首页 > 最新文献

arXiv - PHYS - Nuclear Experiment最新文献

英文 中文
Jet modification via $π^0$-hadron correlations in Au$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV 在 $sqrt{s_{{NN}}}=200$ GeV 的 Au$+$Au 对撞中通过 $π^0$-hadron 相关性进行的射流修正
Pub Date : 2024-06-12 DOI: arxiv-2406.08301
PHENIX Collaboration, N. J. Abdulameer, U. Acharya, A. Adare, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander, M. Alfred, K. Aoki, N. Apadula, L. Aphecetche, J. Asai, H. Asano, E. T. Atomssa, R. Averbeck, T. C. Awes, B. Azmoun, V. Babintsev, M. Bai, G. Baksay, L. Baksay, A. Baldisseri, N. S. Bandara, B. Bannier, K. N. Barish, P. D. Barnes, B. Bassalleck, A. T. Basye, S. Bathe, S. Batsouli, V. Baublis, C. Baumann, A. Bazilevsky, M. Beaumier, S. Beckman, S. Belikov, R. Belmont, R. Bennett, A. Berdnikov, Y. Berdnikov, L. Bichon, A. A. Bickley, B. Blankenship, D. S. Blau, J. G. Boissevain, J. S. Bok, H. Borel, V. Borisov, K. Boyle, M. L. Brooks, J. Bryslawskyj, H. Buesching, V. Bumazhnov, G. Bunce, S. Butsyk, C. M. Camacho, S. Campbell, B. S. Chang, W. C. Chang, J. L. Charvet, C. -H. Chen, D. Chen, S. Chernichenko, M. Chiu, C. Y. Chi, I. J. Choi, J. B. Choi, R. K. Choudhury, T. Chujo, P. Chung, A. Churyn, V. Cianciolo, Z. Citron, B. A. Cole, M. Connors, P. Constantin, R. Corliss, M. Csanád, T. Csörgő, D. d'Enterria, T. Dahms, S. Dairaku, T. W. Danley, K. Das, A. Datta, M. S. Daugherity, G. David, K. DeBlasio, K. Dehmelt, A. Denisov, A. Deshpande, E. J. Desmond, O. Dietzsch, A. Dion, P. B. Diss, M. Donadelli, V. Doomra, J. H. Do, O. Drapier, A. Drees, K. A. Drees, A. K. Dubey, J. M. Durham, A. Durum, D. Dutta, V. Dzhordzhadze, Y. V. Efremenko, F. Ellinghaus, H. En'yo, T. Engelmore, A. Enokizono, R. Esha, K. O. Eyser, B. Fadem, N. Feege, D. E. Fields, M. Finger, Jr., M. Finger, D. Firak, D. Fitzgerald, F. Fleuret, S. L. Fokin, Z. Fraenkel, J. E. Frantz, A. Franz, A. D. Frawley, K. Fujiwara, Y. Fukao, T. Fusayasu, P. Gallus, C. Gal, P. Garg, I. Garishvili, H. Ge, F. Giordano, A. Glenn, H. Gong, M. Gonin, J. Gosset, Y. Goto, R. Granier de Cassagnac, N. Grau, S. V. Greene, M. Grosse Perdekamp, T. Gunji, T. Guo, H. -Å. Gustafsson, T. Hachiya, A. Hadj Henni, J. S. Haggerty, K. I. Hahn, H. Hamagaki, H. F. Hamilton, J. Hanks, R. Han, S. Y. Han, E. P. Hartouni, K. Haruna, S. Hasegawa, T. O. S. Haseler, K. Hashimoto, E. Haslum, R. Hayano, M. Heffner, T. K. Hemmick, T. Hester, X. He, J. C. Hill, A. Hodges, M. Hohlmann, R. S. Hollis, W. Holzmann, K. Homma, B. Hong, T. Horaguchi, D. Hornback, T. Hoshino, N. Hotvedt, J. Huang, T. Ichihara, R. Ichimiya, H. Iinuma, Y. Ikeda, K. Imai, J. Imrek, M. Inaba, A. Iordanova, D. Isenhower, M. Ishihara, T. Isobe, M. Issah, A. Isupov, D. Ivanishchev, B. V. Jacak, M. Jezghani, X. Jiang, J. Jin, Z. Ji, B. M. Johnson, K. S. Joo, D. Jouan, D. S. Jumper, F. Kajihara, S. Kametani, N. Kamihara, J. Kamin, S. Kanda, J. H. Kang, J. Kapustinsky, D. Kawall, A. V. Kazantsev, T. Kempel, J. A. Key, V. Khachatryan, A. Khanzadeev, K. M. Kijima, J. Kikuchi, B. Kimelman, B. I. Kim, C. Kim, D. H. Kim, D. J. Kim, E. Kim, E. -J. Kim, G. W. Kim, M. Kim, S. H. Kim, E. Kinney, K. Kiriluk, Á. Kiss, E. Kistenev, R. Kitamura, J. Klatsky, J. Klay, C. Klein-Boesing, D. Kleinjan, P. Kline, T. Koblesky, L. Kochenda, B. Komkov, M. Konno, J. Koster, D. Kotov, L. Kovacs, A. Kozlov, A. Kravitz, A. Král, G. J. Kunde, B. Kurgyis, K. Kurita, M. Kurosawa, M. J. Kweon, Y. Kwon, G. S. Kyle, Y. S. Lai, J. G. Lajoie, D. Layton, A. Lebedev, D. M. Lee, K. B. Lee, S. Lee, S. H. Lee, T. Lee, M. J. Leitch, M. A. L. Leite, B. Lenzi, P. Liebing, S. H. Lim, A. Litvinenko, H. Liu, M. X. Liu, T. Liška, X. Li, S. Lokos, D. A. Loomis, B. Love, D. Lynch, C. F. Maguire, Y. I. Makdisi, M. Makek, A. Malakhov, M. D. Malik, A. Manion, V. I. Manko, E. Mannel, Y. Mao, H. Masui, F. Matathias, L. Mašek, M. McCumber, P. L. McGaughey, D. McGlinchey, C. McKinney, N. Means, A. Meles, M. Mendoza, B. Meredith