首页 > 最新文献

Journal of Symbolic Computation最新文献

英文 中文
On other two representations of the C-recursive integer sequences by terms in modular arithmetic 关于c递归整数序列在模算术中的其他两种表示
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-02-19 DOI: 10.1016/j.jsc.2025.102433
Mihai Prunescu
<div><div>If <span><math><mi>s</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> is a sequence satisfying a recurrence rule of the form:<span><span><span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>+</mo><mi>d</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>s</mi><mo>(</mo><mi>n</mi><mo>+</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>d</mi></mrow></msub><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span></span></span> with coefficients <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>Z</mi></math></span>, then there exist <span><math><mi>b</mi><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>N</mi></math></span> such that for all <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> the following representations work:<span><span><span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mrow><mo>⌊</mo><mfrac><mrow><mo>[</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi><mo>(</mo><mi>d</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>+</mo><mo>⌈</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌉</mo></mrow></msup><mo>+</mo><mi>A</mi><mo>(</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>]</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>B</mi><mo>(</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>n</mi></mrow></msup></mrow></mfrac><mo>⌋</mo></mrow><mo>,</mo></math></span></span></span><span><span><span><math><mi>s</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>|</mo></mrow></mfrac><mrow><mo>{</mo><mrow><mo>[</mo><mrow><mo>(</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mrow><mo>⌈</mo><mi>n</mi><mo>/</mo><mn>2</mn><mo>⌉</mo></mrow></mrow></msup><mo>−</mo><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup><mi>sgn</mi><mo>(</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mi>A</mi><mo>(</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow></mrow></mrow><mspace></mspace><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><mi>B</mi><mo>(</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo><mo>]</mo><mspace></mspace><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>}</mo><mo>.</mo></math></span></span></span> Here <span><math><mi>A</mi><mo>(</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> and <span><math><mi>B</mi><mo>(</mo><mi>b</mi><mo>,</mo><mi>n</mi><mo>)</mo></math></span> are polynomials with integer coefficients in <span><math><msup><mrow><mi>b</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. Th
如果 s∈NN 是一个满足递推规则的序列,其形式为:s(n+d)+α1s(n+d-1)+...+αds(n)=0,系数 αi∈Z,那么存在 b,n0∈N,使得对于所有 n≥n0,以下表示有效:s(n)=⌊[bn(d-2)+⌈n/2⌉+A(b,n)]modB(b,n)b(d-1)n⌋,s(n)=1|αd|{[(bn(d-1)+⌈n/2⌉-bnsgn(αd)A(b,n))modB(b,n)]modbn}。这里的 A(b,n) 和 B(b,n) 是在 bn 中具有整数系数的多项式。它们可以写成:bn2f(b-n)=A(b,n)B(b,n),其中有理函数 f(z) 是序列 (s(n)) 的生成函数。如果 s∈ZN,那么 s 可以表示为属于 NN 的序列(s(n)+cn+1)的上述任意表示法与几何级数 cn+1 之间的差。这里 c∈N 是一个足够大的常数。
{"title":"On other two representations of the C-recursive integer sequences by terms in modular arithmetic","authors":"Mihai Prunescu","doi":"10.1016/j.jsc.2025.102433","DOIUrl":"10.1016/j.jsc.2025.102433","url":null,"abstract":"&lt;div&gt;&lt;div&gt;If &lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; is a sequence satisfying a recurrence rule of the form:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; with coefficients &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;Z&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, then there exist &lt;span&gt;&lt;math&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that for all &lt;span&gt;&lt;math&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; the following representations work:&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌊&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mo&gt;⌋&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt;&lt;span&gt;&lt;span&gt;&lt;span&gt;&lt;math&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;[&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;⌈&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;/&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;⌉&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;sgn&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;]&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mrow&gt;&lt;mi&gt;mod&lt;/mi&gt;&lt;/mrow&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;/span&gt;&lt;/span&gt; Here &lt;span&gt;&lt;math&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;B&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; are polynomials with integer coefficients in &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;. Th","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102433"},"PeriodicalIF":0.6,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143454136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wilf-Zeilberger seeds and non-trivial hypergeometric identities Wilf-Zeilberger种子和非平凡超几何恒等式
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-01-28 DOI: 10.1016/j.jsc.2025.102421
Kam Cheong Au
We introduce a systematic approach for generating Wilf-Zeilberger-pairs, and prove some hypergeometric identities conjectured by J. Guillera, Z.W. Sun, Y. Zhao and others, including two Ramanujan-1/π4, one 1/π3 formulas as well as a remarkable series for ζ(5).
