首页 > 最新文献

arXiv - PHYS - High Energy Physics - Experiment最新文献

英文 中文
Muon/Pion Identification at BESIII based on Variational Quantum Classifier 基于变分量子分类器的 BESIII μ介子/离子识别
Pub Date : 2024-08-25 DOI: arxiv-2408.13812
Zhipeng Yao, Xingtao Huang, Teng Li, Weidong Li, Tao Lin, Jiaheng Zou
In collider physics experiments, particle identification (PID), i. e. theidentification of the charged particle species in the detector is usually oneof the most crucial tools in data analysis. In the past decade, machinelearning techniques have gradually become one of the mainstream methods in PID,usually providing superior discrimination power compared to classicalalgorithms. In recent years, quantum machine learning (QML) has bridged thetraditional machine learning and the quantum computing techniques, providingfurther improvement potential for traditional machine learning models. In thiswork, targeting at the $mu^{pm} /pi^{pm}$ discrimination problem at theBESIII experiment, we developed a variational quantum classifier (VQC) withnine qubits. Using the IBM quantum simulator, we studied various encodingcircuits and variational ansatzes to explore their performance. Classicaloptimizers are able to minimize the loss function in quantum-classical hybridmodels effectively. A comparison of VQC with the traditional multiple layerperception neural network reveals they perform similarly on the same datasets.This illustrates the feasibility to apply quantum machine learning to dataanalysis in collider physics experiments in the future.
在对撞机物理实验中,粒子识别(PID),即识别探测器中的带电粒子种类通常是数据分析中最关键的工具之一。近十年来,机器学习技术逐渐成为粒子识别的主流方法之一,与经典算法相比,机器学习技术通常具有更强的识别能力。近年来,量子机器学习(QML)在传统机器学习和量子计算技术之间架起了一座桥梁,为传统机器学习模型提供了进一步改进的潜力。在这项工作中,针对$mu^{pm} /pi^{pm/pi^{pm}$的辨别问题,我们开发了一种具有九个量子比特的变分量子分类器(VQC)。利用 IBM 量子模拟器,我们研究了各种编码电路和变分算法,以探索它们的性能。经典优化器能够有效地最小化量子经典混合模型中的损失函数。我们将 VQC 与传统的多层感知神经网络进行了比较,发现它们在相同数据集上的表现相似,这说明未来将量子机器学习应用于对撞机物理实验的数据分析是可行的。
{"title":"Muon/Pion Identification at BESIII based on Variational Quantum Classifier","authors":"Zhipeng Yao, Xingtao Huang, Teng Li, Weidong Li, Tao Lin, Jiaheng Zou","doi":"arxiv-2408.13812","DOIUrl":"https://doi.org/arxiv-2408.13812","url":null,"abstract":"In collider physics experiments, particle identification (PID), i. e. the\u0000identification of the charged particle species in the detector is usually one\u0000of the most crucial tools in data analysis. In the past decade, machine\u0000learning techniques have gradually become one of the mainstream methods in PID,\u0000usually providing superior discrimination power compared to classical\u0000algorithms. In recent years, quantum machine learning (QML) has bridged the\u0000traditional machine learning and the quantum computing techniques, providing\u0000further improvement potential for traditional machine learning models. In this\u0000work, targeting at the $mu^{pm} /pi^{pm}$ discrimination problem at the\u0000BESIII experiment, we developed a variational quantum classifier (VQC) with\u0000nine qubits. Using the IBM quantum simulator, we studied various encoding\u0000circuits and variational ansatzes to explore their performance. Classical\u0000optimizers are able to minimize the loss function in quantum-classical hybrid\u0000models effectively. A comparison of VQC with the traditional multiple layer\u0000perception neural network reveals they perform similarly on the same datasets.\u0000This illustrates the feasibility to apply quantum machine learning to data\u0000analysis in collider physics experiments in the future.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HEP Benchmark Suite: Enhancing Efficiency and Sustainability in Worldwide LHC Computing Infrastructures HEP 基准套件:提高全球大型强子对撞机计算基础设施的效率和可持续性
Pub Date : 2024-08-22 DOI: arxiv-2408.12445
Natalia Szczepanek, David Britton, Alessandro Di Girolamo, Ewoud Ketele, Ivan Glushkov, Domenico Giordano, Ladislav Ondris, Emanuele Simili, Gonzalo Menendez Borge
As the scientific community continues to push the boundaries of computingcapabilities, there is a growing responsibility to address the associatedenergy consumption and carbon footprint. This responsibility extends to theWorldwide LHC Computing Grid (WLCG), encompassing over 170 sites in 40countries, supporting vital computing, disk, tape storage and network for LHCexperiments. Ensuring efficient operational practices across these diversesites is crucial beyond mere performance metrics. This paper introduces the HEP Benchmark suite, an enhanced suite designed tomeasure computing resource performance uniformly across all WLCG sites, usingHEPScore23 as performance unit. The suite expands beyond assessing only theexecution speed via HEPScore23. In fact the suite incorporates metrics such asmachine load, memory usage, memory swap, and notably, power consumption. Itsadaptability and user-friendly interface enable comprehensive acquisition ofsystem-related data alongside benchmarking. Throughout 2023, this tool underwent rigorous testing across numerous WLCGsites. The focus was on studying compute job slot performance and correlatingthese with fabric metrics. Initial analysis unveiled the tool's efficacy inestablishing a standardized model for compute resource utilization whilepinpointing anomalies, often stemming from site misconfigurations. This paper aims to elucidate the tool's functionality and present the resultsobtained from extensive testing. By disseminating this information, theobjective is to raise awareness within the community about this probing model,fostering broader adoption and encouraging responsible computing practices thatprioritize both performance and environmental impact mitigation.
