数算子在模拟数学物理中的异常扩散和色散现象方面的有效性,我们将这一框架扩展到使用基于Riesz导数的分数阶公式来描述经典布朗运动。为此,我们开发了一种高阶、鲁棒和高效的近似Riesz导数的数值格式,该格式将左侧和右侧Riemann-Liouville导数结合在对称公式中。我们对所提出的方法进行了全面的分析,特别是检查了它的稳定性和收敛性。此外,我们应用该方法探索了两个重要的分数反应扩散方程中图案形成的复杂动力学,这在该领域仍然具有重要的意义。我们给出了不同分数参数值的实验结果,突出了该方法的有效性,并揭示了系统的复杂行为。通过利用Riesz分数阶导数,我们的方法捕获了分数阶动力学的非局部和记忆效应特征。这允许对标准整阶方法所不能达到的现象进行更精确的建模,特别是在捕捉异常扩散和模式形成的细微之处。高阶近似格式不仅保证了数值精度,而且提高了计算效率,是研究分数阶偏微分方程的重要工具。
{"title":"Capturing Nonlocal Effects in Fractional Dynamics: Riesz Derivatives as a New Frontier in Modeling Complex Diffusion and Pattern Formation","authors":"Manal Alqhtani,&nbsp;Kolade M. Owolabi,&nbsp;Khaled M. Saad,&nbsp;Akram A. Naji,&nbsp;Edson Pindza","doi":"10.1002/mma.70120","DOIUrl":"https://doi.org/10.1002/mma.70120","url":null,"abstract":"<div>\u0000 \u0000 <p>This work addresses the numerical solution of fractional time-dependent partial differential equations (FTPDEs) that involve the Riesz fractional derivative in space. Motivated by the effectiveness of space-fractional operators in modeling anomalous diffusion and dispersion phenomena in mathematical physics, we extend this framework to describe classical Brownian motion using a fractional-order formulation based on the Riesz derivative. To this end, we develop a high-order, robust, and efficient numerical scheme for approximating the Riesz derivative, which combines both the left- and right-sided Riemann–Liouville derivatives in a symmetric formulation. We perform a comprehensive analysis of the proposed method, particularly examining its stability and convergence. Furthermore, we apply this method to explore the complex dynamics of pattern formation in two important fractional reaction-diffusion equations, which remain of significant interest in the field. Our experimental results, presented for various fractional parameter values, highlight the method's effectiveness and reveal the intricate behaviors of the system. By utilizing the Riesz fractional derivative, our approach captures the nonlocal and memory effects characteristic of fractional dynamics. This allows for more accurate modeling of phenomena where standard integer-order methods fall short, particularly in capturing the subtleties of anomalous diffusion and pattern formation. The high-order approximation scheme not only ensures numerical accuracy but also enhances computational efficiency, making it a valuable tool for researchers dealing with fractional partial differential equations.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 18","pages":"16700-16721"},"PeriodicalIF":1.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145480130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elliptic System With Sublinear Signal Production in Dimension 2 二阶次线性信号产生的椭圆系统
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-29 DOI: 10.1002/mma.70140
Lucio Boccardo, Jose Ignacio Tello
<div> <p>We consider the nonlinear elliptic system <span></span><math> <semantics> <mrow> <mtable> <mtr> <mtd> <mi>u</mi> <mo>∈</mo> <msubsup> <mrow> <mi>W</mi> </mrow> <mrow> <mn>0</mn> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mi>q</mi> </mrow> </msubsup> <mo>(</mo> <mi>Ω</mi> <mo>)</mo> <mo>:</mo> </mtd> <mtd> <mo>−</mo> <mtext>div</mtext> <mo>(</mo> <mi>M</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>∇</mo> <mi>u</mi> <mo>)</mo> <mo>+</mo> <mi>u</mi> <mo>=</mo> <mo>−</mo> <mtext>div</mtext> <mo>(</mo> <mi>u</mi> <mspace></mspace> <mi>M</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mspace></mspace> <mo>∇</mo> <mi>ψ</mi> <mo>)</mo> <mo>+</mo> <mi>f</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>ψ</mi> <mo>∈</mo> <msubsup> <mrow> <mi>W</mi> </mrow> <mrow> <mn>0</mn> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </msubsup>