我们介绍了一种生成wilf - zeilberger对的系统方法,并证明了J. Guillera, Z.W. Sun, Y. Zhao等人猜想的一些超几何恒等式,包括两个Ramanujan-1/π4,一个1/π3公式以及ζ(5)的一个显著级数。
{"title":"Wilf-Zeilberger seeds and non-trivial hypergeometric identities","authors":"Kam Cheong Au","doi":"10.1016/j.jsc.2025.102421","DOIUrl":"10.1016/j.jsc.2025.102421","url":null,"abstract":"<div><div>We introduce a systematic approach for generating Wilf-Zeilberger-pairs, and prove some hypergeometric identities conjectured by J. Guillera, Z.W. Sun, Y. Zhao and others, including two Ramanujan-<span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>, one <span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> formulas as well as a remarkable series for <span><math><mi>ζ</mi><mo>(</mo><mn>5</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102421"},"PeriodicalIF":0.6,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First-order factors of linear Mahler operators 线性马勒算子的一阶因子
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-01-28 DOI: 10.1016/j.jsc.2025.102424
Frédéric Chyzak , Thomas Dreyfus , Philippe Dumas , Marc Mezzarobba
We develop and compare two algorithms for computing first-order right-hand factors in the ring of linear Mahler operators rMr++1M+0 where 0,,r are polynomials in x and Mx=xbM for some integer b2. In other words, we give algorithms for finding all formal infinite product solutions of linear functional equations r(x)f(xbr)++1(x)f(xb)+0(x)f(x)=0.
The first of our algorithms is adapted from Petkovšek's classical algorithm for the analogous problem in the case of linear recurrences. The second one proceeds by computing a basis of generalized power series solutions of the functional equation and by using Hermite–Padé approximants to detect those linear combinations of the solutions that correspond to first-order factors.
We present implementations of both algorithms and discuss their use in combination with criteria from the literature to prove the differential transcendence of power series solutions of Mahler equations.
我们开发并比较了两种计算线性Mahler算子(rMr+…+ l1m + l0)环上一阶右手因子的算法,其中l0,…,lr是整数b≥2时x和Mx=xbM中的多项式。换句话说,我们给出了求线性泛函方程的所有形式无穷积解的算法,即:r(x)f(xbr)+…+ 1(x)f(xb)+ 0(x)f(x)=0。我们的第一个算法改编自Petkovšek的经典算法,用于线性递归的类似问题。第二步是计算泛函方程的广义幂级数解的基础,并使用hermite - pad近似来检测与一阶因子对应的解的线性组合。我们给出了这两种算法的实现,并结合文献中的判据讨论了它们的应用,以证明马勒方程幂级数解的微分超越性。
{"title":"First-order factors of linear Mahler operators","authors":"Frédéric Chyzak ,&nbsp;Thomas Dreyfus ,&nbsp;Philippe Dumas ,&nbsp;Marc Mezzarobba","doi":"10.1016/j.jsc.2025.102424","DOIUrl":"10.1016/j.jsc.2025.102424","url":null,"abstract":"<div><div>We develop and compare two algorithms for computing first-order right-hand factors in the ring of linear Mahler operators <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub><msup><mrow><mi>M</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>M</mi><mo>+</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> where <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span> are polynomials in <em>x</em> and <span><math><mi>M</mi><mi>x</mi><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>b</mi></mrow></msup><mi>M</mi></math></span> for some integer <span><math><mi>b</mi><mo>≥</mo><mn>2</mn></math></span>. In other words, we give algorithms for finding all formal infinite product solutions of linear functional equations <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>b</mi></mrow><mrow><mi>r</mi></mrow></msup></mrow></msup><mo>)</mo><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>b</mi></mrow></msup><mo>)</mo><mo>+</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</div><div>The first of our algorithms is adapted from Petkovšek's classical algorithm for the analogous problem in the case of linear recurrences. The second one proceeds by computing a basis of generalized power series solutions of the functional equation and by using Hermite–Padé approximants to detect those linear combinations of the solutions that correspond to first-order factors.</div><div>We present implementations of both algorithms and discuss their use in combination with criteria from the literature to prove the differential transcendence of power series solutions of Mahler equations.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102424"},"PeriodicalIF":0.6,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143288038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The conjugacy problem and canonical representatives in finitely generated nilpotent groups 有限生成幂零群中的共轭问题与正则代表
