Pub Date : 2016-02-24DOI: 10.1186/s12900-016-0055-7
Dimitrios Georgios Kontopoulos, Dimitrios Vlachakis, Georgia Tsiliki, Sofia Kossida
The term ‘molecular cartography’ encompasses a family of computational methods for two-dimensional transformation of protein structures and analysis of their physicochemical properties. The underlying algorithms comprise multiple manual steps, whereas the few existing implementations typically restrict the user to a very limited set of molecular descriptors.
We present Structuprint, a free standalone software that fully automates the rendering of protein surface maps, given?- at the very least - a directory with a PDB file and an amino acid property. The tool comes with a default database of 328 descriptors, which can be extended or substituted by user-provided ones. The core algorithm comprises the generation of a mould of the protein surface, which is subsequently converted to a sphere and mapped to two dimensions, using the Miller cylindrical projection. Structuprint is partly optimized for multicore computers, making the rendering of animations of entire molecular dynamics simulations feasible.
Structuprint is an efficient application, implementing a molecular cartography algorithm for protein surfaces. According to the results of a benchmark, its memory requirements and execution time are reasonable, allowing it to run even on low-end personal computers. We believe that it will be of use?- primarily but not exclusively - to structural biologists and computational biochemists.
{"title":"Structuprint: a scalable and extensible tool for two-dimensional representation of protein surfaces","authors":"Dimitrios Georgios Kontopoulos, Dimitrios Vlachakis, Georgia Tsiliki, Sofia Kossida","doi":"10.1186/s12900-016-0055-7","DOIUrl":"https://doi.org/10.1186/s12900-016-0055-7","url":null,"abstract":"<p>The term ‘molecular cartography’ encompasses a family of computational methods for two-dimensional transformation of protein structures and analysis of their physicochemical properties. The underlying algorithms comprise multiple manual steps, whereas the few existing implementations typically restrict the user to a very limited set of molecular descriptors.</p><p>We present Structuprint, a free standalone software that fully automates the rendering of protein surface maps, given?- at the very least - a directory with a PDB file and an amino acid property. The tool comes with a default database of 328 descriptors, which can be extended or substituted by user-provided ones. The core algorithm comprises the generation of a mould of the protein surface, which is subsequently converted to a sphere and mapped to two dimensions, using the Miller cylindrical projection. Structuprint is partly optimized for multicore computers, making the rendering of animations of entire molecular dynamics simulations feasible.</p><p>Structuprint is an efficient application, implementing a molecular cartography algorithm for protein surfaces. According to the results of a benchmark, its memory requirements and execution time are reasonable, allowing it to run even on low-end personal computers. We believe that it will be of use?- primarily but not exclusively - to structural biologists and computational biochemists.</p>","PeriodicalId":498,"journal":{"name":"BMC Structural Biology","volume":"16 1","pages":""},"PeriodicalIF":2.222,"publicationDate":"2016-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12900-016-0055-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4924492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-02-11DOI: 10.1186/s12900-016-0053-9
Yongbin Xu, Jianyun Guo, Xiaoling Jin, Jin-Sik Kim, Ying Ji, Shengdi Fan, Nam-Chul Ha, Chun-Shan Quan
The universal stress proteins (USP) family member UspE is a tandem-type USP that consists of two Usp domains. The UspE expression levels of the Escherichia coli (E. coli) become elevated in response to oxidative stress and DNA damaging agents, including exposure to mitomycin C, cadmium, and hydrogen peroxide. It has been shown that UspA family members are survival factors during cellular growth arrest. The structures and functions of the UspA family members control the growth of E. coli in animal hosts. While several UspA family members have known structures, the structure of E. coli UspE remains to be elucidated.
To understand the biochemical function of UspE, we have determined the crystal structure of E. coli UspE at 3.2?? resolution. The asymmetric unit contains two protomers related by a non-crystallographic symmetry, and each protomer contains two tandem Usp domains. The crystal structure shows that UspE is folded into a fan-shaped structure similar to that of the tandem-type Usp protein PMI1202 from Proteus mirabilis, and it has a hydrophobic cavity that binds its ligand. Structural analysis revealed that E. coli UspE has two metal ion binding sites, and isothermal titration calorimetry suggested the presence of two Cd2+ binding sites with a Kd value of 38.3–242.7?μM. Structural analysis suggested that E. coli UspE has two Cd2+ binding sites (Site I: His117, His 119; Site II: His193, His244).