我们考虑非线性椭圆系统u∈w01, q (Ω):−div (M (x)∇u) + u =−div (u M (x)∇ψ) + f (x)ψ∈w 0 1,2 (Ω):−div (M (x)∇ψ) = Φ (u),$$ {displaystyle begin{array}{ll}uin {W}_0&amp;amp;#x0005E;{1,} 离开(ω右):,amp;音箱;-operatorname{div}left(M(x)nabla uright)&amp;amp; amp;#x0002B;u&amp;amp;#x0003D;-operatorname{div}left(ukern0.3em M(x)kern0; 3em nabla psi 右)&amp; #x0002B;f(x), {}psi in {W}_0&amp; #x0005E;{1,2} 离开(ω右):,amp;音箱;-operatorname{div}left(M(x)nabla psi right)&amp;amp;Phi (u),end{array}} $$其中Ω $$ $ Omega $$ $是一个有界的,开放的集合$$ {mathbb{R}}&amp;amp;#x0005E;2 $$;M(x) $$ M(x) $$是具有L∞的强制对称矩阵(Ω) $$ {L}&amp;amp;#x0005E;{infty}left(Omega right) $$系数;F (x)≥0 $$ F (x)ge 0 $$;Φ (u) = u θ $$ Phi (u)&amp;amp;#x0003D;{u}&amp;amp;$$ for θ∈(0,1) $$ theta in left(0,1right) $$或Φ (u) = u log (1 + u)$$ Phi (u)&amp; #x0003D;frac{u}{log left(1&amp;amp;#x0002B;uright)} $$;q $$ q $$取决于f $$ f $$的可和性。利用对偶技术,我们证明了Φ $$ Phi $$的两个表达式在下列情况下解的存在性: 若f∈l1 (Ω) $$ fin {L}&amp;amp;amp;#x0005E;1left(Omega right) $$,则u∈w01,Q (Ω) $$ uin {W}_0&amp;amp;amp;#x0005E;{1,q}left(Omega right) $$,其中Q∈[1];2) $$ qin left[1,2right) $$和e γ u∈l1(Ω) $$ {e}&amp;amp;amp;#x0005E;{gamma u}in {L}&amp;amp;amp;#x0005E;1left(Omega right) $$对于某些γ = γ(‖f‖1)&gt;0 $$ gamma &amp;amp;amp;#x0003D;gamma left({leftVert frightVert}_1right)&amp;amp;gt;0 $$。2. ∫Ω f [log (1 + f)]1 2 &lt; +∞$$ {int}_{Omega}f{left[log left(1&amp;amp;amp;#x0002B;fright)right]}&amp;amp;amp;#x0005E;{frac{1}{2}}&amp;amp;lt;&amp;amp;amp;#x0002B;infty $$,则u∈w0 1,2 (Ω) $$ uin {W}_0&amp;amp;amp;#x0005E;{1,2}left(Omega right) $$。3.
{"title":"Elliptic System With Sublinear Signal Production in Dimension 2","authors":"Lucio Boccardo,&nbsp;Jose Ignacio Tello","doi":"10.1002/mma.70140","DOIUrl":"https://doi.org/10.1002/mma.70140","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;We consider the nonlinear elliptic system \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mtable&gt;\u0000 &lt;mtr&gt;\u0000 &lt;mtd&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;W&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;q&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;/mtd&gt;\u0000 &lt;mtd&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mtext&gt;div&lt;/mtext&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;∇&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mtext&gt;div&lt;/mtext&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;u&lt;/mi&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;mo&gt;∇&lt;/mo&gt;\u0000 &lt;mi&gt;ψ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;/mtd&gt;\u0000 &lt;/mtr&gt;\u0000 &lt;mtr&gt;\u0000 &lt;mtd&gt;\u0000 &lt;mi&gt;ψ&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;W&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msubsup&gt;\u0000 ","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"49 1","pages":"130-139"},"PeriodicalIF":1.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145739799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Three-Layer Finite Difference Scheme for the Nonlinear Kuramoto-Tsuzuki Complex Equation With Variable Coefficients 非线性变系数Kuramoto-Tsuzuki复方程的三层有限差分格式
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-29 DOI: 10.1002/mma.70138
Jinxiu Zhang, Xuehua Yang

In this paper, we investigate a linearized three-layer finite difference scheme for solving the variable-coefficient nonlinear Kuramoto-Tsuzuki (K-T) complex equation. The proposed scheme employs the standard central finite difference method for spatial discretization, while a combination of the central averaging method and the central difference method is applied in the temporal direction. The nonlinear term is treated using a semi-implicit linearization approach, which effectively enhances stability and reduces computational cost. We provide a rigorous analysis to establish the second-order accuracy of the scheme, as well as the boundedness and uniqueness of the solution are proved by utilizing an energy-based analytical method in conjunction with mathematical induction. Finally, numerical experiments are performed to validate the theoretical analysis.