随着科学界不断挑战计算能力的极限,解决相关能源消耗和碳足迹问题的责任也日益重大。这一责任延伸到了全球大型强子对撞机计算网格(WLCG),它包括 40 个国家的 170 多个站点,为大型强子对撞机实验提供重要的计算、磁盘、磁带存储和网络支持。除了性能指标之外,确保这些不同站点的高效运行也至关重要。本文介绍了 "HEP 基准 "套件,这是一个增强型套件,旨在使用 "HEPScore23 "作为性能单位,统一测量所有 WLCG 场址的计算资源性能。该套件不仅仅通过 HEPScore23 评估执行速度。事实上,该套件还包括机器负载、内存使用、内存交换等指标,尤其是功耗。该工具的适应性和用户友好界面使其在进行基准测试的同时,还能全面获取系统相关数据。在整个 2023 年,该工具在多个 WLCG 站点进行了严格测试。重点是研究计算作业插槽性能,并将其与结构指标相关联。初步分析揭示了该工具在建立计算资源利用标准化模型方面的功效,同时还指出了通常由站点错误配置引起的异常情况。本文旨在阐明该工具的功能,并介绍通过广泛测试获得的结果。通过传播这些信息,目的是提高社区对这一探测模型的认识,促进更广泛的采用,鼓励负责任的计算实践,优先考虑性能和环境影响的缓解。
{"title":"HEP Benchmark Suite: Enhancing Efficiency and Sustainability in Worldwide LHC Computing Infrastructures","authors":"Natalia Szczepanek, David Britton, Alessandro Di Girolamo, Ewoud Ketele, Ivan Glushkov, Domenico Giordano, Ladislav Ondris, Emanuele Simili, Gonzalo Menendez Borge","doi":"arxiv-2408.12445","DOIUrl":"https://doi.org/arxiv-2408.12445","url":null,"abstract":"As the scientific community continues to push the boundaries of computing\u0000capabilities, there is a growing responsibility to address the associated\u0000energy consumption and carbon footprint. This responsibility extends to the\u0000Worldwide LHC Computing Grid (WLCG), encompassing over 170 sites in 40\u0000countries, supporting vital computing, disk, tape storage and network for LHC\u0000experiments. Ensuring efficient operational practices across these diverse\u0000sites is crucial beyond mere performance metrics. This paper introduces the HEP Benchmark suite, an enhanced suite designed to\u0000measure computing resource performance uniformly across all WLCG sites, using\u0000HEPScore23 as performance unit. The suite expands beyond assessing only the\u0000execution speed via HEPScore23. In fact the suite incorporates metrics such as\u0000machine load, memory usage, memory swap, and notably, power consumption. Its\u0000adaptability and user-friendly interface enable comprehensive acquisition of\u0000system-related data alongside benchmarking. Throughout 2023, this tool underwent rigorous testing across numerous WLCG\u0000sites. The focus was on studying compute job slot performance and correlating\u0000these with fabric metrics. Initial analysis unveiled the tool's efficacy in\u0000establishing a standardized model for compute resource utilization while\u0000pinpointing anomalies, often stemming from site misconfigurations. This paper aims to elucidate the tool's functionality and present the results\u0000obtained from extensive testing. By disseminating this information, the\u0000objective is to raise awareness within the community about this probing model,\u0000fostering broader adoption and encouraging responsible computing practices that\u0000prioritize both performance and environmental impact mitigation.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vision Calorimeter for Anti-neutron Reconstruction: A Baseline 用于反中子重建的视觉热量计:基线
Pub Date : 2024-08-20 DOI: arxiv-2408.10599
Hongtian Yu, Yangu Li, Mingrui Wu, Letian Shen, Yue Liu, Yunxuan Song, Qixiang Ye, Xiaorui Lyu, Yajun Mao, Yangheng Zheng, Yunfan Liu
In high-energy physics, anti-neutrons ($bar{n}$) are fundamental particlesthat frequently appear as final-state particles, and the reconstruction oftheir kinematic properties provides an important probe for understanding thegoverning principles. However, this confronts significant challengesinstrumentally with the electromagnetic calorimeter (EMC), a typicalexperimental sensor but recovering the information of incident $bar{n}$insufficiently. In this study, we introduce Vision Calorimeter (ViC), abaseline method for anti-neutron reconstruction that leverages deep learningdetectors to analyze the implicit relationships between EMC responses andincident $bar{n}$ characteristics. Our motivation lies in that energydistributions of $bar{n}$ samples deposited in the EMC cell arrays embody richcontextual information. Converted to 2-D images, such contextual energydistributions can be used to predict the status of $bar{n}$ ($i.e.$, incidentposition and momentum) through a deep learning detector along with pseudobounding boxes and a specified training objective. Experimental resultsdemonstrate that ViC substantially outperforms the conventional reconstructionapproach, reducing the prediction error of incident position by 42.81% (from17.31$^{circ}$ to 9.90$^{circ}$). More importantly, this study for the firsttime realizes the measurement of incident $bar{n}$ momentum, underscoring thepotential of deep learning detectors for particle reconstruction. Code isavailable at https://github.com/yuhongtian17/ViC.
在高能物理中,反中子($bar{n}$)是经常作为终态粒子出现的基本粒子,重建它们的运动学特性为理解其支配原理提供了一个重要的探针。然而,电磁量热仪(EMC)作为一种典型的实验传感器,却无法充分恢复入射$bar{n}$的信息,这在仪器上面临着巨大的挑战。在这项研究中,我们引入了Vision Calorimeter(ViC),这是一种反中子重构的基准方法,它利用深度学习检测器来分析电磁量热计响应与入射$bar{n}$特征之间的隐含关系。我们的动机在于,沉积在 EMC 单元阵列中的 $bar{n}$ 样品的能量分布包含了丰富的上下文信息。转换成二维图像后,这种上下文能量分布可以通过深度学习检测器、伪包围盒和指定的训练目标来预测$bar{n}$的状态(即$bar{n}$的事件位置和动量)。实验结果表明,ViC大大优于传统的重构方法,入射位置的预测误差降低了42.81%(从17.31$^{circ}$降至9.90$^{circ}$)。更重要的是,这项研究首次实现了对入射$bar{n}$动量的测量,凸显了深度学习探测器在粒子重构方面的潜力。代码见 https://github.com/yuhongtian17/ViC。
{"title":"Vision Calorimeter for Anti-neutron Reconstruction: A Baseline","authors":"Hongtian Yu, Yangu Li, Mingrui Wu, Letian Shen, Yue Liu, Yunxuan Song, Qixiang Ye, Xiaorui Lyu, Yajun Mao, Yangheng Zheng, Yunfan Liu","doi":"arxiv-2408.10599","DOIUrl":"https://doi.org/arxiv-2408.10599","url":null,"abstract":"In high-energy physics, anti-neutrons ($bar{n}$) are fundamental particles\u0000that frequently appear as final-state particles, and the reconstruction of\u0000their kinematic properties provides an important probe for understanding the\u0000governing principles. However, this confronts significant challenges\u0000instrumentally with the electromagnetic calorimeter (EMC), a typical\u0000experimental sensor but recovering the information of incident $bar{n}$\u0000insufficiently. In this study, we introduce Vision Calorimeter (ViC), a\u0000baseline method for anti-neutron reconstruction that leverages deep learning\u0000detectors to analyze the implicit relationships between EMC responses and\u0000incident $bar{n}$ characteristics. Our motivation lies in that energy\u0000distributions of $bar{n}$ samples deposited in the EMC cell arrays embody rich\u0000contextual information. Converted to 2-D images, such contextual energy\u0000distributions can be used to predict the status of $bar{n}$ ($i.e.$, incident\u0000position and momentum) through a deep learning detector along with pseudo\u0000bounding boxes and a specified training objective. Experimental results\u0000demonstrate that ViC substantially outperforms the conventional reconstruction\u0000approach, reducing the prediction error of incident position by 42.81% (from\u000017.31$^{circ}$ to 9.90$^{circ}$). More importantly, this study for the first\u0000time realizes the measurement of incident $bar{n}$ momentum, underscoring the\u0000potential of deep learning detectors for particle reconstruction. Code is\u0000available at https://github.com/yuhongtian17/ViC.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EFT Workshop at Notre Dame 圣母大学的 EFT 工作坊
Pub Date : 2024-08-20 DOI: arxiv-2408.11229
Nick Smith, Daniel Spitzbart, Jennet Dickinson, Jon Wilson, Lindsey Gray, Kelci Mohrman, Saptaparna Bhattacharya, Andrea Piccinelli, Titas Roy, Garyfallia Paspalaki, Duarte Fontes, Adam Martin, William Shepherd, Sergio Sánchez Cruz, Dorival Goncalves, Andrei Gritsan, Harrison Prosper, Tom Junk, Kyle Cranmer, Michael Peskin, Andrew Gilbert, Jonathon Langford, Frank Petriello, Luca Mantani, Andrew Wightman, Charlotte Knight, Prasanth Shyamsundar, Aashwin Basnet, Giacomo Boldrini, Kevin Lannon
The LPC EFT workshop was held April 25-26, 2024 at the University of NotreDame. The workshop was organized into five thematic sessions: "how far beyondlinear" discusses issues of truncation and validity in interpretation ofresults with an eye towards practicality; "reconstruction-level results" visitsthe question of how best to design analyses directly targeting inference of EFTparameters; "logistics of combining likelihoods" addresses the challenges ofbringing a diverse array of measurements into a cohesive whole; "unfoldedresults" tackles the question of designing fiducial measurements for later usein EFT interpretations, and the benefits and limitations of unfolding; and"building a sample library" addresses how best to generate simulation samplesfor use in data analysis. This document serves as a summary of presentations,subsequent discussions, and actionable items identified over the course of theworkshop.