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-01-27 DOI: 10.1016/j.jsc.2025.102422
Bettina Eick, Óscar Fernández Ayala
We introduce a variation on the conjugacy problem for elements and subgroups in a finitely generated nilpotent group G given by a nilpotent presentation and we describe effective algorithms for its solution. While the classical conjugacy problem takes elements or subgroups a and b of G and asks to construct gG with ag=b, our variation defines and determines a canonical representative CanoG(a) in aG. This allows to solve the conjugacy problem via an equality test CanoG(a)=CanoG(b). Additionally, our algorithms compute the associated centralizers or normalizers, respectively. We exhibit a variety of examples to demonstrate that our new methods are highly effective and often outperform the existing methods to solve the conjugacy problems for elements and subgroups in finitely generated nilpotent groups.
通过幂零表示,给出了有限生成幂零群G中元素和子群共轭问题的一个变体,并描述了求解该问题的有效算法。经典共轭问题取G的元素或子群a和b,要求构造G∈G,且ag=b,而我们的变分定义并确定了ag中的典型代表CanoG(a)。这允许通过等式检验CanoG(a)=CanoG(b)来解决共轭问题。此外,我们的算法分别计算相关的中心化器或规范化器。我们展示了各种各样的例子来证明我们的新方法是非常有效的,并且通常优于现有的方法来解决有限生成的幂零群中的元素和子群的共轭问题。
{"title":"The conjugacy problem and canonical representatives in finitely generated nilpotent groups","authors":"Bettina Eick,&nbsp;Óscar Fernández Ayala","doi":"10.1016/j.jsc.2025.102422","DOIUrl":"10.1016/j.jsc.2025.102422","url":null,"abstract":"<div><div>We introduce a variation on the conjugacy problem for elements and subgroups in a finitely generated nilpotent group <em>G</em> given by a nilpotent presentation and we describe effective algorithms for its solution. While the classical conjugacy problem takes elements or subgroups <em>a</em> and <em>b</em> of <em>G</em> and asks to construct <span><math><mi>g</mi><mo>∈</mo><mi>G</mi></math></span> with <span><math><msup><mrow><mi>a</mi></mrow><mrow><mi>g</mi></mrow></msup><mo>=</mo><mi>b</mi></math></span>, our variation defines and determines a <em>canonical representative</em> <span><math><mi>C</mi><mi>a</mi><mi>n</mi><msub><mrow><mi>o</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>)</mo></math></span> in <span><math><msup><mrow><mi>a</mi></mrow><mrow><mi>G</mi></mrow></msup></math></span>. This allows to solve the conjugacy problem via an equality test <span><math><mi>C</mi><mi>a</mi><mi>n</mi><msub><mrow><mi>o</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>)</mo><mo>=</mo><mi>C</mi><mi>a</mi><mi>n</mi><msub><mrow><mi>o</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>b</mi><mo>)</mo></math></span>. Additionally, our algorithms compute the associated centralizers or normalizers, respectively. We exhibit a variety of examples to demonstrate that our new methods are highly effective and often outperform the existing methods to solve the conjugacy problems for elements and subgroups in finitely generated nilpotent groups.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102422"},"PeriodicalIF":0.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the existence of telescopers for P-recursive sequences 关于p -递归序列的望远镜的存在性
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-01-27 DOI: 10.1016/j.jsc.2025.102423
Lixin Du
We extend the criterion on the existence of telescopers for hypergeometric terms to the case of P-recursive sequences. This criterion is based on the concept of integral bases and the generalized Abramov-Petkovšek reduction for P-recursive sequences.