本文研究了求解变系数非线性Kuramoto-Tsuzuki (K-T)复方程的一种线性化三层有限差分格式。该方案采用标准中心有限差分法进行空间离散,在时间方向上采用中心平均法和中心差分法相结合的方法。非线性项采用半隐式线性化方法处理,有效地提高了稳定性,减少了计算量。我们提供了严格的分析,以建立该方案的二阶精度,并利用基于能量的分析方法结合数学归纳法证明了解的有界性和唯一性。最后,通过数值实验验证了理论分析的正确性。
{"title":"A Three-Layer Finite Difference Scheme for the Nonlinear Kuramoto-Tsuzuki Complex Equation With Variable Coefficients","authors":"Jinxiu Zhang,&nbsp;Xuehua Yang","doi":"10.1002/mma.70138","DOIUrl":"https://doi.org/10.1002/mma.70138","url":null,"abstract":"<div>\u0000 \u0000 <p>In this paper, we investigate a linearized three-layer finite difference scheme for solving the variable-coefficient nonlinear Kuramoto-Tsuzuki (K-T) complex equation. The proposed scheme employs the standard central finite difference method for spatial discretization, while a combination of the central averaging method and the central difference method is applied in the temporal direction. The nonlinear term is treated using a semi-implicit linearization approach, which effectively enhances stability and reduces computational cost. We provide a rigorous analysis to establish the second-order accuracy of the scheme, as well as the boundedness and uniqueness of the solution are proved by utilizing an energy-based analytical method in conjunction with mathematical induction. Finally, numerical experiments are performed to validate the theoretical analysis.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"49 1","pages":"108-118"},"PeriodicalIF":1.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145751386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Fractional Sturm–Liouville Problem With Prabhakar Fractional Derivative 关于Prabhakar分数阶导数的分数阶Sturm-Liouville问题
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-28 DOI: 10.1002/mma.70156
Sumiha Mumraiz, Mujeeb ur Rehman

In this study, we introduce a self-adjoint fractional Sturm–Liouville problem involving Prabhakar fractional derivative, resulting in a unified framework that encompasses Riemann–Liouville and classical settings. By establishing integration-by-part identities for Prabhakar derivative, we demonstrate the essential spectral properties of the fractional Prabhakar Sturm–Liouville problem, including orthogonality of eigenfunctions. Further, the problem's well-posedness is studied by proving coercivity and boundedness properties.

在本研究中,我们引入了一个包含Prabhakar分数阶导数的自伴随分数Sturm-Liouville问题,得到了一个包含Riemann-Liouville和经典设置的统一框架。通过建立Prabhakar导数的部分积分恒等式,我们证明了分数阶Prabhakar Sturm-Liouville问题的基本谱性质,包括特征函数的正交性。进一步,通过证明矫顽力和有界性,研究了问题的适定性。
{"title":"On Fractional Sturm–Liouville Problem With Prabhakar Fractional Derivative","authors":"Sumiha Mumraiz,&nbsp;Mujeeb ur Rehman","doi":"10.1002/mma.70156","DOIUrl":"https://doi.org/10.1002/mma.70156","url":null,"abstract":"<div>\u0000 \u0000 <p>In this study, we introduce a self-adjoint fractional Sturm–Liouville problem involving Prabhakar fractional derivative, resulting in a unified framework that encompasses Riemann–Liouville and classical settings. By establishing integration-by-part identities for Prabhakar derivative, we demonstrate the essential spectral properties of the fractional Prabhakar Sturm–Liouville problem, including orthogonality of eigenfunctions. Further, the problem's well-posedness is studied by proving coercivity and boundedness properties.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"49 1","pages":"353-365"},"PeriodicalIF":1.8,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145739899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fully Discretized Scheme Based on High-Precision Galerkin–Jacobi Approach for Solving Vanishing–Nonvanishing Delayed Volterra Integral Equations 基于高精度Galerkin-Jacobi方法的完全离散格式求解消失-非消失延迟Volterra积分方程
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-28 DOI: 10.1002/mma.70124
Yin Yang, Emran Tohidi, Luyao Liang, Svetlin Georgiev

In this research study, a fully discretized scheme based on the Jacobi–Galerkin approach to solve the vanishing–nonvanishing delayed Volterra integral equations has been proposed. Difficulty of this research study is because of the terms of the vanishing and nonvanishing delays. Therefore, one can apply some associated transformations on the variables of the original equation and obtain its numerical solution efficiently by using the Jacobi–Galerkin approach in fully discretized form (i.e., using high accurate Gauss–Legendre quadrature rule). The convergence analysis is discussed in detail by using the important lemmas, which proves that the error of the approximated solution will be decayed very fast in both of the infinity and weighted space norms, respectively, with the condition of sufficiently smooth solutions. Otherwise, as seen in the last example, the rate of convergence will be algebraic instead of exponential. Some test problems are presented to prove the theoretical investigations experimentally and the efficiency of the approach. Superior results can be observed in the case of errors with respect to a recently proposed approach in the literature.