, Y. Miake, A. C. Mignerey, P. Mikeš, K. Miki, A. Milov, D. K. Mishra, M. Mishra, J. T. Mitchell, M. Mitrankova, Iu. Mitrankov, S. Miyasaka, S. Mizuno, A. K. Mohanty, P. Montuenga, T. Moon, Y. Morino, A. Morreale, D. P. Morrison, T. V. Moukhanova, D. Mukhopadhyay, B. Mulilo, T. Murakami, J. Murata, A. Mwai, S. Nagamiya, K. Nagashima, J. L. Nagle, M. Naglis, M. I. Nagy, I. Nakagawa, H. Nakagomi, Y. Nakamiya, T. Nakamura, K. Nakano, C. Nattrass, P. K. Netrakanti, J. Newby, M. Nguyen, T. Niida, S. Nishimura, R. Nouicer, N. Novitzky, T. Novák, G. Nukazuka, A. S. Nyanin, E. O'Brien, S. X. Oda, C. A. Ogilvie, K. Okada, M. Oka, Y. Onuki, J. D. Orjuela Koop, M. Orosz, J. D. Osborn, A. Oskarsson, M. Ouchida, K. Ozawa, R. Pak, A. P. T. Palounek, V. Pantuev, V. Papavassiliou, J. Park, J. S. Park, S. Park, W. J. Park, M. Patel, S. F. Pate, H. Pei, J. -C. Peng, H. Pereira, D. V. Perepelitsa, G. D. N. Perera, V. Peresedov, D. Yu. Peressounko, J. Perry, R. Petti, C. Pinkenburg, R. Pinson, R. P. Pisani, M. Potekhin, M. L. Purschke, A. K. Purwar, H. Qu, A. Rakotozafindrabe, J. Rak, B. J. Ramson, I. Ravinovich, K. F. Read, S. Rembeczki, K. Reygers, D. Reynolds, V. Riabov, Y. Riabov, D. Richford, T. Rinn, D. Roach, G. Roche, S. D. Rolnick, M. Rosati, S. S. E. Rosendahl, P. Rosnet, Z. Rowan, J. G. Rubin, P. Rukoyatkin, P. Ružička, V. L. Rykov, B. Sahlmueller, N. Saito, T. Sakaguchi, S. Sakai, K. Sakashita, H. Sako, V. Samsonov, M. Sarsour, S. Sato, T. Sato, S. Sawada, B. Schaefer, B. K. Schmoll, K. Sedgwick, J. Seele, R. Seidl, A. Yu. Semenov, V. Semenov, A. Sen, R. Seto, P. Sett, A. Sexton, D. Sharma, I. Shein, T. -A. Shibata, K. Shigaki, M. Shimomura, K. Shoji, P. Shukla, A. Sickles, C. L. Silva, D. Silvermyr, C. Silvestre, K. S. Sim, B. K. Singh, C. P. Singh, C. P. Singh, V. Singh, M. Slunečka, K. L. Smith, M. Snowball, A. Soldatov, R. A. Soltz, W. E. Sondheim, S. P. Sorensen, I. V. Sourikova, F. Staley, P. W. Stankus, E. Stenlund, M. Stepanov, A. Ster, S. P. Stoll, T. Sugitate, C. Suire, A. Sukhanov, T. Sumita, J. Sun, Z. Sun, J. Sziklai, E. M. Takagui, A. Taketani, R. Tanabe, Y. Tanaka, K. Tanida, M. J. Tannenbaum, S. Tarafdar, A. Taranenko, P. Tarján, H. Themann, T. L. Thomas, R. Tieulent, A. Timilsina, T. Todoroki, M. Togawa, A. Toia, Y. Tomita, L. Tomášek, M. Tomášek, H. Torii, C. L. Towell, R. Towell, R. S. Towell, V-N. Tram, I. Tserruya, Y. Tsuchimoto, B. Ujvari, C. Vale, H. Valle, H. W. van Hecke, A. Veicht, J. Velkovska, A. A. Vinogradov, M. Virius, V. Vrba, E. Vznuzdaev, R. Vértesi, X. R. Wang, Y. Watanabe, Y. S. Watanabe, F. Wei, J. Wessels, A. S. White, S. N. White, D. Winter, C. L. Woody, M. Wysocki, B. Xia, W. Xie, L. Xue, S. Yalcin, Y. L. Yamaguchi, K. Yamaura, R. Yang, A. Yanovich, J. Ying, S. Yokkaichi, I. Yoon, J. H. Yoo, G. R. Young, I. Younus, I. E. Yushmanov, H. Yu, W. A. Zajc, O. Zaudtke, A. Zelenski, C. Zhang, S. Zhou, L. Zolin, L. Zou
High-momentum two-particle correlations are a useful tool for studyingjet-quenching effects in the quark-gluon plasma. Angular correlations betweenneutral-pion triggers and charged hadrons with transverse momenta in the range4--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by thePHENIX experiment in 2014 for Au$+$Au collisions at $sqrt{s_{_{NN}}}=200$~GeV.Suppression is observed in the yield of high-momentum jet fragments oppositethe trigger particle, which indicates jet suppression stemming from in-mediumpartonic energy loss, while enhancement is observed for low-momentum particles.The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$collisions, $I_{AA}$ and $Delta_{AA}$, as a function of the trigger-hadronazimuthal separation, $Deltaphi$, are measured for the first time at theRelativistic Heavy Ion Collider. These results better quantify how the yield oflow-$p_T$ associated hadrons is enhanced at wide angle, which is crucial forstudying energy loss as well as medium-response effects.