LPC EFT 讲习班于 2024 年 4 月 25 日至 26 日在圣母大学举行。研讨会分为五个专题会议:"超越线性的距离有多远 "讨论了结果解释中的截断和有效性问题,并着眼于实用性;"重建层面的结果 "探讨了如何以最佳方式设计直接针对 EFT 参数推断的分析;"组合可能性的后勤工作 "解决了将各种测量结果整合为一个整体所面临的挑战;"展开结果 "解决了设计用于 EFT 解释的基准测量的问题,以及展开的好处和局限性;"建立样本库 "解决了如何最好地生成用于数据分析的模拟样本。本文件总结了研讨会期间的发言、后续讨论和确定的可操作项目。
{"title":"EFT Workshop at Notre Dame","authors":"Nick Smith, Daniel Spitzbart, Jennet Dickinson, Jon Wilson, Lindsey Gray, Kelci Mohrman, Saptaparna Bhattacharya, Andrea Piccinelli, Titas Roy, Garyfallia Paspalaki, Duarte Fontes, Adam Martin, William Shepherd, Sergio Sánchez Cruz, Dorival Goncalves, Andrei Gritsan, Harrison Prosper, Tom Junk, Kyle Cranmer, Michael Peskin, Andrew Gilbert, Jonathon Langford, Frank Petriello, Luca Mantani, Andrew Wightman, Charlotte Knight, Prasanth Shyamsundar, Aashwin Basnet, Giacomo Boldrini, Kevin Lannon","doi":"arxiv-2408.11229","DOIUrl":"https://doi.org/arxiv-2408.11229","url":null,"abstract":"The LPC EFT workshop was held April 25-26, 2024 at the University of Notre\u0000Dame. The workshop was organized into five thematic sessions: \"how far beyond\u0000linear\" discusses issues of truncation and validity in interpretation of\u0000results with an eye towards practicality; \"reconstruction-level results\" visits\u0000the question of how best to design analyses directly targeting inference of EFT\u0000parameters; \"logistics of combining likelihoods\" addresses the challenges of\u0000bringing a diverse array of measurements into a cohesive whole; \"unfolded\u0000results\" tackles the question of designing fiducial measurements for later use\u0000in EFT interpretations, and the benefits and limitations of unfolding; and\u0000\"building a sample library\" addresses how best to generate simulation samples\u0000for use in data analysis. This document serves as a summary of presentations,\u0000subsequent discussions, and actionable items identified over the course of the\u0000workshop.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved measurements of $D^0 to K^-ell^+ν_ell$ and $D^+ to bar K^0ell^+ν_ell$ 改进的 $D^0 to K^-ell^+ν_ell$ 和 $D^+ to bar K^0ell^+ν_ell$ 测量方法
Pub Date : 2024-08-17 DOI: arxiv-2408.09087
BESIII Collaboration
Using 7.93 fb$^{-1}$ of $e^+e^-$ collision data collected at thecenter-of-mass energy of 3.773 GeV with the BESIII detector, we measure theabsolute branching fractions of $D^0to K^-e^+nu_e$, $D^0to K^-mu^+nu_mu$,$D^+to bar K^0e^+nu_e$, and $D^+to bar K^0mu^+nu_mu$ to be$(3.509pm0.009_{rm stat.}pm0.013_{rm syst.}) %$, $(3.408pm0.011_{rmstat.}pm0.013_{rm syst.}) %$, $(8.856pm0.039_{rm stat.}pm0.078_{rmsyst.}) %$, and $(8.661pm0.046_{rm stat.}pm0.080_{rm syst.}) %$,respectively. By performing a simultaneous fit to the partial decay rates ofthese four decays, the product of the hadronic form factor $f^K_+(0)$ and themodulus of the $cto s$ CKM matrix element $|V_{cs}|$ is determined to be$f^K_+(0)|V_{cs}|=0.7162pm0.0011_{rm stat.}pm0.0012_{rm syst.}$. Taking thevalue of $|V_{cs}|=0.97349pm0.00016$ from the standard model global fit orthat of $f^K_+(0)=0.7452pm0.0031$ from the LQCD calculation as input, wederive the results $f^K_+(0)=0.7357pm0.0011_{rm stat.}pm0.0012_{rm syst.}$and $|V_{cs}|=0.9611pm0.0015_{rm stat.}pm0.0016_{rm syst.}pm0.0040_{rmLQCD}$.
利用 BESIII 探测器在质量中心能量 3.773GeV,我们测得$D^0to K^-e^+nu_e$、$D^0to K^-mu^+nu_mu$、$D^+bar K^0e^+nu_e$和$D^+bar K^0mu^+nu_mu$的绝对分支分数分别为$(3.%$,$(3.408pm0.011_{rmstat.}pm0.013_{rm syst.})(%$),$(8.856pm0.039_{rm stat.}pm0.078_{rmsyst.}) (%$)和 $(8.661pm0.046_{rm stat.}pm0.080_{rm syst.}) (%$)。通过同时拟合这四种衰变的部分衰变率,确定了强子形式因子$f^K_+(0)$与$cto s$ CKM矩阵元素$|V_{cs}|$的乘积为$f^K_+(0)|V_{cs}|=0.7162/pm0.0011_{/rm stat.}/pm0.0012_{/rm syst.}$。以标准模型全局拟合中的 $|V_{cs}|=0.97349pm0.00016$ 和 LQCD 计算中的 $f^K_+(0)=0.7452pm0.0031$ 作为输入,我们得到了 $f^K_+(0)=0.97349pm0.00016$ 和 $f^K_+(0)=0.7452pm0.0031$ 的结果。7357pm0.0011_{rm stat.}pm0.0012_{rm syst.}$和 $|V_{cs}|=0.9611pm0.0015_{rm stat.}pm0.0016_{rm syst.}pm0.0040_{rmLQCD}$.