本文提出了一种基于Jacobi-Galerkin方法的完全离散化方案来求解消失-非消失时滞Volterra积分方程。本研究的难点在于消失时滞和非消失时滞的概念。因此,利用完全离散形式的Jacobi-Galerkin方法(即高精度的gaas - legendre积分规则),可以对原方程的变量进行关联变换,从而有效地得到其数值解。利用重要引理详细讨论了收敛性分析,证明了在解足够光滑的条件下,在无限范数和加权范数下,逼近解的误差衰减非常快。否则,正如在上一个例子中看到的那样,收敛速度将是代数的,而不是指数的。通过实验验证了理论研究和方法的有效性。优越的结果可以观察到在错误的情况下,相对于最近提出的方法在文献中。
{"title":"A Fully Discretized Scheme Based on High-Precision Galerkin–Jacobi Approach for Solving Vanishing–Nonvanishing Delayed Volterra Integral Equations","authors":"Yin Yang,&nbsp;Emran Tohidi,&nbsp;Luyao Liang,&nbsp;Svetlin Georgiev","doi":"10.1002/mma.70124","DOIUrl":"https://doi.org/10.1002/mma.70124","url":null,"abstract":"<div>\u0000 \u0000 <p>In this research study, a fully discretized scheme based on the Jacobi–Galerkin approach to solve the vanishing–nonvanishing delayed Volterra integral equations has been proposed. Difficulty of this research study is because of the terms of the vanishing and nonvanishing delays. Therefore, one can apply some associated transformations on the variables of the original equation and obtain its numerical solution efficiently by using the Jacobi–Galerkin approach in fully discretized form (i.e., using high accurate Gauss–Legendre quadrature rule). The convergence analysis is discussed in detail by using the important lemmas, which proves that the error of the approximated solution will be decayed very fast in both of the infinity and weighted space norms, respectively, with the condition of sufficiently smooth solutions. Otherwise, as seen in the last example, the rate of convergence will be algebraic instead of exponential. Some test problems are presented to prove the theoretical investigations experimentally and the efficiency of the approach. Superior results can be observed in the case of errors with respect to a recently proposed approach in the literature.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 18","pages":"16750-16764"},"PeriodicalIF":1.8,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145479951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Dynamical Behavior of a Type of Diabetes Mellitus Model With Nonlinear Impulsive Injection of Insulin 一类糖尿病模型非线性脉冲注射胰岛素的动力学行为研究
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-28 DOI: 10.1002/mma.70125
Changtong Li, Jia Tian, Xiaozhou Feng, Yuntao Liu

Based on the dynamic management of insulin, we consider the effects of insulin, glucose, and glucocorticoid concentration on the dynamics of the diabetes model with nonlinear impulsive control to simulate the physiological process of exogenous insulin therapy. Firstly, if σ1=0$$ {sigma}_1&amp;#x0003D;0 $$, in type 1 diabetes mellitus (T1DM), the existence of positive periodic solution of the system is proved by using fixed point theory for difference equations, whereas the global asymptotic stability of positive periodic solution is proved by using the Floquet multiplier theory and comparison theorem. Next, if σ1>0$$ {sigma}_1&gt;0 $$, in type 2 diabetes mellitus (T2DM), the permanence of the solution of the system is proved by using the comparison theorem. Furthermore, simulation results are performed to verify the correctness of the theoretical findings and to study the system's dynamic behavior under various conditions. By simulating the feedback regulation mechanism between insulin and glucose in a closed-loop system, the model not only elucidates the dynamic equilibrium relationship between insulin and glucose but also offers a novel and feasible strategy for the treatment and control of diabetes, thereby demonstrating substantial theoretical and practical significance.

