首页 > 最新文献

Nano Materials Science最新文献

英文 中文
Interface self-assembly of plasmonic nanolayer for sensitive detection of heavy metals in water using NELIBS 利用 NELIBS 在界面自组装等离子纳米层以灵敏检测水中的重金属
Pub Date : 2024-04-01 DOI: 10.1016/j.nanoms.2024.04.008
Yuying Zhu, Yuanchao Liu, Siyi Xiao, Chen Niu, Condon Lau, Zhe Li, Zebiao Li, Binbin Zhou, Zongsong Gan, Lianbo Guo
{"title":"Interface self-assembly of plasmonic nanolayer for sensitive detection of heavy metals in water using NELIBS","authors":"Yuying Zhu, Yuanchao Liu, Siyi Xiao, Chen Niu, Condon Lau, Zhe Li, Zebiao Li, Binbin Zhou, Zongsong Gan, Lianbo Guo","doi":"10.1016/j.nanoms.2024.04.008","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.04.008","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"58 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140767100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile and adjustable production of self–standing oxygen–doped graphene membranes for optimized oxygen evolution electrocatalysis 为优化氧进化电催化而方便、可调地生产自立式掺氧石墨烯膜
Pub Date : 2024-04-01 DOI: 10.1016/j.nanoms.2024.03.003
Liangyu Chen, Lan Yang, Liying Hu, Minghao Jin, Chenxi Xu, Binhong He, Wei Wang, Ying Liu, Gangyong Li, Zhaohui Hou
{"title":"Facile and adjustable production of self–standing oxygen–doped graphene membranes for optimized oxygen evolution electrocatalysis","authors":"Liangyu Chen, Lan Yang, Liying Hu, Minghao Jin, Chenxi Xu, Binhong He, Wei Wang, Ying Liu, Gangyong Li, Zhaohui Hou","doi":"10.1016/j.nanoms.2024.03.003","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.03.003","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"452 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140773143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances of photolithography patterning of quantum dots for micro-display applications 用于微型显示器的量子点光刻图案化的最新进展
Pub Date : 2024-04-01 DOI: 10.1016/j.nanoms.2024.03.005
Xuemin Kong, X. Fan, Yuhui Wang, Yunshu Luo, Yihang Chen, Tingzhu Wu, Zhong Chen, Yue Lin, Shuli Wang
{"title":"Recent advances of photolithography patterning of quantum dots for micro-display applications","authors":"Xuemin Kong, X. Fan, Yuhui Wang, Yunshu Luo, Yihang Chen, Tingzhu Wu, Zhong Chen, Yue Lin, Shuli Wang","doi":"10.1016/j.nanoms.2024.03.005","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.03.005","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"130 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140790514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The importance of properly correcting the electric double layer effect in unravelling the intrinsic kinetics of electrode reactions 正确修正电双层效应对揭示电极反应内在动力学的重要性
Pub Date : 2024-04-01 DOI: 10.1016/j.nanoms.2024.03.008
Bing-Yu Liu, Er-fei Zhen, Wei Chen, Lu-Lu Zhang, Jun Cai, Yanxin Chen
{"title":"The importance of properly correcting the electric double layer effect in unravelling the intrinsic kinetics of electrode reactions","authors":"Bing-Yu Liu, Er-fei Zhen, Wei Chen, Lu-Lu Zhang, Jun Cai, Yanxin Chen","doi":"10.1016/j.nanoms.2024.03.008","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.03.008","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"753 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140772930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances and prospects in the development of GdVO4-based photocatalysts for water pollutants removal activity: A review 基于 GdVO4 的光催化剂在开发水污染物去除活性方面的进展和前景:综述
Pub Date : 2024-04-01 DOI: 10.1016/j.nanoms.2024.04.001
S. Roopan, T. Chellapandi, Roshan Mohammed Shebeer, E. Akhil, Jerry D. Alappat, Nived Rajeshkumar Nair, Manasa Madhusoodanan, D. Chitra
{"title":"Advances and prospects in the development of GdVO4-based photocatalysts for water pollutants removal activity: A review","authors":"S. Roopan, T. Chellapandi, Roshan Mohammed Shebeer, E. Akhil, Jerry D. Alappat, Nived Rajeshkumar Nair, Manasa Madhusoodanan, D. Chitra","doi":"10.1016/j.nanoms.2024.04.001","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.04.001","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"22 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140768198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of densification process on mechanical enhancement of graphene laminates 致密化工艺对石墨烯层压板机械性能提升的影响