{"title":"Improved measurements of $D^0 to K^-ell^+ν_ell$ and $D^+ to bar K^0ell^+ν_ell$","authors":"BESIII Collaboration","doi":"arxiv-2408.09087","DOIUrl":"https://doi.org/arxiv-2408.09087","url":null,"abstract":"Using 7.93 fb$^{-1}$ of $e^+e^-$ collision data collected at the\u0000center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the\u0000absolute branching fractions of $D^0to K^-e^+nu_e$, $D^0to K^-mu^+nu_mu$,\u0000$D^+to bar K^0e^+nu_e$, and $D^+to bar K^0mu^+nu_mu$ to be\u0000$(3.509pm0.009_{rm stat.}pm0.013_{rm syst.}) %$, $(3.408pm0.011_{rm\u0000stat.}pm0.013_{rm syst.}) %$, $(8.856pm0.039_{rm stat.}pm0.078_{rm\u0000syst.}) %$, and $(8.661pm0.046_{rm stat.}pm0.080_{rm syst.}) %$,\u0000respectively. By performing a simultaneous fit to the partial decay rates of\u0000these four decays, the product of the hadronic form factor $f^K_+(0)$ and the\u0000modulus of the $cto s$ CKM matrix element $|V_{cs}|$ is determined to be\u0000$f^K_+(0)|V_{cs}|=0.7162pm0.0011_{rm stat.}pm0.0012_{rm syst.}$. Taking the\u0000value of $|V_{cs}|=0.97349pm0.00016$ from the standard model global fit or\u0000that of $f^K_+(0)=0.7452pm0.0031$ from the LQCD calculation as input, we\u0000derive the results $f^K_+(0)=0.7357pm0.0011_{rm stat.}pm0.0012_{rm syst.}$\u0000and $|V_{cs}|=0.9611pm0.0015_{rm stat.}pm0.0016_{rm syst.}pm0.0040_{rm\u0000LQCD}$.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Events in Neutrino Telescopes through Deep Learning-Driven Super-Resolution 通过深度学习驱动的超分辨率增强中微子望远镜的事件处理能力
Pub Date : 2024-08-16 DOI: arxiv-2408.08474
Felix J. Yu, Nicholas Kamp, Carlos A. Argüelles
Recent discoveries by neutrino telescopes, such as the IceCube NeutrinoObservatory, relied extensively on machine learning (ML) tools to inferphysical quantities from the raw photon hits detected. Neutrino telescopereconstruction algorithms are limited by the sparse sampling of photons by theoptical modules due to the relatively large spacing ($10-100,{rm m})$ betweenthem. In this letter, we propose a novel technique that learns photon transportthrough the detector medium through the use of deep learning-drivensuper-resolution of data events. These ``improved'' events can then bereconstructed using traditional or ML techniques, resulting in improvedresolution. Our strategy arranges additional ``virtual'' optical modules withinan existing detector geometry and trains a convolutional neural network topredict the hits on these virtual optical modules. We show that this techniqueimproves the angular reconstruction of muons in a generic ice-based neutrinotelescope. Our results readily extend to water-based neutrino telescopes andother event morphologies.
冰立方中微子观测站(IceCube NeutrinoObservatory)等中微子望远镜最近的发现广泛依赖于机器学习(ML)工具,以便从检测到的原始光子命中推断物理量。中微子望远镜的构建算法受限于光学模块对光子的稀疏采样,因为它们之间的间距相对较大($10-100,{rm})$。在这封信中,我们提出了一种新技术,通过使用深度学习驱动的数据事件超分辨率来学习探测器介质中的光子传输。这些 "改进的 "事件可以使用传统或 ML 技术重新构建,从而提高分辨率。我们的策略是在现有探测器的几何结构中布置额外的 "虚拟 "光学模块,并训练一个卷积神经网络来预测这些虚拟光学模块上的命中率。我们的研究表明,这种技术改进了一般冰基中子望远镜中μ介子的角度重建。我们的结果很容易扩展到水基中微子望远镜和其他事件形态。
{"title":"Enhancing Events in Neutrino Telescopes through Deep Learning-Driven Super-Resolution","authors":"Felix J. Yu, Nicholas Kamp, Carlos A. Argüelles","doi":"arxiv-2408.08474","DOIUrl":"https://doi.org/arxiv-2408.08474","url":null,"abstract":"Recent discoveries by neutrino telescopes, such as the IceCube Neutrino\u0000Observatory, relied extensively on machine learning (ML) tools to infer\u0000physical quantities from the raw photon hits detected. Neutrino telescope\u0000reconstruction algorithms are limited by the sparse sampling of photons by the\u0000optical modules due to the relatively large spacing ($10-100,{rm m})$ between\u0000them. In this letter, we propose a novel technique that learns photon transport\u0000through the detector medium through the use of deep learning-driven\u0000super-resolution of data events. These ``improved'' events can then be\u0000reconstructed using traditional or ML techniques, resulting in improved\u0000resolution. Our strategy arranges additional ``virtual'' optical modules within\u0000an existing detector geometry and trains a convolutional neural network to\u0000predict the hits on these virtual optical modules. We show that this technique\u0000improves the angular reconstruction of muons in a generic ice-based neutrino\u0000telescope. Our results readily extend to water-based neutrino telescopes and\u0000other event morphologies.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of searches for singly produced vector-like top quarks in pp collisions at $sqrt{s} = 13$ TeV with the ATLAS detector 利用 ATLAS 探测器在 $sqrt{s} = 13$ TeV 的 pp 对撞中对单次产生的类矢量顶夸克的组合搜索
Pub Date : 2024-08-16 DOI: arxiv-2408.08789
ATLAS Collaboration
A combination of searches for the single production of vector-like top quarks($T$) is presented. These analyses are based on proton$-$proton collisions at$sqrt{s}=13$ TeV recorded in 2015$-$2018 with the ATLAS detector at the LargeHadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$.The $T$-quark decay modes considered in this combination are into a top quarkand either a Standard Model Higgs boson or a $Z$ boson ($T to Ht$ and $T toZt$). The individual searches used in the combination are differentiated by thenumber of leptons ($e$, $mu$) in the final state. The observed data are foundto be in good agreement with the Standard Model background prediction.Interpretations are provided for a range of masses and couplings of thevector-like top quark for benchmark models and generalized representations interms of 95% confidence level limits. For a benchmark signal prediction of avector-like top quark SU2 singlet with electroweak coupling, $kappa$, of 0.5,masses below 2.1 TeV are excluded, resulting in the most restrictive limits todate.