高动量双粒子相关性是研究夸克-胶子等离子体中喷流淬灭效应的有用工具。2014年,PHENIX实验在$/sqrt{s_{_{NN}}=200$~GeV条件下测量了Au$+$Au碰撞中中性粒子触发器与带电强子之间的角相关性,其横向矩分别在4--12~GeV/$c$和0.5--7~GeV/$c$范围内。在与触发粒子相对的高动量射流碎片的产率中观察到抑制,这表明射流抑制源于中间能量损失,而在低动量粒子中观察到增强。在相对论重离子对撞机上首次测量了Au$+$Au对撞和p$$+$p$对撞中的产率($I_{AA}$和$Delta_{AA}$)与触发器-氘核方位角分离度($Deltaphi$)之间的比率和差异。这些结果更好地量化了与流-$p_T$相关的强子的产率在广角下是如何增强的,这对于研究能量损失以及介质响应效应至关重要。
{"title":"Jet modification via $π^0$-hadron correlations in Au$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV","authors":"PHENIX Collaboration, N. J. Abdulameer, U. Acharya, A. Adare, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander, M. Alfred, K. Aoki, N. Apadula, L. Aphecetche, J. Asai, H. Asano, E. T. Atomssa, R. Averbeck, T. C. Awes, B. Azmoun, V. Babintsev, M. Bai, G. Baksay, L. Baksay, A. Baldisseri, N. S. Bandara, B. Bannier, K. N. Barish, P. D. Barnes, B. Bassalleck, A. T. Basye, S. Bathe, S. Batsouli, V. Baublis, C. Baumann, A. Bazilevsky, M. Beaumier, S. Beckman, S. Belikov, R. Belmont, R. Bennett, A. Berdnikov, Y. Berdnikov, L. Bichon, A. A. Bickley, B. Blankenship, D. S. Blau, J. G. Boissevain, J. S. Bok, H. Borel, V. Borisov, K. Boyle, M. L. Brooks, J. Bryslawskyj, H. Buesching, V. Bumazhnov, G. Bunce, S. Butsyk, C. M. Camacho, S. Campbell, B. S. Chang, W. C. Chang, J. L. Charvet, C. -H. Chen, D. Chen, S. Chernichenko, M. Chiu, C. Y. Chi, I. J. Choi, J. B. Choi, R. K. Choudhury, T. Chujo, P. Chung, A. Churyn, V. Cianciolo, Z. Citron, B. A. Cole, M. Connors, P. Constantin, R. Corliss, M. Csanád, T. Csörgő, D. d'Enterria, T. Dahms, S. Dairaku, T. W. Danley, K. Das, A. Datta, M. S. Daugherity, G. David, K. DeBlasio, K. Dehmelt, A. Denisov, A. Deshpande, E. J. Desmond, O. Dietzsch, A. Dion, P. B. Diss, M. Donadelli, V. Doomra, J. H. Do, O. Drapier, A. Drees, K. A. Drees, A. K. Dubey, J. M. Durham, A. Durum, D. Dutta, V. Dzhordzhadze, Y. V. Efremenko, F. Ellinghaus, H. En'yo, T. Engelmore, A. Enokizono, R. Esha, K. O. Eyser, B. Fadem, N. Feege, D. E. Fields, M. Finger, Jr., M. Finger, D. Firak, D. Fitzgerald, F. Fleuret, S. L. Fokin, Z. Fraenkel, J. E. Frantz, A. Franz, A. D. Frawley, K. Fujiwara, Y. Fukao, T. Fusayasu, P. Gallus, C. Gal, P. Garg, I. Garishvili, H. Ge, F. Giordano, A. Glenn, H. Gong, M. Gonin, J. Gosset, Y. Goto, R. Granier de Cassagnac, N. Grau, S. V. Greene, M. Grosse Perdekamp, T. Gunji, T. Guo, H. -Å. Gustafsson, T. Hachiya, A. Hadj Henni, J. S. Haggerty, K. I. Hahn, H. Hamagaki, H. F. Hamilton, J. Hanks, R. Han, S. Y. Han, E. P. Hartouni, K. Haruna, S. Hasegawa, T. O. S. Haseler, K. Hashimoto, E. Haslum, R. Hayano, M. Heffner, T. K. Hemmick, T. Hester, X. He, J. C. Hill, A. Hodges, M. Hohlmann, R. S. Hollis, W. Holzmann, K. Homma, B. Hong, T. Horaguchi, D. Hornback, T. Hoshino, N. Hotvedt, J. Huang, T. Ichihara, R. Ichimiya, H. Iinuma, Y. Ikeda, K. Imai, J. Imrek, M. Inaba, A. Iordanova, D. Isenhower, M. Ishihara, T. Isobe, M. Issah, A. Isupov, D. Ivanishchev, B. V. Jacak, M. Jezghani, X. Jiang, J. Jin, Z. Ji, B. M. Johnson, K. S. Joo, D. Jouan, D. S. Jumper, F. Kajihara, S. Kametani, N. Kamihara, J. Kamin, S. Kanda, J. H. Kang, J. Kapustinsky, D. Kawall, A. V. Kazantsev, T. Kempel, J. A. Key, V. Khachatryan, A. Khanzadeev, K. M. Kijima, J. Kikuchi, B. Kimelman, B. I. Kim, C. Kim, D. H. Kim, D. J. Kim, E. Kim, E. -J. Kim, G. W. Kim, M. Kim, S. H. Kim, E. Kinney, K. Kiriluk, Á. Kiss, E. Kistenev, R. Kitamura, J. Klatsky, J. Klay, C. Klein-Boesing, D. Kleinjan, P. Kline, T. Koblesky, L. Kochenda, B. Komkov, M. Konno, J. Koster, D. Kotov, L. Kovacs, A. Kozlov, A. Kravitz, A. Král, G. J. Kunde, B. Kurgyis, K. Kurita, M. Kurosawa, M. J. Kweon, Y. Kwon, G. S. Kyle, Y. S. Lai, J. G. Lajoie, D. Layton, A. Lebedev, D. M. Lee, K. B. Lee, S. Lee, S. H. Lee, T. Lee, M. J. Leitch, M. A. L. Leite, B. Lenzi, P. Liebing, S. H. Lim, A. Litvinenko