在胰岛素动态管理的基础上,考虑胰岛素、葡萄糖和糖皮质激素浓度对糖尿病模型动态的影响,采用非线性脉冲控制来模拟外源性胰岛素治疗的生理过程。首先,在1型糖尿病(T1DM)中,当σ 1 = 0 $$ {sigma}_1&amp;#x0003D;0 $$时,利用差分方程不动点理论证明了系统正周期解的存在性;利用Floquet乘法器理论和比较定理证明了正周期解的全局渐近稳定性。其次,在2型糖尿病(T2DM)患者中,当σ 1 &gt; 0 $$ {sigma}_1&gt;0 $$时,利用比较定理证明了系统解的持久性。仿真结果验证了理论结果的正确性,并研究了系统在不同工况下的动态行为。该模型模拟了胰岛素与葡萄糖在闭环系统中的反馈调节机制,不仅阐明了胰岛素与葡萄糖之间的动态平衡关系,而且为糖尿病的治疗和控制提供了一种新颖可行的策略,具有重要的理论和现实意义。
{"title":"Study on Dynamical Behavior of a Type of Diabetes Mellitus Model With Nonlinear Impulsive Injection of Insulin","authors":"Changtong Li,&nbsp;Jia Tian,&nbsp;Xiaozhou Feng,&nbsp;Yuntao Liu","doi":"10.1002/mma.70125","DOIUrl":"https://doi.org/10.1002/mma.70125","url":null,"abstract":"<div>\u0000 \u0000 <p>Based on the dynamic management of insulin, we consider the effects of insulin, glucose, and glucocorticoid concentration on the dynamics of the diabetes model with nonlinear impulsive control to simulate the physiological process of exogenous insulin therapy. Firstly, if \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>σ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$$ {sigma}_1&amp;amp;#x0003D;0 $$</annotation>\u0000 </semantics></math>, in type 1 diabetes mellitus (T1DM), the existence of positive periodic solution of the system is proved by using fixed point theory for difference equations, whereas the global asymptotic stability of positive periodic solution is proved by using the Floquet multiplier theory and comparison theorem. Next, if \u0000<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mrow>\u0000 <mi>σ</mi>\u0000 </mrow>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$$ {sigma}_1&amp;gt;0 $$</annotation>\u0000 </semantics></math>, in type 2 diabetes mellitus (T2DM), the permanence of the solution of the system is proved by using the comparison theorem. Furthermore, simulation results are performed to verify the correctness of the theoretical findings and to study the system's dynamic behavior under various conditions. By simulating the feedback regulation mechanism between insulin and glucose in a closed-loop system, the model not only elucidates the dynamic equilibrium relationship between insulin and glucose but also offers a novel and feasible strategy for the treatment and control of diabetes, thereby demonstrating substantial theoretical and practical significance.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 18","pages":"16765-16777"},"PeriodicalIF":1.8,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145479949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hopf Bifurcation in an Age-Structured Predator–Prey System With Beddington–DeAngelis Functional Response and Double Time Delays 具有Beddington-DeAngelis功能响应和双时滞的年龄结构捕食-食饵系统的Hopf分岔
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-28 DOI: 10.1002/mma.70133
Sanxing Wu, Liang Zhang
<div> <p>This work is concerned with the existence of Hopf bifurcations in an age-structured predator–prey model involved with a reaction time delay <span></span><math> <semantics> <mrow> <msub> <mrow> <mi>τ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> <annotation>$$ {tau}_1 $$</annotation> </semantics></math> and a maturation period <span></span><math> <semantics> <mrow> <msub> <mrow> <mi>τ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> <annotation>$$ {tau}_2 $$</annotation> </semantics></math>. It is assumed that the predator fertility function <span></span><math> <semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <annotation>$$ f(a) $$</annotation> </semantics></math> is represented as a piecewise function dependent on the maturation period <span></span><math> <semantics> <mrow> <msub> <mrow> <mi>τ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> <annotation>$$ {tau}_2 $$</annotation> </semantics></math>. First, we reformulate the original system as a nondensely defined abstract Cauchy problem and analyze the existence and uniqueness of equilibria, the associated linear system and the characteristic equation of the reformulated problem. Next, in the case of <span></span><math> <semantics> <mrow> <msub> <mrow> <mi>τ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> <annotation>$$ {tau}_1 $$</annotation> </semantics></math> and <span></span><math> <semantics> <mrow> <msub> <mrow> <mi>τ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> <annotation>$$ {tau}_2 $$</annotation> </semantics></math> change independently, we observe that the system exhibits a series of S-step