我们将超几何项的伸缩子的存在性判据推广到p -递推序列。这个判据是基于积分基的概念和p -递归序列的广义Abramov-Petkovšek约简。
{"title":"On the existence of telescopers for P-recursive sequences","authors":"Lixin Du","doi":"10.1016/j.jsc.2025.102423","DOIUrl":"10.1016/j.jsc.2025.102423","url":null,"abstract":"<div><div>We extend the criterion on the existence of telescopers for hypergeometric terms to the case of P-recursive sequences. This criterion is based on the concept of integral bases and the generalized Abramov-Petkovšek reduction for P-recursive sequences.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102423"},"PeriodicalIF":0.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143177145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast evaluation of generalized Todd polynomials: Applications to MacMahon's partition analysis and integer programming 广义Todd多项式的快速求值:在MacMahon划分分析和整数规划中的应用
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-01-27 DOI: 10.1016/j.jsc.2025.102420
Guoce Xin , Yingrui Zhang , ZiHao Zhang
The Todd polynomials, denoted as tdk(b1,b2,,bm), are characterized by their generating function:k0tdksk=i=1mbisebis1. These polynomials serve as fundamental components in the Todd class of toric varieties – a concept of significant relevance in the study of lattice polytopes and number theory. We identify that generalized Todd polynomials emerge naturally within the realm of MacMahon's partition analysis, particularly in the context of computing the Ehrhart series. We introduce an efficient method for the evaluation of generalized Todd polynomials for numerical values of bi. This is achieved through the development of expedited operations in the quotient ring Zp[[s]] modulo sd, where p is a large prime. The practical implications of our work are demonstrated through two applications: firstly, we facilitate a recalculated resolution of the Ehrhart series for magic squares of order 6, a problem initially addressed by the first author, reducing computation time from 70 days to approximately 1 day; secondly, we present a polynomial-time algorithm for Integer Linear Programming in the scenario where the dimension is fixed, exhibiting a notable enhancement in computational efficiency.
Todd多项式,表示为tdk(b1,b2,…,bm),其特征在于它们的生成函数:∑k≥0tdksk=∏i=1mbisebis−1。这些多项式作为环变Todd类的基本组成部分,环变Todd是晶格多面体和数论研究中重要的相关概念。我们确定广义Todd多项式在MacMahon的划分分析领域自然出现,特别是在计算Ehrhart级数的背景下。给出了一种求bi数值的广义Todd多项式的有效方法。这是通过开发商环Zp[[s]]模sd中的加速运算来实现的,其中p是一个大素数。我们工作的实际意义通过两个应用得到了证明:首先,我们促进了对6阶幻方的Ehrhart级数的重新计算解决,这个问题最初由第一作者解决,将计算时间从70天减少到大约1天;其次,我们提出了一种在维数固定的情况下求解整数线性规划的多项式时间算法,该算法显著提高了计算效率。
{"title":"Fast evaluation of generalized Todd polynomials: Applications to MacMahon's partition analysis and integer programming","authors":"Guoce Xin ,&nbsp;Yingrui Zhang ,&nbsp;ZiHao Zhang","doi":"10.1016/j.jsc.2025.102420","DOIUrl":"10.1016/j.jsc.2025.102420","url":null,"abstract":"<div><div>The Todd polynomials, denoted as <span><math><msub><mrow><mtext>td</mtext></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span>, are characterized by their generating function:<span><span><span><math><munder><mo>∑</mo><mrow><mi>k</mi><mo>≥</mo><mn>0</mn></mrow></munder><msub><mrow><mtext>td</mtext></mrow><mrow><mi>k</mi></mrow></msub><msup><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>=</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><mfrac><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>s</mi></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>s</mi></mrow></msup><mo>−</mo><mn>1</mn></mrow></mfrac><mo>.