The results show that the UspE structure has a hydrophobic pocket. This pocket is strongly bound to an unidentified ligand. Combined with a previous study, the ligand is probably related to an intermediate in lipid A biosynthesis. Subsequently, sequence analysis found that UspE has an ATP binding motif (Gly269- X2-Gly272-X9-Gly282-Asn) in its C-terminal domain, which was confirmed by in vitro ATPase activity monitored using Kinase-Glo? Luminescent Kinase Assay. However, the residues constituting this motif were disordered in the crystal structure, reflecting their intrinsic flexibility. ITC experiments revealed that the UspE probably has two Cd2+ binding sites. The His117, His 119, His193, and His244 residues within the β-barrel domain are necessary for Cd2+ binding to UspE protein. As mentioned above, USPs are associated with several functions, such as cadmium binding, ATPase function, and involvement in lipid A biosynthesis by some unknown way.
{"title":"Crystal structure and functional implications of the tandem-type universal stress protein UspE from Escherichia coli","authors":"Yongbin Xu, Jianyun Guo, Xiaoling Jin, Jin-Sik Kim, Ying Ji, Shengdi Fan, Nam-Chul Ha, Chun-Shan Quan","doi":"10.1186/s12900-016-0053-9","DOIUrl":"https://doi.org/10.1186/s12900-016-0053-9","url":null,"abstract":"<p>The universal stress proteins (USP) family member UspE is a tandem-type USP that consists of two Usp domains. The UspE expression levels of the <i>Escherichia coli</i> (<i>E. coli</i>) become elevated in response to oxidative stress and DNA damaging agents, including exposure to mitomycin C, cadmium, and hydrogen peroxide. It has been shown that UspA family members are survival factors during cellular growth arrest. The structures and functions of the UspA family members control the growth of <i>E. coli</i> in animal hosts. While several UspA family members have known structures, the structure of <i>E. coli</i> UspE remains to be elucidated.</p><p>To understand the biochemical function of UspE, we have determined the crystal structure of <i>E. coli</i> UspE at 3.2?? resolution. The asymmetric unit contains two protomers related by a non-crystallographic symmetry, and each protomer contains two tandem Usp domains. The crystal structure shows that UspE is folded into a fan-shaped structure similar to that of the tandem-type Usp protein PMI1202 from <i>Proteus mirabilis</i>, and it has a hydrophobic cavity that binds its ligand. Structural analysis revealed that <i>E. coli</i> UspE has two metal ion binding sites, and isothermal titration calorimetry suggested the presence of two Cd<sup>2+</sup> binding sites with a K<sub>d</sub> value of 38.3–242.7?μM. Structural analysis suggested that <i>E. coli</i> UspE has two Cd<sup>2+</sup> binding sites (Site I: His117, His 119; Site II: His193, His244).</p><p>The results show that the UspE structure has a hydrophobic pocket. This pocket is strongly bound to an unidentified ligand. Combined with a previous study, the ligand is probably related to an intermediate in lipid A biosynthesis. Subsequently, sequence analysis found that UspE has an ATP binding motif (Gly<sup>269</sup>- X<sub>2</sub>-Gly<sup>272</sup>-X<sub>9</sub>-Gly<sup>282</sup>-Asn) in its C-terminal domain, which was confirmed by <i>in vitro</i> ATPase activity monitored using Kinase-Glo? Luminescent Kinase Assay. However, the residues constituting this motif were disordered in the crystal structure, reflecting their intrinsic flexibility. ITC experiments revealed that the UspE probably has two Cd<sup>2+</sup> binding sites. The His117, His 119, His193, and His244 residues within the β-barrel domain are necessary for Cd<sup>2+</sup> binding to UspE protein. As mentioned above, USPs are associated with several functions, such as cadmium binding, ATPase function, and involvement in lipid A biosynthesis by some unknown way.</p>","PeriodicalId":498,"journal":{"name":"BMC Structural Biology","volume":"16 1","pages":""},"PeriodicalIF":2.222,"publicationDate":"2016-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12900-016-0053-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4447680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-12-29DOI: 10.1186/s12900-015-0051-3
Rebecca Surtees, Antonio Ariza, Emma K. Punch, Chi H. Trinh, Stuart D. Dowall, Roger Hewson, Julian A. Hiscox, John N. Barr, Thomas A. Edwards
Hazara virus (HAZV) is a member of the Bunyaviridae family of segmented negative stranded RNA viruses, and shares the same serogroup as Crimean-Congo haemorrhagic fever virus (CCHFV). CCHFV is responsible for fatal human disease with a mortality rate approaching 30 %, which has an increased recent incidence within southern Europe. There are no preventative or therapeutic treatments for CCHFV-mediated disease, and thus CCHFV is classified as a hazard group 4 pathogen. In contrast HAZV is not associated with serious human disease, although infection of interferon receptor knockout mice with either CCHFV or HAZV results in similar disease progression. To characterise further similarities between HAZV and CCHFV, and support the use of HAZV as a model for CCHFV infection, we investigated the structure of the HAZV nucleocapsid protein (N) and compared it to CCHFV N. N performs an essential role in the viral life cycle by encapsidating the viral RNA genome, and thus, N represents a potential therapeutic target.