本文介绍了对类矢量顶夸克($T$)单次产生的组合搜索。这些分析是基于大型强子对撞机上的ATLAS探测器在2015-2018年记录的13TeV下的质子-质子对撞,对应于139 fb$^{-1}$的综合光度。在这个组合中考虑的$T$-夸克衰变模式是变成顶夸克和标准模型希格斯玻色子或$Z$玻色子($T to Ht$和$T to Zt$)。组合中使用的各个搜索是根据最终态中轻子($e$, $mu$)的数量来区分的。观测到的数据与标准模型的背景预言非常吻合。对于基准模型和广义表示的矢量样顶夸克的一系列质量和耦合,提供了95%置信度限值的解释。对于电弱耦合为0.5的类矢量顶夸克SU2单子的基准信号预测,排除了低于2.1 TeV的质量,从而得出了迄今为止最严格的限值。
{"title":"Combination of searches for singly produced vector-like top quarks in pp collisions at $sqrt{s} = 13$ TeV with the ATLAS detector","authors":"ATLAS Collaboration","doi":"arxiv-2408.08789","DOIUrl":"https://doi.org/arxiv-2408.08789","url":null,"abstract":"A combination of searches for the single production of vector-like top quarks\u0000($T$) is presented. These analyses are based on proton$-$proton collisions at\u0000$sqrt{s}=13$ TeV recorded in 2015$-$2018 with the ATLAS detector at the Large\u0000Hadron Collider, corresponding to an integrated luminosity of 139 fb$^{-1}$.\u0000The $T$-quark decay modes considered in this combination are into a top quark\u0000and either a Standard Model Higgs boson or a $Z$ boson ($T to Ht$ and $T to\u0000Zt$). The individual searches used in the combination are differentiated by the\u0000number of leptons ($e$, $mu$) in the final state. The observed data are found\u0000to be in good agreement with the Standard Model background prediction.\u0000Interpretations are provided for a range of masses and couplings of the\u0000vector-like top quark for benchmark models and generalized representations in\u0000terms of 95% confidence level limits. For a benchmark signal prediction of a\u0000vector-like top quark SU2 singlet with electroweak coupling, $kappa$, of 0.5,\u0000masses below 2.1 TeV are excluded, resulting in the most restrictive limits to\u0000date.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The DAMA/LIBRA signal: an induced modulation effect? DAMA/LIBRA 信号:诱导调制效应?
Pub Date : 2024-08-16 DOI: arxiv-2408.08697
R. S. James, K. Rule, E. Barberio, V. U. Bashu, L. J. Bignell, I. Bolognino, G. Brooks, S. S. Chhun, F. Dastgiri, A. R. Duffy, M. Froehlich, T. M. A. Fruth, G. Fu, G. C. Hill, K. Janssens, S. Kapoor, G. J. Lane, K. T. Leaver, P. McGee, L. J. McKie, P. C. McNamara, J. McKenzie, W. J. D. Melbourne, M. Mews, L. J. Milligan, J. Mould, F. Nuti, F. Scutti, Z. Slavkovska, N. J. Spinks, O. Stanley, A. E. Stuchbery, B. Suerfu, G. N. Taylor, P. Urquijo, A. G. Williams, Y. Xing, Y. Y. Zhong, M. J. Zurowski
The persistence of the DAMA/LIBRA (DAMA) modulation over the past two decadeshas been a source of great contention within the dark matter community. TheDAMA collaboration reports a persistent, modulating event rate within theirsetup of NaI(Tl) scintillating crystals at the INFN Laboratori Nazionali delGran Sasso (LNGS) underground laboratory. A recent work alluded that thissignal could have arisen due to an analysis artefact, caused by DAMA notaccounting for time variation of decaying background radioisotopes in theiranalysis procedure. In this work, we examine in detail this 'inducedmodulation' effect, arguing that a number of aspects of the DAMA signal areincompatible with an induced modulation arising from decays of backgroundisotopes over the lifetime of the experiment. Using a toy model of theDAMA/LIBRA experiment, we explore the induced modulation effect under differentvariations of the activities of the relevant isotopes - namely, $^3$H and$^{210}$Pb - highlighting the various inconsistencies between the resultant toydatasets and the DAMA signal. We stress the importance of the SABRE experiment,whose goal is to unambiguously test for the presence of such a modulatingsignal in an experiment using the same target material and comparable levels ofbackground.
过去二十年来,DAMA/LIBRA(DAMA)调制的持续性一直是暗物质界争论的焦点。DAMA 合作组织报告说,他们在 INFN Laboratori Nazionali delGran Sasso(LNGS)地下实验室安装的 NaI(Tl)闪烁晶体中发现了持续的调制事件率。最近的一项工作暗示,这一信号可能是由于 DAMA 在分析程序中没有考虑衰变背景放射性同位素的时间变化而造成的分析误差。在这项工作中,我们详细研究了这种 "诱导调制 "效应,认为 DAMA 信号的许多方面都与实验寿命期间背景同位素衰变引起的诱导调制不相容。我们利用 DAMA/LIBRA 实验的玩具模型,探讨了在相关同位素(即 $^3$H 和 $^{210}$Pb )活度的不同变化情况下的诱导调制效应,强调了由此产生的数据集与 DAMA 信号之间的各种不一致之处。我们强调了 SABRE 实验的重要性,该实验的目标是在使用相同目标材料和可比背景水平的实验中明确检验是否存在这种调制信号。
{"title":"The DAMA/LIBRA signal: an induced modulation effect?","authors":"R. S. James, K. Rule, E. Barberio, V. U. Bashu, L. J. Bignell, I. Bolognino, G. Brooks, S. S. Chhun, F. Dastgiri, A. R. Duffy, M. Froehlich, T. M. A. Fruth, G. Fu, G. C. Hill, K. Janssens, S. Kapoor, G. J. Lane, K. T. Leaver, P. McGee, L. J. McKie, P. C. McNamara, J. McKenzie, W. J. D. Melbourne, M. Mews, L. J. Milligan, J. Mould, F. Nuti, F. Scutti, Z. Slavkovska, N. J. Spinks, O. Stanley, A. E. Stuchbery, B. Suerfu, G. N. Taylor, P. Urquijo, A. G. Williams, Y. Xing, Y. Y. Zhong, M. J. Zurowski","doi":"arxiv-2408.08697","DOIUrl":"https://doi.org/arxiv-2408.08697","url":null,"abstract":"The persistence of the DAMA/LIBRA (DAMA) modulation over the past two decades\u0000has been a source of great contention within the dark matter community. The\u0000DAMA collaboration reports a persistent, modulating event rate within their\u0000setup of NaI(Tl) scintillating crystals at the INFN Laboratori Nazionali del\u0000Gran Sasso (LNGS) underground laboratory. A recent work alluded that this\u0000signal could have arisen due to an analysis artefact, caused by DAMA not\u0000accounting for time variation of decaying background radioisotopes in their\u0000analysis procedure. In this work, we examine in detail this 'induced\u0000modulation' effect, arguing that a number of aspects of the DAMA signal are\u0000incompatible with an induced modulation arising from decays of background\u0000isotopes over the lifetime of the experiment. Using a toy model of the\u0000DAMA/LIBRA experiment, we explore the induced modulation effect under different\u0000variations of the activities of the relevant isotopes - namely, $^3$H and\u0000$^{210}$Pb - highlighting the various inconsistencies between the resultant toy\u0000datasets and the DAMA signal. We stress the importance of the SABRE experiment,\u0000whose goal is to unambiguously test for the presence of such a modulating\u0000signal in an experiment using the same target material and comparable levels of\u0000background.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Search for the rare decay $J/ψto γD^0+c.c.$ at BESIII 在BESIII寻找稀有衰变$J/ψto γD^0+c.c.$
Pub Date : 2024-08-16 DOI: arxiv-2408.08826
BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H. -R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, G. F. Fan, J. J. Fan, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, P. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, W. N. Lan, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, L. J. Li, Lei Li, M. H. Li, P. L. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, T. Li, T. Y. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, Q. M. Ma, R. Q. Ma, R. Y. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Y. H. Meng, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. R. Qi, M. Qi, S. Qian, W. B. Qian, C. F. Qiao, J. H. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, Bo Wang, C. Wang, D. Y. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, L. W. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, Lianjie Wu, X. Wu, X. H. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, W. P. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, R. J. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. X. Yang, Y. Z. Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, Ying Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. X. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, Zh. Zh. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, X. R. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, W. J. Zhu, W. Z. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu
Using $(10087pm44)times10^6J/psi$ events collected with the BESIIIdetector, we search for the rare decay $J/psi to gamma D^0+c.c.$ for thefirst time. No obvious signal is observed and the upper limit on the branchingfraction is determined to be ${cal B}(J/psi to gamma D^{0}+c.c.)< 9.1times 10^{-8}$ at 90% confidence level.