</mo></math></span></span></span> These polynomials serve as fundamental components in the Todd class of toric varieties – a concept of significant relevance in the study of lattice polytopes and number theory. We identify that generalized Todd polynomials emerge naturally within the realm of MacMahon's partition analysis, particularly in the context of computing the Ehrhart series. We introduce an efficient method for the evaluation of generalized Todd polynomials for numerical values of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>. This is achieved through the development of expedited operations in the quotient ring <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>[</mo><mo>[</mo><mi>s</mi><mo>]</mo><mo>]</mo></math></span> modulo <span><math><msup><mrow><mi>s</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, where <em>p</em> is a large prime. The practical implications of our work are demonstrated through two applications: firstly, we facilitate a recalculated resolution of the Ehrhart series for magic squares of order 6, a problem initially addressed by the first author, reducing computation time from 70 days to approximately 1 day; secondly, we present a polynomial-time algorithm for Integer Linear Programming in the scenario where the dimension is fixed, exhibiting a notable enhancement in computational efficiency.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102420"},"PeriodicalIF":0.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143176021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solving order 3 difference equations 解3阶差分方程
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2025-01-13 DOI: 10.1016/j.jsc.2025.102419
Heba Bou KaedBey, Mark van Hoeij, Man Cheung Tsui
We classify order 3 linear difference operators over C(x) that are solvable in terms of lower order difference operators. To prove this result, we introduce the notion of absolute irreducibility for difference modules, and classify modules of arbitrary dimension that are irreducible but not absolutely irreducible.
我们将C(x)上的3阶线性差分算子分类为可解的低阶差分算子。为了证明这一结果,我们引入了差分模的绝对不可约的概念,并对任意维不可约但并非绝对不可约的模进行了分类。
{"title":"Solving order 3 difference equations","authors":"Heba Bou KaedBey,&nbsp;Mark van Hoeij,&nbsp;Man Cheung Tsui","doi":"10.1016/j.jsc.2025.102419","DOIUrl":"10.1016/j.jsc.2025.102419","url":null,"abstract":"<div><div>We classify order 3 linear difference operators over <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> that are solvable in terms of lower order difference operators. To prove this result, we introduce the notion of absolute irreducibility for difference modules, and classify modules of arbitrary dimension that are irreducible but not absolutely irreducible.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"129 ","pages":"Article 102419"},"PeriodicalIF":0.6,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143159664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Algebra and Geometry: A special issue in memory and honor of Agnes Szanto 计算代数与几何:纪念和纪念阿格尼斯·桑托的特刊
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-12-17 DOI: 10.1016/j.jsc.2024.102418
Carlos D'Andrea, Hoon Hong, Evelyne Hubert, Teresa Krick
{"title":"Computational Algebra and Geometry: A special issue in memory and honor of Agnes Szanto","authors":"Carlos D'Andrea,&nbsp;Hoon Hong,&nbsp;Evelyne Hubert,&nbsp;Teresa Krick","doi":"10.1016/j.jsc.2024.102418","DOIUrl":"10.1016/j.jsc.2024.102418","url":null,"abstract":"","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"129 ","pages":"Article 102418"},"PeriodicalIF":0.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143160245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic equations in the lamplighter group 点灯组的二次方程
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-12-09 DOI: 10.1016/j.jsc.2024.102417
Alexander Ushakov, Chloe Weiers
In this paper we study the complexity of solving quadratic equations in the lamplighter group. We give a complete classification of cases (depending on genus and other characteristics of a given equation) when the problem is NP-complete or polynomial-time decidable. We notice that the conjugacy problem can be solved in linear time. Finally, we prove that the problem belongs to the class XP.