这项工作涉及年龄结构的捕食者-猎物模型中Hopf分岔的存在,该模型涉及反应时间延迟τ 1 $$ {tau}_1 $$和成熟期τ 2 $$ {tau}_2 $$。假设捕食者生育函数f (a) $$ f(a) $$表示为依赖于成熟期τ 2的分段函数$$ {tau}_2 $$。首先,我们将原系统转化为一个非密集定义的抽象柯西问题,并分析了该问题的平衡点、相关线性系统和特征方程的存在唯一性。接下来,对于τ 1 $$ {tau}_1 $$和τ 2$$ {tau}_2 $$独立变化时,我们观察到系统呈现一系列s阶曲线,并且在正平衡处出现Hopf分岔。然后,在τ 1 = τ 2 = τ $$ {tau}_1&amp;#x0003D;{tau}_2&amp;#x0003D;tau $$条件下,将时滞τ $$ tau $$作为分岔参数,应用积分半群理论和Hopf分岔定理,研究了正平衡点Hopf分岔的发生。最后,通过数值模拟对理论结果进行了验证,验证了结果的可靠性和适用性。
{"title":"Hopf Bifurcation in an Age-Structured Predator–Prey System With Beddington–DeAngelis Functional Response and Double Time Delays","authors":"Sanxing Wu,&nbsp;Liang Zhang","doi":"10.1002/mma.70133","DOIUrl":"https://doi.org/10.1002/mma.70133","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 &lt;p&gt;This work is concerned with the existence of Hopf bifurcations in an age-structured predator–prey model involved with a reaction time delay \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {tau}_1 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and a maturation period \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {tau}_2 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. It is assumed that the predator fertility function \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;a&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ f(a) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is represented as a piecewise function dependent on the maturation period \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {tau}_2 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. First, we reformulate the original system as a nondensely defined abstract Cauchy problem and analyze the existence and uniqueness of equilibria, the associated linear system and the characteristic equation of the reformulated problem. Next, in the case of \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {tau}_1 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and \u0000&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {tau}_2 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; change independently, we observe that the system exhibits a series of S-step","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 18","pages":"16868-16887"},"PeriodicalIF":1.8,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145479948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal Control Design for a HIV-1 Model With Time Delay and Functional Responses 具有时滞和功能响应的HIV-1模型的最优控制设计
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-27 DOI: 10.1002/mma.70109
M. Pradeesh, Fathalla Ali Rihan, Mani Prakash

The main objective of this study is to model the HIV-1 infection using ordinary differential equations (ODEs) by considering factors that include infectivity rate, antiretroviral therapy (ART), logistic growth, intracellular time delay for the incidence of the uninfected cells and the infected cells, latency period, and immune responses. The theoretical frameworks such as stability, bifurcation, and the suitable control parameter are investigated to treat the disease progression for the HIV-1 infection model. Based on the stability theory, the steady-state analysis for the HIV-1 model is performed for three types of equilibrium: (1) disease-free equilibrium, (2) immune-free equilibrium, and (3) equilibrium with infection. Utilizing a next-generation matrix approach, the reproduction number is theoretically derived to ensure the virulence of the spread. The Routh–Hurwitz criterion is employed to perform the stability analysis for the model with and without delay for the infection equilibrium point. The qualitative changes in the behaviors of the system called bifurcations, investigating intracellular delay as a bifurcation parameter, Hopf bifurcation conditions, are derived. The threshold value for the delay is analytically obtained; below the threshold value, the model remains stable; if the threshold value exceeds, there are oscillations in the cell population. Furthermore, the model is structured as an optimal control problem choosing therapy as a control parameter based on the Hamilton–Lagrangian approach and the Pontryagin maximum principle. Numerical simulations are conducted to validate the effectiveness of the proposed stability conditions, bifurcation conditions, and optimal control design for the therapy.