利用BESIII探测器收集到的$(10087/pm44)/times10^6J/psi$事件,我们首次搜索了稀有衰变$J/psi to gamma D^{0}+c.c.$。没有观察到明显的信号,在90%的置信度下,分支分数的上限被确定为${cal B}(J/psi to gamma D^{0}+c.c.)< 9.1 (10^{-8}次)$。
{"title":"Search for the rare decay $J/ψto γD^0+c.c.$ at BESIII","authors":"BESIII Collaboration, M. Ablikim, M. N. Achasov, P. Adlarson, O. Afedulidis, X. C. Ai, R. Aliberti, A. Amoroso, Q. An, Y. Bai, O. Bakina, I. Balossino, Y. Ban, H. -R. Bao, V. Batozskaya, K. Begzsuren, N. Berger, M. Berlowski, M. Bertani, D. Bettoni, F. Bianchi, E. Bianco, A. Bortone, I. Boyko, R. A. Briere, A. Brueggemann, H. Cai, X. Cai, A. Calcaterra, G. F. Cao, N. Cao, S. A. Cetin, X. Y. Chai, J. F. Chang, G. R. Che, Y. Z. Che, G. Chelkov, C. Chen, C. H. Chen, Chao Chen, G. Chen, H. S. Chen, H. Y. Chen, M. L. Chen, S. J. Chen, S. L. Chen, S. M. Chen, T. Chen, X. R. Chen, X. T. Chen, Y. B. Chen, Y. Q. Chen, Z. J. Chen, S. K. Choi, G. Cibinetto, F. Cossio, J. J. Cui, H. L. Dai, J. P. Dai, A. Dbeyssi, R. E. de Boer, D. Dedovich, C. Q. Deng, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, B. Ding, X. X. Ding, Y. Ding, Y. Ding, J. Dong, L. Y. Dong, M. Y. Dong, X. Dong, M. C. Du, S. X. Du, Y. Y. Duan, Z. H. Duan, P. Egorov, G. F. Fan, J. J. Fan, Y. H. Fan, J. Fang, J. Fang, S. S. Fang, W. X. Fang, Y. Q. Fang, R. Farinelli, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, J. H. Feng, Y. T. Feng, M. Fritsch, C. D. Fu, J. L. Fu, Y. W. Fu, H. Gao, X. B. Gao, Y. N. Gao, Y. N. Gao, Yang Gao, S. Garbolino, I. Garzia, P. T. Ge, Z. W. Ge, C. Geng, E. M. Gersabeck, A. Gilman, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, S. Gramigna, M. Greco, M. H. Gu, Y. T. Gu, C. Y. Guan, A. Q. Guo, L. B. Guo, M. J. Guo, R. P. Guo, Y. P. Guo, A. Guskov, J. Gutierrez, K. L. Han, T. T. Han, F. Hanisch, X. Q. Hao, F. A. Harris, K. K. He, K. L. He, F. H. Heinsius, C. H. Heinz, Y. K. Heng, C. Herold, T. Holtmann, P. C. Hong, G. Y. Hou, X. T. Hou, Y. R. Hou, Z. L. Hou, B. Y. Hu, H. M. Hu, J. F. Hu, Q. P. Hu, S. L. Hu, T. Hu, Y. Hu, G. S. Huang, K. X. Huang, L. Q. Huang, P. Huang, X. T. Huang, Y. P. Huang, Y. S. Huang, T. Hussain, F. Hölzken, N. Hüsken, N. in der Wiesche, J. Jackson, S. Janchiv, Q. Ji, Q. P. Ji, W. Ji, X. B. Ji, X. L. Ji, Y. Y. Ji, X. Q. Jia, Z. K. Jia, D. Jiang, H. B. Jiang, P. C. Jiang, S. S. Jiang, T. J. Jiang, X. S. Jiang, Y. Jiang, J. B. Jiao, J. K. Jiao, Z. Jiao, S. Jin, Y. Jin, M. Q. Jing, X. M. Jing, T. Johansson, S. Kabana, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, V. Khachatryan, A. Khoukaz, R. Kiuchi, O. B. Kolcu, B. Kopf, M. Kuessner, X. Kui, N. Kumar, A. Kupsc, W. Kühn, W. N. Lan, T. T. Lei, Z. H. Lei, M. Lellmann, T. Lenz, C. Li, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, H. J. Li, H. N. Li, Hui Li, J. R. Li, J. S. Li, K. Li, K. L. Li, L. J. Li, Lei Li, M. H. Li, P. L. Li, P. R. Li, Q. M. Li, Q. X. Li, R. Li, T. Li, T. Y. Li, W. D. Li, W. G. Li, X. Li, X. H. Li, X. L. Li, X. Y. Li, X. Z. Li, Y. Li, Y. G. Li, Z. J. Li, Z. Y. Li, C. Liang, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, Y. P. Liao, J. Libby, A. Limphirat, C. C. Lin, C. X. Lin, D. X. Lin, T. Lin, B. J. Liu, B. X. Liu, C. Liu, C. X. Liu, F. Liu, F. H. Liu, Feng Liu, G. M. Liu, H. Liu, H. B. Liu, H. H. Liu, H. M. Liu, Huihui Liu, J. B. Liu, K. Liu, K. Y. Liu, Ke Liu, L. Liu, L. C. Liu, Lu Liu, M. H. Liu, P. L. Liu, Q. Liu, S. B. Liu, T. Liu, W. K. Liu, W. M. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Y. B. Liu, Z. A. Liu, Z. D. Liu, Z. Q. Liu, X. C. Lou, F. X. Lu, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, Z. H. Lu, C. L. Luo, J. R. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, Y. F. Lyu, F. C. Ma, H. Ma, H. L. Ma, J. L. Ma, L. L. Ma, L. R. Ma, Q. M. Ma, R. Q. Ma, R. Y. Ma, T. Ma, X. T. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, I. MacKay, M. Maggiora, S. Malde, Y. J. Mao, Z. P. Mao, S. Marcello, Y. H. Meng, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, H. Miao, T. J. Min, R. E. Mitchell, X. H. Mo, B. Moses, N. Yu. Muchnoi, J. Muskalla, Y. Nefedov, F. Nerling, L. S. Nie, I. B. Nikolaev, Z. Ning, S. Nisar, Q. L. Niu, W. D. Niu, Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, X. Pan, Y. Pan, A. Pathak, Y. P. Pei, M. Pelizaeus, H. P. Peng, Y. Y. Peng, K. Peters, J. L. Ping, R. G. Ping, S. Plura, V. Prasad, F. Z. Qi, H. R. Qi, M. Qi, S. Qian, W. B. Qian, C. F. Qiao, J. H. Qiao, J. J. Qin, L. Q. Qin, L. Y. Qin, X. P. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, Z. H. Qu, C. F. Redmer, K. J. Ren, A. Rivetti, M. Rolo, G. Rong, Ch. Rosner, M. Q. Ruan, S. N. Ruan, N. Salone, A. Sarantsev, Y. Schelhaas, K. Schoenning, M. Scodeggio, K. Y. Shan, W. Shan, X. Y. Shan, Z. J. Shang, J. F. Shangguan, L. G. Shao, M. Shao, C. P. Shen, H. F. Shen, W. H. Shen, X. Y. Shen, B. A. Shi, H. Shi, J. L. Shi, J. Y. Shi, S. Y. Shi, X. Shi, J. J. Song, T. Z. Song, W. M. Song, Y. J. Song, Y. X. Song, S. Sosio, S. Spataro, F. Stieler, S. S Su, Y. J. Su, G. B. Sun, G. X. Sun, H. Sun, H. K. Sun, J. F. Sun, K. Sun, L. Sun, S. S. Sun, T. Sun, Y. J. Sun, Y. Z. Sun, Z. Q. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, J. Tang, M. Tang, Y. A. Tang, L. Y. Tao, M. Tat, J. X. Teng, V. Thoren, W. H. Tian, Y. Tian, Z. F. Tian, I. Uman, Y. Wan, S. J. Wang, B. Wang, Bo Wang, C. Wang, D. Y. Wang, H. J. Wang, J. J. Wang, J. P. Wang, K. Wang, L. L. Wang, L. W. Wang, M. Wang, N. Y. Wang, S. Wang, S. Wang, T. Wang, T. J. Wang, W. Wang, W. Wang, W. P. Wang, X. Wang, X. F. Wang, X. J. Wang, X. L. Wang, X. N. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. H. Wang, Y. L. Wang, Y. N. Wang, Y. Q. Wang, Yaqian Wang, Yi Wang, Z. Wang, Z. L. Wang, Z. Y. Wang, D. H. Wei, F. Weidner, S. P. Wen, Y. R. Wen, U. Wiedner, G. Wilkinson, M. Wolke, L. Wollenberg, C. Wu, J. F. Wu, L. H. Wu, L. J. Wu, Lianjie Wu, X. Wu, X. H. Wu, Y. H. Wu, Y. J. Wu, Z. Wu, L. Xia, X. M. Xian, B. H. Xiang, T. Xiang, D. Xiao, G. Y. Xiao, H. Xiao, Y. L. Xiao, Z. J. Xiao, C. Xie, X. H. Xie, Y. Xie, Y. G. Xie, Y. H. Xie, Z. P. Xie, T. Y. Xing, C. F. Xu, C. J. Xu, G. F. Xu, M. Xu, Q. J. Xu, Q. N. Xu, W. L. Xu, X. P. Xu, Y. Xu, Y. C. Xu, Z. S. Xu, F. Yan, L. Yan, W. B. Yan, W. C. Yan, W. P. Yan, X. Q. Yan, H. J. Yang, H. L. Yang, H. X. Yang, J. H. Yang, R. J. Yang, T. Yang, Y. Yang, Y. F. Yang, Y. X. Yang, Y. Z. Yang, Z. W. Yang, Z. P. Yao, M. Ye, M. H. Ye, Junhao Yin, Z. Y. You, B. X. Yu, C. X. Yu, G. Yu, J. S. Yu, M. C. Yu, T. Yu, X. D. Yu, C. Z. Yuan, J. Yuan, J. Yuan, L. Yuan, S. C. Yuan, Y. Yuan, Z. Y. Yuan, C. X. Yue, Ying Yue, A. A. Zafar, F. R. Zeng, S. H. Zeng, X. Zeng, Y. Zeng, Y. J. Zeng, Y. J. Zeng, X. Y. Zhai, Y. C. Zhai, Y. H. Zhan, A. Q. Zhang, B. L. Zhang, B. X. Zhang, D. H. Zhang, G. Y. Zhang, H. Zhang, H. Zhang, H. C. Zhang, H. H. Zhang, H. Q. Zhang, H. R. Zhang, H. Y. Zhang, J. Zhang, J. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. S. Zhang, J. W. Zhang, J. X. Zhang, J. Y. Zhang, J. Z. Zhang, Jianyu Zhang, L. M. Zhang, Lei Zhang, P. Zhang, Q. Zhang, Q. Y. Zhang, R. Y. Zhang, S. H. Zhang, Shulei Zhang, X. M. Zhang, X. Y Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. T. Zhang, Y. H. Zhang, Y. M. Zhang, Yan Zhang, Z. D. Zhang, Z. H. Zhang, Z. L. Zhang, Z. X. Zhang, Z. Y. Zhang, Z. Y. Zhang, Z. Z. Zhang, Zh. Zh. Zhang, G. Zhao, J. Y. Zhao, J. Z. Zhao, L. Zhao, Lei Zhao, M. G. Zhao, N. Zhao, R. P. Zhao, S. J. Zhao, Y. B. Zhao, Y. X. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, B. M. Zheng, J. P. Zheng, W. J. Zheng, X. R. Zheng, Y. H. Zheng, B. Zhong, X. Zhong, H. Zhou, J. Y. Zhou, S. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. Z. Zhou, Z. C. Zhou, A. N. Zhu, J. Zhu, K. Zhu, K. J. Zhu, K. S. Zhu, L. Zhu, L. X. Zhu, S. H. Zhu, T. J. Zhu, W. D. Zhu, W. J. Zhu, W. Z. Zhu, Y. C. Zhu, Z. A. Zhu, J. H. Zou, J. Zu","doi":"arxiv-2408.08826","DOIUrl":"https://doi.org/arxiv-2408.08826","url":null,"abstract":"Using $(10087pm44)times10^6J/psi$ events collected with the BESIII\u0000detector, we search for the rare decay $J/psi to gamma D^0+c.c.$ for the\u0000first time. No obvious signal is observed and the upper limit on the branching\u0000fraction is determined to be ${cal B}(J/psi to gamma D^{0}+c.c.)< 9.1\u0000times 10^{-8}$ at 90% confidence level.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"70 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring New Physics with PandaX-4T Low Energy Electronic Recoil Data 利用 PandaX-4T 低能量电子反冲数据探索新物理原理
Pub Date : 2024-08-14 DOI: arxiv-2408.07641