, H. Liu, M. X. Liu, T. Liška, X. Li, S. Lokos, D. A. Loomis, B. Love, D. Lynch, C. F. Maguire, Y. I. Makdisi, M. Makek, A. Malakhov, M. D. Malik, A. Manion, V. I. Manko, E. Mannel, Y. Mao, H. Masui, F. Matathias, L. Mašek, M. McCumber, P. L. McGaughey, D. McGlinchey, C. McKinney, N. Means, A. Meles, M. Mendoza, B. Meredith, Y. Miake, A. C. Mignerey, P. Mikeš, K. Miki, A. Milov, D. K. Mishra, M. Mishra, J. T. Mitchell, M. Mitrankova, Iu. Mitrankov, S. Miyasaka, S. Mizuno, A. K. Mohanty, P. Montuenga, T. Moon, Y. Morino, A. Morreale, D. P. Morrison, T. V. Moukhanova, D. Mukhopadhyay, B. Mulilo, T. Murakami, J. Murata, A. Mwai, S. Nagamiya, K. Nagashima, J. L. Nagle, M. Naglis, M. I. Nagy, I. Nakagawa, H. Nakagomi, Y. Nakamiya, T. Nakamura, K. Nakano, C. Nattrass, P. K. Netrakanti, J. Newby, M. Nguyen, T. Niida, S. Nishimura, R. Nouicer, N. Novitzky, T. Novák, G. Nukazuka, A. S. Nyanin, E. O'Brien, S. X. Oda, C. A. Ogilvie, K. Okada, M. Oka, Y. Onuki, J. D. Orjuela Koop, M. Orosz, J. D. Osborn, A. Oskarsson, M. Ouchida, K. Ozawa, R. Pak, A. P. T. Palounek, V. Pantuev, V. Papavassiliou, J. Park, J. S. Park, S. Park, W. J. Park, M. Patel, S. F. Pate, H. Pei, J. -C. Peng, H. Pereira, D. V. Perepelitsa, G. D. N. Perera, V. Peresedov, D. Yu. Peressounko, J. Perry, R. Petti, C. Pinkenburg, R. Pinson, R. P. Pisani, M. Potekhin, M. L. Purschke, A. K. Purwar, H. Qu, A. Rakotozafindrabe, J. Rak, B. J. Ramson, I. Ravinovich, K. F. Read, S. Rembeczki, K. Reygers, D. Reynolds, V. Riabov, Y. Riabov, D. Richford, T. Rinn, D. Roach, G. Roche, S. D. Rolnick, M. Rosati, S. S. E. Rosendahl, P. Rosnet, Z. Rowan, J. G. Rubin, P. Rukoyatkin, P. Ružička, V. L. Rykov, B. Sahlmueller, N. Saito, T. Sakaguchi, S. Sakai, K. Sakashita, H. Sako, V. Samsonov, M. Sarsour, S. Sato, T. Sato, S. Sawada, B. Schaefer, B. K. Schmoll, K. Sedgwick, J. Seele, R. Seidl, A. Yu. Semenov, V. Semenov, A. Sen, R. Seto, P. Sett, A. Sexton, D. Sharma, I. Shein, T. -A. Shibata, K. Shigaki, M. Shimomura, K. Shoji, P. Shukla, A. Sickles, C. L. Silva, D. Silvermyr, C. Silvestre, K. S. Sim, B. K. Singh, C. P. Singh, C. P. Singh, V. Singh, M. Slunečka, K. L. Smith, M. Snowball, A. Soldatov, R. A. Soltz, W. E. Sondheim, S. P. Sorensen, I. V. Sourikova, F. Staley, P. W. Stankus, E. Stenlund, M. Stepanov, A. Ster, S. P. Stoll, T. Sugitate, C. Suire, A. Sukhanov, T. Sumita, J. Sun, Z. Sun, J. Sziklai, E. M. Takagui, A. Taketani, R. Tanabe, Y. Tanaka, K. Tanida, M. J. Tannenbaum, S. Tarafdar, A. Taranenko, P. Tarján, H. Themann, T. L. Thomas, R. Tieulent, A. Timilsina, T. Todoroki, M. Togawa, A. Toia, Y. Tomita, L. Tomášek, M. Tomášek, H. Torii, C. L. Towell, R. Towell, R. S. Towell, V-N. Tram, I. Tserruya, Y. Tsuchimoto, B. Ujvari, C. Vale, H. Valle, H. W. van Hecke, A. Veicht, J. Velkovska, A. A. Vinogradov, M. Virius, V. Vrba, E. Vznuzdaev, R. Vértesi, X. R. Wang, Y. Watanabe, Y. S. Watanabe, F. Wei, J. Wessels, A. S. White, S. N. White, D. Winter, C. L. Woody, M. Wysocki, B. Xia, W. Xie, L. Xue, S. Yalcin, Y. L. Yamaguchi, K. Yamaura, R. Yang, A. Yanovich, J. Ying, S. Yokkaichi, I. Yoon, J. H. Yoo, G. R. Young, I. Younus, I. E. Yushmanov, H. Yu, W. A. Zajc, O. Zaudtke, A. Zelenski, C. Zhang, S. Zhou, L. Zolin, L. Zou","doi":"arxiv-2406.08301","DOIUrl":"https://doi.org/arxiv-2406.08301","url":null,"abstract":"High-momentum two-particle correlations are a useful tool for studying\u0000jet-quenching effects in the quark-gluon plasma. Angular correlations between\u0000neutral-pion triggers and charged hadrons with transverse momenta in the range\u00004--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by the\u0000PHENIX experiment in 2014 for Au$+$Au collisions at $sqrt{s_{_{NN}}}=200$~GeV.