本研究的主要目的是利用常微分方程(ode)建立HIV-1感染的模型,考虑的因素包括传染性、抗逆转录病毒治疗(ART)、logistic生长、未感染细胞和感染细胞的细胞内时间延迟、潜伏期和免疫反应。研究了HIV-1感染模型的稳定性、分岔和合适的控制参数等理论框架来治疗疾病进展。基于稳定性理论,对HIV-1模型进行了三种平衡(1)无病平衡、(2)无免疫平衡和(3)有感染平衡)的稳态分析。利用下一代矩阵方法,理论上推导出繁殖数,以确保传播的毒性。采用Routh-Hurwitz准则对感染平衡点进行了有延迟和无延迟模型的稳定性分析。通过研究细胞内延迟作为分岔参数的Hopf分岔条件,导出了系统行为的质变,称为分岔。解析得到延迟的阈值;在阈值以下,模型保持稳定;如果超过阈值,则在细胞群中存在振荡。基于Hamilton-Lagrangian方法和Pontryagin极大值原理,将模型构建为选择治疗作为控制参数的最优控制问题。数值模拟验证了所提出的稳定性条件、分岔条件和最优控制设计的有效性。
{"title":"Optimal Control Design for a HIV-1 Model With Time Delay and Functional Responses","authors":"M. Pradeesh,&nbsp;Fathalla Ali Rihan,&nbsp;Mani Prakash","doi":"10.1002/mma.70109","DOIUrl":"https://doi.org/10.1002/mma.70109","url":null,"abstract":"<div>\u0000 \u0000 <p>The main objective of this study is to model the HIV-1 infection using ordinary differential equations (ODEs) by considering factors that include infectivity rate, antiretroviral therapy (ART), logistic growth, intracellular time delay for the incidence of the uninfected cells and the infected cells, latency period, and immune responses. The theoretical frameworks such as stability, bifurcation, and the suitable control parameter are investigated to treat the disease progression for the HIV-1 infection model. Based on the stability theory, the steady-state analysis for the HIV-1 model is performed for three types of equilibrium: (1) disease-free equilibrium, (2) immune-free equilibrium, and (3) equilibrium with infection. Utilizing a next-generation matrix approach, the reproduction number is theoretically derived to ensure the virulence of the spread. The Routh–Hurwitz criterion is employed to perform the stability analysis for the model with and without delay for the infection equilibrium point. The qualitative changes in the behaviors of the system called bifurcations, investigating intracellular delay as a bifurcation parameter, Hopf bifurcation conditions, are derived. The threshold value for the delay is analytically obtained; below the threshold value, the model remains stable; if the threshold value exceeds, there are oscillations in the cell population. Furthermore, the model is structured as an optimal control problem choosing therapy as a control parameter based on the Hamilton–Lagrangian approach and the Pontryagin maximum principle. Numerical simulations are conducted to validate the effectiveness of the proposed stability conditions, bifurcation conditions, and optimal control design for the therapy.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 18","pages":"16578-16591"},"PeriodicalIF":1.8,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145480039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisted Vortices in Two-Component Ginzburg–Landau Theory 双分量金兹堡-朗道理论中的扭曲涡
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-27 DOI: 10.1002/mma.70088
Lei Cao, Xiao Chen

In this note, a brief introduction to the physical and mathematical background of the two-component Ginzburg–Landau theory is given. From this theory, we derive a boundary value problem whose solution can be obtained in part by solving a minimization problem using the technique of variational method, except that two of the eight boundary conditions cannot be satisfied. To overcome the difficulty of recovering the full set of boundary conditions, we employ a variety of methods, including the uniform estimation method and the bounded monotonic theorem, which may be applied to other complicated vortex problems in gauge field theories. The twisted vortex solutions are obtained as energy-minimizing cylindrically symmetric field configurations. We also give the sharp asymptotic estimates for the twisted vortex solutions at the origin and infinity.