PandaX Collaboration, Xinning Zeng, Zihao Bo, Wei Chen, Xun Chen, Yunhua Chen, Zhaokan Cheng, Xiangyi Cui, Yingjie Fan, Deqing Fang, Zhixing Gao, Lisheng Geng, Karl Giboni, Xunan Guo, Xuyuan Guo, Zichao Guo, Chencheng Han, Ke HanChangda He, Jinrong He, Di Huang, Houqi Huang, Junting Huang, Ruquan Hou, Yu Hou, Xiangdong Ji, Xiangpan Ji, Yonglin Ju, Chenxiang Li, Jiafu Li, Mingchuan Li, Shuaijie Li, Tao Li, Zhiyuan Li, Qing Lin, Jianglai Liu, Congcong Lu, Xiaoying Lu, Lingyin Luo, Yunyang Luo, Wenbo Ma, Yugang Ma, Yajun Mao, Yue Meng, Xuyang Ning, Binyu Pang, Ningchun Qi, Zhicheng Qian, Xiangxiang Ren, Dong Shan, Xiaofeng Shang, Xiyuan Shao, Guofang Shen, Manbin Shen, Wenliang Sun, Yi Tao, Anqing Wang, Guanbo Wang, Hao Wang, Jiamin Wang, Lei Wang, Meng Wang, Qiuhong Wang, Shaobo Wang, Siguang Wang, Wei Wang, Xiuli Wang, Xu Wang, Zhou Wang, Yuehuan Wei, Weihao Wu, Yuan Wu, Mengjiao Xiao, Xiang Xiao, Kaizhi Xiong, Yifan Xu, Shunyu Yao, Binbin Yan, Xiyu Yan, Yong Yang, Peihua Ye, Chunxu Yu, Ying Yuan, Zhe Yuan, Youhui Yun, Minzhen Zhang, Peng Zhang, Shibo Zhang, Shu Zhang, Tao Zhang, Wei Zhang, Yang Zhang, Yingxin Zhang, Yuanyuan Zhang, Li Zhao, Jifang Zhou, Jiaxu Zhou, Jiayi Zhou, Ning Zhou, Xiaopeng Zhou, Yubo Zhou, Zhizhen Zhou
New particles beyond the Standard Model of particle physics, such as axions,can be effectively searched through their interactions with electrons. We usethe large liquid xenon detector PandaX-4T to search for novel electronic recoilsignals induced by solar axions, neutrinos with anomalous magnetic moment,axion-like particles, dark photons, and light fermionic dark matter. A detailedbackground model is established with the latest datasets with 1.54 $rm tonnecdot year$ exposure. No significant excess above the background has beenobserved, and we have obtained competitive constraints for axion couplings,neutrino magnetic moment, and fermionic dark matter interactions.
超越粒子物理学标准模型的新粒子,如轴子,可以通过它们与电子的相互作用进行有效搜索。我们利用大型液态氙探测器PandaX-4T来搜索由太阳轴子、具有反常磁矩的中微子、类轴子粒子、暗光子和轻费米暗物质诱导的新型电子反冲信号。利用最新数据集建立了一个详细的背景模型,其暴露量为 1.54 美元/rm 吨/年。我们没有观测到背景之上的明显过剩,并且获得了轴子耦合、中微子磁矩和费米子暗物质相互作用的竞争性约束。
{"title":"Exploring New Physics with PandaX-4T Low Energy Electronic Recoil Data","authors":"PandaX Collaboration, Xinning Zeng, Zihao Bo, Wei Chen, Xun Chen, Yunhua Chen, Zhaokan Cheng, Xiangyi Cui, Yingjie Fan, Deqing Fang, Zhixing Gao, Lisheng Geng, Karl Giboni, Xunan Guo, Xuyuan Guo, Zichao Guo, Chencheng Han, Ke HanChangda He, Jinrong He, Di Huang, Houqi Huang, Junting Huang, Ruquan Hou, Yu Hou, Xiangdong Ji, Xiangpan Ji, Yonglin Ju, Chenxiang Li, Jiafu Li, Mingchuan Li, Shuaijie Li, Tao Li, Zhiyuan Li, Qing Lin, Jianglai Liu, Congcong Lu, Xiaoying Lu, Lingyin Luo, Yunyang Luo, Wenbo Ma, Yugang Ma, Yajun Mao, Yue Meng, Xuyang Ning, Binyu Pang, Ningchun Qi, Zhicheng Qian, Xiangxiang Ren, Dong Shan, Xiaofeng Shang, Xiyuan Shao, Guofang Shen, Manbin Shen, Wenliang Sun, Yi Tao, Anqing Wang, Guanbo Wang, Hao Wang, Jiamin Wang, Lei Wang, Meng Wang, Qiuhong Wang, Shaobo Wang, Siguang Wang, Wei Wang, Xiuli Wang, Xu Wang, Zhou Wang, Yuehuan Wei, Weihao Wu, Yuan Wu, Mengjiao Xiao, Xiang Xiao, Kaizhi Xiong, Yifan Xu, Shunyu Yao, Binbin Yan, Xiyu Yan, Yong Yang, Peihua Ye, Chunxu Yu, Ying Yuan, Zhe Yuan, Youhui Yun, Minzhen Zhang, Peng Zhang, Shibo Zhang, Shu Zhang, Tao Zhang, Wei Zhang, Yang Zhang, Yingxin Zhang, Yuanyuan Zhang, Li Zhao, Jifang Zhou, Jiaxu Zhou, Jiayi Zhou, Ning Zhou, Xiaopeng Zhou, Yubo Zhou, Zhizhen Zhou","doi":"arxiv-2408.07641","DOIUrl":"https://doi.org/arxiv-2408.07641","url":null,"abstract":"New particles beyond the Standard Model of particle physics, such as axions,\u0000can be effectively searched through their interactions with electrons. We use\u0000the large liquid xenon detector PandaX-4T to search for novel electronic recoil\u0000signals induced by solar axions, neutrinos with anomalous magnetic moment,\u0000axion-like particles, dark photons, and light fermionic dark matter. A detailed\u0000background model is established with the latest datasets with 1.54 $rm tonne\u0000cdot year$ exposure. No significant excess above the background has been\u0000observed, and we have obtained competitive constraints for axion couplings,\u0000neutrino magnetic moment, and fermionic dark matter interactions.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - PHYS - High Energy Physics - Experiment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1