For a real number $0<epsilon <1/3$, we show that the anti-canonical volume of an
$epsilon $-klt Fano
$3$-fold is at most
$3,200/epsilon ^4$, and the order
$O(1/epsilon ^4)$ is sharp.
For a real number $0<epsilon <1/3$, we show that the anti-canonical volume of an
$epsilon $-klt Fano
$3$-fold is at most
$3,200/epsilon ^4$, and the order
$O(1/epsilon ^4)$ is sharp.
We generalise and improve some recent bounds for additive energies of modular roots. Our arguments use a variety of techniques, including those from additive combinatorics, algebraic number theory and the geometry of numbers. We give applications of these results to new bounds on correlations between Salié sums and to a new equidistribution estimate for the set of modular roots of primes.
The reduced peripheral system was introduced by Milnor [18] in the 1950s for the study of links up to link-homotopy, that is, up to homotopies leaving distinct components disjoint; this invariant, however, fails to classify links up to link-homotopy for links of four or more components. The purpose of this paper is to show that the topological information which is detected by Milnor’s reduced peripheral system is actually 4-dimensional. The main result gives indeed a complete characterization of links having the same reduced peripheral system, in terms of ribbon solid tori in 4–space up to ribbon link-homotopy. The proof relies on an intermediate characterization given in terms of welded diagrams up to self-virtualization, hence providing a purely topological application of the combinatorial theory of welded links.
We present necessary and sufficient conditions for an operator of the type sum of squares to be globally hypoelliptic on $T times G$, where T is a compact Riemannian manifold and G is a compact Lie group. These conditions involve the global hypoellipticity of a system of vector fields on G and are weaker than Hörmander’s condition, while generalizing the well known Diophantine conditions on the torus. Examples of operators satisfying these conditions in the general setting are provided.
We consider the equivariant Kasparov category associated to an étale groupoid, and by leveraging its triangulated structure we study its localization at the ‘weakly contractible’ objects, extending previous work by R. Meyer and R. Nest. We prove the subcategory of weakly contractible objects is complementary to the localizing subcategory of projective objects, which are defined in terms of ‘compactly induced’ algebras with respect to certain proper subgroupoids related to isotropy. The resulting ‘strong’ Baum–Connes conjecture implies the classical one, and its formulation clarifies several permanence properties and other functorial statements. We present multiple applications, including consequences for the Universal Coefficient Theorem, a generalized ‘going-down’ principle, injectivity results for groupoids that are amenable at infinity, the Baum–Connes conjecture for group bundles, and a result about the invariance of K-groups of twisted groupoid $C^*$-algebras under homotopy of twists.
Valuation rings and perfectoid rings are examples of (usually non-Noetherian) rings that behave in some sense like regular rings. We give and study an extension of the concept of regular local rings to non-Noetherian rings so that it includes valuation and perfectoid rings and it is related to Grothendieck’s definition of formal smoothness as in the Noetherian case. For that, we have to take into account the topologies. We prove a descent theorem for regularity along flat homomorphisms (in fact for homomorphisms of finite flat dimension), extending some known results from the Noetherian to the non-Noetherian case, as well as generalizing some recent results in the non-Noetherian case, such as the descent of regularity from perfectoid rings by B. Bhatt, S. Iyengar and L. Ma.