本文简要介绍了双分量金兹堡-朗道理论的物理和数学背景。根据这一理论,我们导出了一个边值问题,除了8个边界条件中有2个不能满足外,该边值问题的解可以部分地通过用变分方法求解最小化问题得到。为了克服恢复完整边界条件的困难,我们采用了多种方法,包括一致估计方法和有界单调定理,这些方法可以应用于规范场理论中的其他复杂涡旋问题。扭涡解是能量最小化的圆柱对称场构型。同时给出了涡旋解在原点和无穷远处的尖锐渐近估计。
{"title":"Twisted Vortices in Two-Component Ginzburg–Landau Theory","authors":"Lei Cao,&nbsp;Xiao Chen","doi":"10.1002/mma.70088","DOIUrl":"https://doi.org/10.1002/mma.70088","url":null,"abstract":"<div>\u0000 \u0000 <p>In this note, a brief introduction to the physical and mathematical background of the two-component Ginzburg–Landau theory is given. From this theory, we derive a boundary value problem whose solution can be obtained in part by solving a minimization problem using the technique of variational method, except that two of the eight boundary conditions cannot be satisfied. To overcome the difficulty of recovering the full set of boundary conditions, we employ a variety of methods, including the uniform estimation method and the bounded monotonic theorem, which may be applied to other complicated vortex problems in gauge field theories. The twisted vortex solutions are obtained as energy-minimizing cylindrically symmetric field configurations. We also give the sharp asymptotic estimates for the twisted vortex solutions at the origin and infinity.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"48 18","pages":"16303-16310"},"PeriodicalIF":1.8,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145480040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric Sinc Method to Solve Non-Newtonian Integro Differential Equations 求解非牛顿积分微分方程的几何Sinc方法
IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Pub Date : 2025-09-27 DOI: 10.1002/mma.70170
Amer Darweesh, Kamel Al-Khaled, Rahaf I. Al Bkeirat

In this work, we introduce a novel numerical technique for solving geometric differential equations, termed the geometric sinc method (G-Sinc method). This method constructs highly accurate approximations by leveraging both the geometric structure of the underlying problem and the analytical strength of the sinc function. To accommodate the geometric features of the solution domain, we define a modified G-Sinc basis and develop a corresponding computational framework. Several illustrative examples are presented to demonstrate the method's accuracy and efficiency. Comparative results with known exact solutions and conventional numerical approaches show that the G-Sinc method offers several key advantages: improved accuracy with fewer grid points, better handling of boundary singularities, and enhanced stability for complex geometries. These results indicate that the G-Sinc method is a powerful and promising tool for solving a broad class of geometric differential equations with superior precision and computational efficiency.

在这项工作中,我们介绍了一种新的求解几何微分方程的数值技术,称为几何sinc方法(G-Sinc方法)。这种方法通过利用潜在问题的几何结构和sinc函数的分析强度来构建高度精确的近似值。为了适应解域的几何特征,我们定义了一个改进的G-Sinc基,并开发了相应的计算框架。算例验证了该方法的准确性和有效性。与已知精确解和传统数值方法的比较结果表明,G-Sinc方法具有几个关键优势:用更少的网格点提高精度,更好地处理边界奇点,增强复杂几何形状的稳定性。这些结果表明,G-Sinc方法是一种强大而有前途的工具,可用于求解一类广泛的几何微分方程,具有优越的精度和计算效率。
{"title":"Geometric Sinc Method to Solve Non-Newtonian Integro Differential Equations","authors":"Amer Darweesh,&nbsp;Kamel Al-Khaled,&nbsp;Rahaf I. Al Bkeirat","doi":"10.1002/mma.70170","DOIUrl":"https://doi.org/10.1002/mma.70170","url":null,"abstract":"<div>\u0000 \u0000 <p>In this work, we introduce a novel numerical technique for solving geometric differential equations, termed the geometric sinc method (G-Sinc method). This method constructs highly accurate approximations by leveraging both the geometric structure of the underlying problem and the analytical strength of the sinc function. To accommodate the geometric features of the solution domain, we define a modified G-Sinc basis and develop a corresponding computational framework. Several illustrative examples are presented to demonstrate the method's accuracy and efficiency. Comparative results with known exact solutions and conventional numerical approaches show that the G-Sinc method offers several key advantages: improved accuracy with fewer grid points, better handling of boundary singularities, and enhanced stability for complex geometries. These results indicate that the G-Sinc method is a powerful and promising tool for solving a broad class of geometric differential equations with superior precision and computational efficiency.</p>\u0000 </div>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"49 2","pages":"539-549"},"PeriodicalIF":1.8,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145766373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Mathematical Methods in the Applied Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1