\u0000Suppression is observed in the yield of high-momentum jet fragments opposite\u0000the trigger particle, which indicates jet suppression stemming from in-medium\u0000partonic energy loss, while enhancement is observed for low-momentum particles.\u0000The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$\u0000collisions, $I_{AA}$ and $Delta_{AA}$, as a function of the trigger-hadron\u0000azimuthal separation, $Deltaphi$, are measured for the first time at the\u0000Relativistic Heavy Ion Collider. These results better quantify how the yield of\u0000low-$p_T$ associated hadrons is enhanced at wide angle, which is crucial for\u0000studying energy loss as well as medium-response effects.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"135 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Search for the Chiral Magnetic Effect using Sliding Dumbbell Method in Isobar Collisions ($^{96}_{44}Ru$+$^{96}_{44}Ru$ and $^{96}_{40}Zr$+$^{96}_{40}Zr$) at RHIC 在 RHIC 的等边对撞($^{96}_{44}Ru$+$^{96}_{44}Ru$ 和 $^{96}_{40}Zr$+$^{96}_{40}Zr$ )中使用滑动哑铃法寻找手性磁效应
Pub Date : 2024-06-10 DOI: arxiv-2406.06503
Jagbir Singh
Experiments conducted in the last decade to search for the Chiral MagneticEffect (CME) in heavy-ion collisions have been inconclusive. The Isobar programat RHIC was undertaken to address this problem. Also, a new approach known asthe Sliding Dumbbell Method (SDM) has been developed to study the CME. Thismethod searches for the back-to-back charge separation on an event-by-eventbasis.
过去十年来,在重离子碰撞中寻找手性磁效应(CME)的实验一直没有结果。RHIC 的等压线计划就是为了解决这个问题而开展的。此外,还开发了一种被称为 "滑动哑铃法"(SDM)的新方法来研究 CME。这种方法在逐个事件的基础上搜索背靠背电荷分离。
{"title":"Search for the Chiral Magnetic Effect using Sliding Dumbbell Method in Isobar Collisions ($^{96}_{44}Ru$+$^{96}_{44}Ru$ and $^{96}_{40}Zr$+$^{96}_{40}Zr$) at RHIC","authors":"Jagbir Singh","doi":"arxiv-2406.06503","DOIUrl":"https://doi.org/arxiv-2406.06503","url":null,"abstract":"Experiments conducted in the last decade to search for the Chiral Magnetic\u0000Effect (CME) in heavy-ion collisions have been inconclusive. The Isobar program\u0000at RHIC was undertaken to address this problem. Also, a new approach known as\u0000the Sliding Dumbbell Method (SDM) has been developed to study the CME. This\u0000method searches for the back-to-back charge separation on an event-by-event\u0000basis.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"161 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation and spectroscopy of proton-unbound nucleus $^{21}$Al 质子未结合核 $^{21}$Al 的观测与光谱学
Pub Date : 2024-06-07 DOI: arxiv-2406.04771
D. Kostyleva, X. -D. Xu, I. Mukha, L. Acosta, M. Bajzek, E. Casarejos, A. A. Ciemny, D. Cortina-Gil, W. Dominik, J. A. Dueñas, J. M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, J. Gómez-Camacho, A. Gorshkov, L. V. Grigorenko, Z. Janas, G. Kamiński, O. Kiselev, R. Knöbel, A. A. Korsheninnikov, S. Krupko, M. Kuich, N. Kurz, Yu. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, E. Yu. Nikolskii, C. Nociforo, A. K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, C. Rodríguez-Tajes, S. Rymzhanova, A. M. Sánchez-Benítez, C. Scheidenberger, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, K. Sümmerer, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, J. S. Winfield, P. J. Woods, M. V. Zhukov
We report on the observation of previously-unknown isotope $^{21}$Al, thefirst unbound aluminum isotope located beyond the proton dripline. The$^{21}$Al nucleus decays by one-proton (1p) emission, and its in-flight decayswere detected by tracking trajectories of all decay products with micro-stripsilicon detectors. The 1p-emission processes were studied by analyses of themeasured angular correlations of decay products $^{20}$Mg+p. The 1p-decayenergies of ground and low-lying excited states of $^{21}$Al, its mass excessand proton separation energy value $S_p$=$-1.1(1)$ MeV were determined.