We present the purification, crystallisation and crystal structure of HAZV N at 2.7 ? resolution. HAZV N was expressed as an N-terminal glutathione S-transferase (GST) fusion protein then purified using glutathione affinity chromatography followed by ion-exchange chromatography. HAZV N crystallised in the P212121 space group with unit cell parameters a = 64.99, b = 76.10, and c = 449.28 ?. HAZV N consists of a globular domain formed mostly of alpha helices derived from both the N- and C-termini, and an arm domain comprising two long alpha helices. HAZV N has a similar overall structure to CCHFV N, with their globular domains superposing with an RMSD = 0.70 ?, over 368 alpha carbons that share 59 % sequence identity. Four HAZV N monomers crystallised in the asymmetric unit, and their head-to-tail assembly reveals a potential interaction site between monomers.
The crystal structure of HAZV N reveals a close similarity to CCHFV N, supporting the use of HAZV as a model for CCHFV. Structural similarity between the N proteins should facilitate study of the CCHFV and HAZV replication cycles without the necessity of working under containment level 4 (CL-4) conditions.
{"title":"The crystal structure of the Hazara virus nucleocapsid protein","authors":"Rebecca Surtees, Antonio Ariza, Emma K. Punch, Chi H. Trinh, Stuart D. Dowall, Roger Hewson, Julian A. Hiscox, John N. Barr, Thomas A. Edwards","doi":"10.1186/s12900-015-0051-3","DOIUrl":"https://doi.org/10.1186/s12900-015-0051-3","url":null,"abstract":"<p>Hazara virus (HAZV) is a member of the <i>Bunyaviridae</i> family of segmented negative stranded RNA viruses, and shares the same serogroup as Crimean-Congo haemorrhagic fever virus (CCHFV). CCHFV is responsible for fatal human disease with a mortality rate approaching 30 %, which has an increased recent incidence within southern Europe. There are no preventative or therapeutic treatments for CCHFV-mediated disease, and thus CCHFV is classified as a hazard group 4 pathogen. In contrast HAZV is not associated with serious human disease, although infection of interferon receptor knockout mice with either CCHFV or HAZV results in similar disease progression. To characterise further similarities between HAZV and CCHFV, and support the use of HAZV as a model for CCHFV infection, we investigated the structure of the HAZV nucleocapsid protein (N) and compared it to CCHFV N. N performs an essential role in the viral life cycle by encapsidating the viral RNA genome, and thus, N represents a potential therapeutic target.</p><p>We present the purification, crystallisation and crystal structure of HAZV N at 2.7 ? resolution. HAZV N was expressed as an N-terminal glutathione S-transferase (GST) fusion protein then purified using glutathione affinity chromatography followed by ion-exchange chromatography. HAZV N crystallised in the P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> space group with unit cell parameters <i>a</i> = 64.99, <i>b</i> = 76.10, and <i>c</i> = 449.28 ?. HAZV N consists of a globular domain formed mostly of alpha helices derived from both the N- and C-termini, and an arm domain comprising two long alpha helices. HAZV N has a similar overall structure to CCHFV N, with their globular domains superposing with an RMSD = 0.70 ?, over 368 alpha carbons that share 59 % sequence identity. Four HAZV N monomers crystallised in the asymmetric unit, and their head-to-tail assembly reveals a potential interaction site between monomers.</p><p>The crystal structure of HAZV N reveals a close similarity to CCHFV N, supporting the use of HAZV as a model for CCHFV. Structural similarity between the N proteins should facilitate study of the CCHFV and HAZV replication cycles without the necessity of working under containment level 4 (CL-4) conditions.</p>","PeriodicalId":498,"journal":{"name":"BMC Structural Biology","volume":"15 1","pages":""},"PeriodicalIF":2.222,"publicationDate":"2015-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12900-015-0051-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5110646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2015-11-23DOI: 10.1186/s12900-015-0050-4
Surabhi Maheshwari, Michal Brylinski
Protein-protein interactions (PPIs) mediate the vast majority of biological processes, therefore, significant efforts have been directed to investigate PPIs to fully comprehend cellular functions. Predicting complex structures is critical to reveal molecular mechanisms by which proteins operate. Despite recent advances in the development of new methods to model macromolecular assemblies, most current methodologies are designed to work with experimentally determined protein structures. However, because only computer-generated models are available for a large number of proteins in a given genome, computational tools should tolerate structural inaccuracies in order to perform the genome-wide modeling of PPIs.
To address this problem, we developed eRankPPI, an algorithm for the identification of near-native conformations generated by protein docking using experimental structures as well as protein models. The scoring function implemented in eRankPPI employs multiple features including interface probability estimates calculated by eFindSitePPI and a novel contact-based symmetry score. In comparative benchmarks using representative datasets of homo- and hetero-complexes, we show that eRankPPI consistently outperforms state-of-the-art algorithms improving the success rate by ~10?%.