本文研究了点灯群中二次方程求解的复杂性问题。当问题是np完全或多项式时间可决定时,我们给出了完全分类(取决于给定方程的属和其他特征)。我们注意到共轭问题可以在线性时间内求解。最后证明了该问题属于XP类。
{"title":"Quadratic equations in the lamplighter group","authors":"Alexander Ushakov,&nbsp;Chloe Weiers","doi":"10.1016/j.jsc.2024.102417","DOIUrl":"10.1016/j.jsc.2024.102417","url":null,"abstract":"<div><div>In this paper we study the complexity of solving quadratic equations in the lamplighter group. We give a complete classification of cases (depending on genus and other characteristics of a given equation) when the problem is <strong>NP</strong>-complete or polynomial-time decidable. We notice that the conjugacy problem can be solved in linear time. Finally, we prove that the problem belongs to the class <strong>XP</strong>.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"129 ","pages":"Article 102417"},"PeriodicalIF":0.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143128507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topological closure of formal powers series ideals and application to topological rewriting theory 形式幂级数理想的拓扑闭包及其在拓扑改写理论中的应用
IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-12-04 DOI: 10.1016/j.jsc.2024.102416
Cyrille Chenavier, Thomas Cluzeau, Adya Musson-Leymarie
We investigate formal power series ideals and their relationship to topological rewriting theory. Since commutative formal power series algebras are Zariski rings, their ideals are closed for the adic topology defined by the maximal ideal generated by the indeterminates. We provide a constructive proof of this result which, given a formal power series in the topological closure of an ideal, consists in computing a cofactor representation of the series with respect to a standard basis of the ideal. We apply this result in the context of topological rewriting theory, where two natural notions of confluence arise: topological confluence and infinitary confluence. We give explicit examples illustrating that in general, infinitary confluence is a strictly stronger notion than topological confluence. Using topological closure of ideals, we finally show that in the context of rewriting theory on commutative formal power series, infinitary and topological confluences are equivalent when the monomial order considered is compatible with the degree.
研究了形式幂级数理想及其与拓扑重写理论的关系。由于交换形式幂级数代数是Zariski环,它们的理想对于由不定式生成的极大理想所定义的进进拓扑是封闭的。给出了一个理想拓扑闭包中的形式幂级数的构造性证明,该结果在于计算该级数相对于理想的标准基的余因子表示。我们将这一结果应用于拓扑重写理论,在拓扑重写理论中产生了两个自然的合流概念:拓扑合流和无限合流。我们给出了明确的例子说明,在一般情况下,无限合流是一个严格强于拓扑合流的概念。利用理想的拓扑闭包,我们最终证明了在可交换形式幂级数重写理论的背景下,当所考虑的单阶与度相容时,无穷收敛与拓扑收敛是等价的。
{"title":"Topological closure of formal powers series ideals and application to topological rewriting theory","authors":"Cyrille Chenavier,&nbsp;Thomas Cluzeau,&nbsp;Adya Musson-Leymarie","doi":"10.1016/j.jsc.2024.102416","DOIUrl":"10.1016/j.jsc.2024.102416","url":null,"abstract":"<div><div>We investigate formal power series ideals and their relationship to topological rewriting theory. Since commutative formal power series algebras are Zariski rings, their ideals are closed for the adic topology defined by the maximal ideal generated by the indeterminates. We provide a constructive proof of this result which, given a formal power series in the topological closure of an ideal, consists in computing a cofactor representation of the series with respect to a standard basis of the ideal. We apply this result in the context of topological rewriting theory, where two natural notions of confluence arise: topological confluence and infinitary confluence. We give explicit examples illustrating that in general, infinitary confluence is a strictly stronger notion than topological confluence. Using topological closure of ideals, we finally show that in the context of rewriting theory on commutative formal power series, infinitary and topological confluences are equivalent when the monomial order considered is compatible with the degree.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"129 ","pages":"Article 102416"},"PeriodicalIF":0.6,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143159654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Symbolic Computation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1