我们报告了对以前未知的同位素$^{21}$Al的观测结果,这是第一个位于质子滴线以外的非束缚铝同位素。^{21}$Al核通过一质子(1p)发射衰变,其飞行中的衰变是通过使用微带硅探测器跟踪所有衰变产物的轨迹而探测到的。通过分析衰变产物 $^{20}$Mg+p 的主题测量角相关性,对 1p 发射过程进行了研究。确定了 $^{21}$Al 的基态和低洼激发态的 1p 衰变能量、其质量过量和质子分离能值 $S_p$=$-1.1(1)$ MeV。
{"title":"Observation and spectroscopy of proton-unbound nucleus $^{21}$Al","authors":"D. Kostyleva, X. -D. Xu, I. Mukha, L. Acosta, M. Bajzek, E. Casarejos, A. A. Ciemny, D. Cortina-Gil, W. Dominik, J. A. Dueñas, J. M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, J. Gómez-Camacho, A. Gorshkov, L. V. Grigorenko, Z. Janas, G. Kamiński, O. Kiselev, R. Knöbel, A. A. Korsheninnikov, S. Krupko, M. Kuich, N. Kurz, Yu. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, E. Yu. Nikolskii, C. Nociforo, A. K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, C. Rodríguez-Tajes, S. Rymzhanova, A. M. Sánchez-Benítez, C. Scheidenberger, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, K. Sümmerer, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, J. S. Winfield, P. J. Woods, M. V. Zhukov","doi":"arxiv-2406.04771","DOIUrl":"https://doi.org/arxiv-2406.04771","url":null,"abstract":"We report on the observation of previously-unknown isotope $^{21}$Al, the\u0000first unbound aluminum isotope located beyond the proton dripline. The\u0000$^{21}$Al nucleus decays by one-proton (1p) emission, and its in-flight decays\u0000were detected by tracking trajectories of all decay products with micro-strip\u0000silicon detectors. The 1p-emission processes were studied by analyses of the\u0000measured angular correlations of decay products $^{20}$Mg+p. The 1p-decay\u0000energies of ground and low-lying excited states of $^{21}$Al, its mass excess\u0000and proton separation energy value $S_p$=$-1.1(1)$ MeV were determined.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear Data to Quantify Urca Cooling in Accreting Neutron Stars 量化增殖中子星乌卡冷却的核数据
Pub Date : 2024-06-04 DOI: arxiv-2406.02634
Rahul Jain
Neutron stars in Low Mass X-ray Binaries (LMXBs) can accrete matter ontotheir surface from the companion star. Transiently accreting neutron stars gothrough alternating phases of active accretion outbursts and quiescence. X-rayobservations during the quiescence phase show a drop in X-ray luminosity withthe time in quiescence. This is also inferred as the drop in surfacetemperature or the cooling of accreting neutron stars in quiescence. Analyzingthese cooling curves reveals a great deal of information about the structureand composition of neutron stars. However, model-observation comparisons ofsuch cooling curves are challenging - partly due to observationaluncertainties, and partly due to incomplete knowledge of heating mechanismsduring accretion outbursts. This situation is further exacerbated by the recentdiscovery of Urca cooling in the neutron star crust. These are cycles thatalternate between electron-capture and beta-decay to produce a large flux ofneutrinos and anti-neutrinos. These freely stream out of the star and carryenergy with them, essentially cooling the neutron star crust without changingthe composition. As a result, it is necessary to accurately quantify thestrength of Urca cooling to constrain the heat sources in neutron star crustsand facilitate better model-observation comparisons of the cooling curves.