Pub Date : 2024-04-01 DOI: 10.1016/j.nanoms.2024.03.001
Yue Zhu, Yalong Liao, Meng Wang, Jingxin Dai, Chaoshuai Lei, Xiaobo Liu, Pengyu Mu, Wenjing Li, Hao Zhang
{"title":"Effect of densification process on mechanical enhancement of graphene laminates","authors":"Yue Zhu, Yalong Liao, Meng Wang, Jingxin Dai, Chaoshuai Lei, Xiaobo Liu, Pengyu Mu, Wenjing Li, Hao Zhang","doi":"10.1016/j.nanoms.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.03.001","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140760290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ni–Zn bimetal-organic framework nanoprobes reinforced polymeric coating to achieve dual-responsive warning of coating damage and interfacial corrosion 镍锌双金属有机框架纳米探针加固聚合物涂层,实现涂层损伤和界面腐蚀双重响应预警
Pub Date : 2024-04-01 DOI: 10.1016/j.nanoms.2024.03.009
Dezhi Jiao, Chengbao Liu, Yujie Qiang, Shuoqi Li, Cong Sun, Peimin Hou, Lanyue Cui, Rong-chang Zeng
{"title":"Ni–Zn bimetal-organic framework nanoprobes reinforced polymeric coating to achieve dual-responsive warning of coating damage and interfacial corrosion","authors":"Dezhi Jiao, Chengbao Liu, Yujie Qiang, Shuoqi Li, Cong Sun, Peimin Hou, Lanyue Cui, Rong-chang Zeng","doi":"10.1016/j.nanoms.2024.03.009","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.03.009","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"41 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140771024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances of graphitic carbon nitride (g-C3N4) based materials for photocatalytic applications: A review 基于石墨氮化碳(g-C3N4)的光催化应用材料的最新进展:综述
Pub Date : 2024-04-01 DOI: 10.1016/j.nanoms.2024.04.002
Tengfei Bao, Xuejing Li, Shuming Li, Heng Rao, Xiaoju Men, Ping She, Jun-sheng Qin
{"title":"Recent advances of graphitic carbon nitride (g-C3N4) based materials for photocatalytic applications: A review","authors":"Tengfei Bao, Xuejing Li, Shuming Li, Heng Rao, Xiaoju Men, Ping She, Jun-sheng Qin","doi":"10.1016/j.nanoms.2024.04.002","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.04.002","url":null,"abstract":"","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"75 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140759047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutionary prediction of novel biphenylene networks as an anode material for lithium and potassium-ion batteries 作为锂离子和钾离子电池负极材料的新型联苯网络的进化预测
Pub Date : 2024-03-18 DOI: 10.1016/j.nanoms.2024.02.008
Adewale Hammed Pasanaje, Nirpendra Singh
The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms. Recent experimental synthesis of the biphenylene network (C) motivated us to discover new BN-doped biphenylene networks (CBN, CBN, and BN) and their applications in Li(K)-ion batteries using an evolutionary algorithm and the first-principles calculations. The thermodynamic, thermal, and mechanical stability calculations and decomposition energy suggest the experimental synthesis of predicted biphenylene networks. Adding BN in the biphenylene networks shows a transition from metal to semimetal to semiconductor. The BN biphenylene network shows an HSE06 band gap of 3.06 ​eV, smaller than -BN. The CBN and CBN biphenylene networks offer Li(K) adsorption energy of −0.56 ​eV (−0.81 ​eV) and −0.14 ​eV (−0.28 ​eV), respectively, with a low diffusion barrier of 178 ​meV (58 ​meV) and 251 ​meV (79 ​meV), and a large diffusion constant of 8.50 ​× ​10 (8.78 ​× ​10) and 5.33 ​× ​10 (4.12 ​× ​10), respectively. The calculated Li(K) theoretical capacity of CBN and CBN biphenylene networks is 940.21 ​mA ​h ​g (899.01 ​mA ​h ​g) and 768.08 ​mA ​h ​g (808.47 ​mA ​h ​g), with a low open circuit voltage of 0.34 ​V (0.23 ​V), and 0.17 ​V (0.13 ​V), resulting in very high energy density of 2576.18 ​mW ​h ​g (2445.31 ​mW ​h ​g) and 2181.35 ​mW ​h ​g (2263.72 ​mW ​h ​g), respectively. Only a slight volume change of 1.6% confirms the robustness of BN-doped carbon-based biphenylene networks. Our findings present novel 2D BN-doped biphenylene networks and a pathway toward their applications in metal-ion batteries.
