首页 > 最新文献

Landbauforschung最新文献

英文 中文
Floristic diversity in Short Rotation Coppice (SRC)plantations: Comparison between soil seed bank and recent vegetation 短轮作灌木林植物区系多样性:土壤种子库与近期植被的比较
IF 2.3 4区 农林科学 Q3 AGRICULTURE, MULTIDISCIPLINARY Pub Date : 2013-01-01 DOI: 10.3220/LBF_2013_221-228
S. Baum, M. Weih, A. Bolte
In the near future an increase in Short Rotation Coppice (SRC) plantations is to be expected. The objective was to compare the recent vegetation and the soil seed bank in SRC plantations to reveal the functioning of the soil seed bank for phytodiversity and vegetation structure after reconversion of SRC plantations into arable land. For the analyses, above-ground vegetation surveys and soil seed bank samples of six German and four Swedish SRC plantations were used. Similarity in composition of soil seed banks and recent vegetation was low in terms of species, plant strategy types, species habitat preferences and seed longevity. On average, the proportion of common species of recent vegetation and soil seed bank was 8.4 % (± 6.7 % SD). The recent vegetation was dominated by competitive (c) plant species while in the soil seed banks highest proportions were detected for ruderals (r) and competitors (c). Species with long-term persistent seeds had the highest contribution to both the recent vegetation and the soil seed banks. Grassland species had highest species habitat preference proportion in the recent vegetation. The soil seed banks contained predominantly ruderal species and woodland species were almost absent. Due to the poor coherence of seed bank vs. recent vegetation, we conclude that the site history has only a minor influence on phytodiversity in SRC plantations, suggesting that recent vegetation composition is mainly due to the species pool of the adjacent vegetation and site conditions like below-canopy irradiance and site nutrition.
在不久的将来,短期轮作林(SRC)人工林的数量有望增加。目的是比较SRC人工林最近的植被和土壤种子库,以揭示土壤种子库在SRC人工林恢复为耕地后对植物多样性和植被结构的作用。为了进行分析,使用了6个德国和4个瑞典SRC人工林的地上植被调查和土壤种子库样本。土壤种子库在物种组成、植物策略类型、物种生境偏好和种子寿命等方面与近代植被的相似性较低。近期植被和土壤种子库中常见物种的平均比例为8.4%(±6.7% SD)。近期植被以竞争植物(c)为主,而土壤种子库中,粗生植物(r)和竞争植物(c)所占比例最高。具有长期种子的物种对近期植被和土壤种子库的贡献最大。在近代植被中,草地物种生境偏好比例最高。土壤种子库以野生物种为主,林地物种基本缺失。由于种子库与近期植被的一致性较差,我们得出结论,立地历史对SRC人工林植物多样性的影响很小,这表明近期植被组成主要取决于邻近植被的物种库和立地条件,如冠层下光照和立地营养。
{"title":"Floristic diversity in Short Rotation Coppice (SRC)plantations: Comparison between soil seed bank and recent vegetation","authors":"S. Baum, M. Weih, A. Bolte","doi":"10.3220/LBF_2013_221-228","DOIUrl":"https://doi.org/10.3220/LBF_2013_221-228","url":null,"abstract":"In the near future an increase in Short Rotation Coppice (SRC) plantations is to be expected. The objective was to compare the recent vegetation and the soil seed bank in SRC plantations to reveal the functioning of the soil seed bank for phytodiversity and vegetation structure after reconversion of SRC plantations into arable land. For the analyses, above-ground vegetation surveys and soil seed bank samples of six German and four Swedish SRC plantations were used. Similarity in composition of soil seed banks and recent vegetation was low in terms of species, plant strategy types, species habitat preferences and seed longevity. On average, the proportion of common species of recent vegetation and soil seed bank was 8.4 % (± 6.7 % SD). The recent vegetation was dominated by competitive (c) plant species while in the soil seed banks highest proportions were detected for ruderals (r) and competitors (c). Species with long-term persistent seeds had the highest contribution to both the recent vegetation and the soil seed banks. Grassland species had highest species habitat preference proportion in the recent vegetation. The soil seed banks contained predominantly ruderal species and woodland species were almost absent. Due to the poor coherence of seed bank vs. recent vegetation, we conclude that the site history has only a minor influence on phytodiversity in SRC plantations, suggesting that recent vegetation composition is mainly due to the species pool of the adjacent vegetation and site conditions like below-canopy irradiance and site nutrition.","PeriodicalId":49922,"journal":{"name":"Landbauforschung","volume":"63 1","pages":"221-228"},"PeriodicalIF":2.3,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69575806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
期刊
Landbauforschung
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1