低质量X射线双星(LMXB)中的中子星可以从伴星表面吸积物质。瞬态吸积中子星会经历活跃的吸积爆发和静止交替阶段。静止阶段的 X 射线观测显示,X 射线光度随着静止时间的延长而下降。这也被推断为表面温度的下降或增殖中子星在静止期的冷却。分析这些冷却曲线可以揭示有关中子星结构和组成的大量信息。然而,对这些冷却曲线进行模型-观测比较是一项挑战--部分原因是观测的不确定性,部分原因是对吸积爆发时的加热机制了解不全面。最近在中子星外壳中发现的乌卡冷却现象进一步加剧了这种状况。这些循环在电子捕获和β衰变之间交替进行,产生大量中微子和反中微子。这些中微子自由流出中子星,并携带能量,实质上冷却了中子星外壳,而不改变其成分。因此,有必要精确地量化乌卡冷却的强度,以限制中子星外壳的热源,并便于更好地对冷却曲线进行模型-观测比较。
{"title":"Nuclear Data to Quantify Urca Cooling in Accreting Neutron Stars","authors":"Rahul Jain","doi":"arxiv-2406.02634","DOIUrl":"https://doi.org/arxiv-2406.02634","url":null,"abstract":"Neutron stars in Low Mass X-ray Binaries (LMXBs) can accrete matter onto\u0000their surface from the companion star. Transiently accreting neutron stars go\u0000through alternating phases of active accretion outbursts and quiescence. X-ray\u0000observations during the quiescence phase show a drop in X-ray luminosity with\u0000the time in quiescence. This is also inferred as the drop in surface\u0000temperature or the cooling of accreting neutron stars in quiescence. Analyzing\u0000these cooling curves reveals a great deal of information about the structure\u0000and composition of neutron stars. However, model-observation comparisons of\u0000such cooling curves are challenging - partly due to observational\u0000uncertainties, and partly due to incomplete knowledge of heating mechanisms\u0000during accretion outbursts. This situation is further exacerbated by the recent\u0000discovery of Urca cooling in the neutron star crust. These are cycles that\u0000alternate between electron-capture and beta-decay to produce a large flux of\u0000neutrinos and anti-neutrinos. These freely stream out of the star and carry\u0000energy with them, essentially cooling the neutron star crust without changing\u0000the composition. As a result, it is necessary to accurately quantify the\u0000strength of Urca cooling to constrain the heat sources in neutron star crusts\u0000and facilitate better model-observation comparisons of the cooling curves.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"237 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Femtoscopy at NA61/SHINE using symmetric Lévy sources in central $^{40}$Ar+$^{45}$Sc from 40$A$ GeV/$c$ to 150$A$ GeV/$c$ 在 NA61/SHINE 使用中心 $^{40}$Ar+$^{45}$Sc 从 40$A$ GeV/$c$ 到 150$A$ GeV/$c$ 的对称莱维源进行雌镜研究
Pub Date : 2024-06-04 DOI: arxiv-2406.02242
Barnabas Porfyfor the NA61/SHINE Collaboration
In the recent decades of high energy physics research, it was demonstratedthat strongly interacting quark-gluon plasma (sQGP) is created inultra-relativistic nucleus-nucleus collisions. Investigation and understandingof properties of the hadronic matter is among the important goals of NA61/SHINEcollaboration at CERN SPS. Mapping of the phase diagram is achieved by varyingthe collision energy (5 GeV $
在近几十年的高能物理研究中,已经证明强相互作用夸克-胶子等离子体(sQGP)是在超相对论核-核碰撞中产生的。研究和了解强子物质的特性是欧洲核子研究中心空间站的 NA61/SHINE 合作的重要目标之一。相图的绘制是通过改变碰撞能量(5 GeV
{"title":"Femtoscopy at NA61/SHINE using symmetric Lévy sources in central $^{40}$Ar+$^{45}$Sc from 40$A$ GeV/$c$ to 150$A$ GeV/$c$","authors":"Barnabas Porfyfor the NA61/SHINE Collaboration","doi":"arxiv-2406.02242","DOIUrl":"https://doi.org/arxiv-2406.02242","url":null,"abstract":"In the recent decades of high energy physics research, it was demonstrated\u0000that strongly interacting quark-gluon plasma (sQGP) is created in\u0000ultra-relativistic nucleus-nucleus collisions. Investigation and understanding\u0000of properties of the hadronic matter is among the important goals of NA61/SHINE\u0000collaboration at CERN SPS. Mapping of the phase diagram is achieved by varying\u0000the collision energy (5 GeV $<sqrt{s_{textrm{NN}}}<$17 GeV) and by changing\u0000the collision system (p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb). We report on the\u0000measurement of femtoscopic correlations in intermediate system at intermediate\u0000SPS energies. Interpreting the results of measurements within the symmetric\u0000L'evy source formalism, we discuss the values of L'evy source parameters as a\u0000function of average pair transverse mass. One of the physical parameters is\u0000particularly important, the L'evy exponent $alpha$, which describes the shape\u0000of the source and may be related to the critical exponent $eta$ in the\u0000proximity of the critical point. Therefore, measuring it may shed light on the\u0000location of the critical endpoint of the QCD phase diagram.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
$K^+Λ(1520)$ photoproduction at forward angles near threshold with the BGOOD experiment 利用 BGOOD 实验在临界点附近的正向角进行 $K^+Λ(1520)$ 光生成
Pub Date : 2024-06-03 DOI: arxiv-2406.01121
E. O. Rosanowski, T. C. Jude, S. Alef, A. J. Clara Figueiredo, R. Di Salvo, D. Elsner, A. Fantini, O. Freyermuth, F. Frommberger, F. Ghio, J. Groß, K. Kohl, P. Levi Sandri, G. Mandaglio, R. Messi, D. Moricciani, P. Pedroni, B. -E. Reitz, M. Romaniuk, G. Scheluchin, H. Schmieden, A. Sonnenschein
The differential cross section for $gamma prightarrow K^+Lambda(1520)$ wasmeasured from threshold to a centre-of-mass energy of 2090,MeV at forwardangles at the BGOOD experiment. The high statistical precision and resolutionin centre-of-mass energy and angle allows a detailed characterisation of thislow-momentum transfer kinematic region. The data agree with a previous LEPSmeasurement and support effective Lagrangian models that indicate that thecontact term dominates the cross section near threshold.