在先进计算算法的帮助下,更容易发现具有引人注目特性的新型材料。最近联苯网络(C)的实验合成促使我们利用进化算法和第一原理计算发现了新的掺杂 BN 的联苯网络(CBN、CBN 和 BN)及其在锂离子电池中的应用。热力学、热和机械稳定性计算以及分解能表明,可以通过实验合成所预测的联苯网络。在联苯网络中加入 BN 后,会出现从金属到半金属再到半导体的转变。BN 联苯网络的 HSE06 带隙为 3.06 eV,小于 -BN。CBN 和 CBN 联苯网络对 Li(K) 的吸附能分别为 -0.56 eV (-0.81 eV) 和 -0.14 eV (-0.28 eV),扩散势垒分别为 178 meV (58 meV) 和 251 meV (79 meV),扩散常数分别为 8.50 × 10 (8.78 × 10) 和 5.33 × 10 (4.12 × 10)。计算得出的 CBN 和 CBN 联苯网络的 Li(K) 理论容量分别为 940.21 mA h g(899.01 mA h g)和 768.08 mA h g(808.47 mA h g),低开路电压为 0.34 V (0.23 V) 和 0.17 V (0.13 V),能量密度分别高达 2576.18 mW h g (2445.31 mW h g) 和 2181.35 mW h g (2263.72 mW h g)。仅 1.6% 的微小体积变化证实了掺杂 BN 的碳基联苯网络的稳健性。我们的研究结果展示了新型二维 BN 掺杂联苯网络及其在金属离子电池中的应用途径。
{"title":"Evolutionary prediction of novel biphenylene networks as an anode material for lithium and potassium-ion batteries","authors":"Adewale Hammed Pasanaje, Nirpendra Singh","doi":"10.1016/j.nanoms.2024.02.008","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.02.008","url":null,"abstract":"The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms. Recent experimental synthesis of the biphenylene network (C) motivated us to discover new BN-doped biphenylene networks (CBN, CBN, and BN) and their applications in Li(K)-ion batteries using an evolutionary algorithm and the first-principles calculations. The thermodynamic, thermal, and mechanical stability calculations and decomposition energy suggest the experimental synthesis of predicted biphenylene networks. Adding BN in the biphenylene networks shows a transition from metal to semimetal to semiconductor. The BN biphenylene network shows an HSE06 band gap of 3.06 ​eV, smaller than -BN. The CBN and CBN biphenylene networks offer Li(K) adsorption energy of −0.56 ​eV (−0.81 ​eV) and −0.14 ​eV (−0.28 ​eV), respectively, with a low diffusion barrier of 178 ​meV (58 ​meV) and 251 ​meV (79 ​meV), and a large diffusion constant of 8.50 ​× ​10 (8.78 ​× ​10) and 5.33 ​× ​10 (4.12 ​× ​10), respectively. The calculated Li(K) theoretical capacity of CBN and CBN biphenylene networks is 940.21 ​mA ​h ​g (899.01 ​mA ​h ​g) and 768.08 ​mA ​h ​g (808.47 ​mA ​h ​g), with a low open circuit voltage of 0.34 ​V (0.23 ​V), and 0.17 ​V (0.13 ​V), resulting in very high energy density of 2576.18 ​mW ​h ​g (2445.31 ​mW ​h ​g) and 2181.35 ​mW ​h ​g (2263.72 ​mW ​h ​g), respectively. Only a slight volume change of 1.6% confirms the robustness of BN-doped carbon-based biphenylene networks. Our findings present novel 2D BN-doped biphenylene networks and a pathway toward their applications in metal-ion batteries.","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140155123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of nanomaterials in antifouling: A review 纳米材料在防污中的应用:综述
Pub Date : 2024-03-16 DOI: 10.1016/j.nanoms.2024.01.009
Nan Wang, Ruiyong Zhang, Kunpeng Liu, Yuxin Zhang, Xin Shi, Wolfgang Sand, Baorong Hou
With the continuous development of the marine economy and the upgrading of marine infrastructure, the increasing marine engineering equipment is facing a serious problem of marine fouling. However, developing marine antifouling materials and antifouling technologies is extremely difficult due to the complexity of the marine environment and the biodiversity of the fouling. Therefore, it is the key breakthrough to develop advanced materials for solving marine fouling problems. Nanomaterials with small dimensions and controlled micro-structure have outstanding antifouling efficiency and great promise for various antifouling fields. Herein, the development of antifouling nanomaterials and technologies in recent years are reviewed for aspects of types of antifouling nanomaterials, technologies of antifouling, and potential application of antifouling. The antifouling nanomaterials are categorized as non-metal-based nanomaterials, metal-based nanomaterials, polymeric nanomaterials, composite nanomaterials, and others. Additionally, the potential applications of antifouling nanomaterials, including marine antifouling, water treatment, and medical antifouling are discussed. Finally, we proposed the perspectives of research and development trends of the antifouling nanomaterials. This overview may promote the development of new efficient antifouling nanomaterials and develop their potential commercial applications.
随着海洋经济的不断发展和海洋基础设施的不断升级,日益增多的海洋工程装备面临着严重的海洋污损问题。然而,由于海洋环境的复杂性和污损生物的多样性,开发海洋防污材料和防污技术极为困难。因此,开发先进材料是解决海洋污损问题的关键突破口。尺寸小、微结构可控的纳米材料具有优异的防污效率,在各种防污领域大有可为。本文从防污纳米材料的种类、防污技术、防污的潜在应用等方面综述了近年来防污纳米材料和技术的发展。防污纳米材料分为非金属基纳米材料、金属基纳米材料、聚合物纳米材料、复合纳米材料和其他材料。此外,还讨论了防污纳米材料的潜在应用,包括海洋防污、水处理和医疗防污。最后,我们提出了防污纳米材料的研究和发展趋势展望。本综述可促进新型高效防污纳米材料的开发及其潜在的商业应用。
{"title":"Application of nanomaterials in antifouling: A review","authors":"Nan Wang, Ruiyong Zhang, Kunpeng Liu, Yuxin Zhang, Xin Shi, Wolfgang Sand, Baorong Hou","doi":"10.1016/j.nanoms.2024.01.009","DOIUrl":"https://doi.org/10.1016/j.nanoms.2024.01.009","url":null,"abstract":"With the continuous development of the marine economy and the upgrading of marine infrastructure, the increasing marine engineering equipment is facing a serious problem of marine fouling. However, developing marine antifouling materials and antifouling technologies is extremely difficult due to the complexity of the marine environment and the biodiversity of the fouling. Therefore, it is the key breakthrough to develop advanced materials for solving marine fouling problems. Nanomaterials with small dimensions and controlled micro-structure have outstanding antifouling efficiency and great promise for various antifouling fields. Herein, the development of antifouling nanomaterials and technologies in recent years are reviewed for aspects of types of antifouling nanomaterials, technologies of antifouling, and potential application of antifouling. The antifouling nanomaterials are categorized as non-metal-based nanomaterials, metal-based nanomaterials, polymeric nanomaterials, composite nanomaterials, and others. Additionally, the potential applications of antifouling nanomaterials, including marine antifouling, water treatment, and medical antifouling are discussed. Finally, we proposed the perspectives of research and development trends of the antifouling nanomaterials. This overview may promote the development of new efficient antifouling nanomaterials and develop their potential commercial applications.","PeriodicalId":501090,"journal":{"name":"Nano Materials Science","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140155315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano Materials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1