在BGOOD实验中,测量了从阈值到2090,MeV质量中心能量正向角度的$gamma prightarrow K^+Lambda(1520)$的差分截面。质量中心能量和角度的高统计精度和高分辨率使我们能够详细描述这个低动量传递运动学区域。这些数据与先前的 LEPS 测量结果一致,并支持有效拉格朗日模型,该模型表明接触项在临界值附近的截面中占主导地位。
{"title":"$K^+Λ(1520)$ photoproduction at forward angles near threshold with the BGOOD experiment","authors":"E. O. Rosanowski, T. C. Jude, S. Alef, A. J. Clara Figueiredo, R. Di Salvo, D. Elsner, A. Fantini, O. Freyermuth, F. Frommberger, F. Ghio, J. Groß, K. Kohl, P. Levi Sandri, G. Mandaglio, R. Messi, D. Moricciani, P. Pedroni, B. -E. Reitz, M. Romaniuk, G. Scheluchin, H. Schmieden, A. Sonnenschein","doi":"arxiv-2406.01121","DOIUrl":"https://doi.org/arxiv-2406.01121","url":null,"abstract":"The differential cross section for $gamma prightarrow K^+Lambda(1520)$ was\u0000measured from threshold to a centre-of-mass energy of 2090,MeV at forward\u0000angles at the BGOOD experiment. The high statistical precision and resolution\u0000in centre-of-mass energy and angle allows a detailed characterisation of this\u0000low-momentum transfer kinematic region. The data agree with a previous LEPS\u0000measurement and support effective Lagrangian models that indicate that the\u0000contact term dominates the cross section near threshold.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remeasuring the $γ$-decay branching ratio of the Hoyle state 重新测量霍伊尔态的γ$衰变分支率
Pub Date : 2024-06-01 DOI: arxiv-2406.00397
W. Paulsen, K. C. W. Li, S. Siem, V. W. Ingeberg, A. C. Larsen, T. K. Eriksen, H. C. Berg, M. M. Bjørøen, B. J. Coombes, J. T. H. Dowie, F. W. Furmyr, F. L. B. Garrote, D. Gjestvang, A. Görgen, T. Kibédi, M. Markova, V. Modamio, E. Sahin, A. E Stuchbery, G. M. Tveten, V. M. Valsdòttir
The radiative branching ratio of the Hoyle state is crucial to estimate thetriple-$alpha$ reaction rate in stellar environments at medium temperatures.Knowledge of the $gamma$-decay channel is critical as this is the dominantradiative decay channel for the Hoyle state. A recent study by Kib'edi et al.[Phys. Rev. Lett. 125, 182701 (2020)] has challenged our understanding of thisastrophysically significant branching ratio and its constraints. The objectiveof this work was to perform a new measurement of the $gamma$-decay branchingratio of the Hoyle state to deduce the radiative branching ratio of the Hoylestate. An additional objective was to independently verify aspects of theaforementioned measurement conducted by Kib'edi et al. For the main experimentof this work, the Hoyle state was populated by the $^{12}textrm{C}(p,p')$reaction at 10.8 MeV at the Oslo Cyclotron Laboratory. The $gamma$-decaybranching ratio was deduced through triple-coincidence events, each consistingof a proton ejectile corresponding to the Hoyle state, and the subsequent$gamma$-ray cascade. In the main experiment of this work, a $gamma$-decaybranching ratio of the Hoyle state of $Gamma_{gamma}/Gamma=4.0(4)times10^{-4}$ was determined, yielding a corresponding radiative branching ratio of$Gamma_{textrm{rad}}/Gamma=4.1(4) times 10^{-4}$, which is in agreementwith several recent studies, as well as the previously adopted ENSDF average of$Gamma_{textrm{rad}}/Gamma=4.16(11)times 10^{-4}$. Aspects of the analysisperformed by Kib'edi et al. were verified in this work and the source ofdiscrepancy between the results of this work and that of Kib'edi et al. couldnot be determined. Further independent and innovative studies for the radiativewidth of the Hoyle state will substantiate whether the discrepant result byKib'edi et al. should be excluded from future evaluations.
霍伊尔态的辐射支化比对于估算恒星环境中中等温度下的三($alpha$)反应速率至关重要。Kib'edi 等人最近的一项研究[Phys. Rev. Lett. 125, 182701 (2020)]挑战了我们对这一具有重大物理意义的分支比及其约束条件的理解。这项工作的目的是对霍伊尔态的γ衰变分支进行新的测量,以推导出霍伊尔态的辐射分支比。在这项工作的主要实验中,霍伊尔态是由奥斯陆回旋加速器实验室在10.8MeV下的$^{12}textrm{C}(p,p')$反应填充的。伽马射线衰变率是通过三重共振事件推导出来的,每一个共振事件都包括与霍伊尔态相对应的质子抛射物以及随后的伽马射线级联。在这项工作的主要实验中,确定了霍伊尔态的$gamma$-decay支化比为$Gamma_{gamma}/Gamma=4.0(4)times10^{-4}$,得出了相应的辐射支化比为$Gamma_{textrm{rad}}/Gamma=4.0(4)times10^{-4}$。1(4) times 10^{-4}$,这与最近的几项研究以及之前采用的 ENSDF 平均值$Gamma_{textrm{rad}}/Gamma=4.16(11)times 10^{-4}$相一致。Kib'edi 等人所做分析的某些方面在这项工作中得到了验证,但无法确定这项工作的结果与 Kib'edi 等人的结果之间存在差异的原因。对霍伊尔态辐射宽度的进一步独立和创新研究将证实是否应在未来的评估中排除Kib'edi 等人的差异结果。
{"title":"Remeasuring the $γ$-decay branching ratio of the Hoyle state","authors":"W. Paulsen, K. C. W. Li, S. Siem, V. W. Ingeberg, A. C. Larsen, T. K. Eriksen, H. C. Berg, M. M. Bjørøen, B. J. Coombes, J. T. H. Dowie, F. W. Furmyr, F. L. B. Garrote, D. Gjestvang, A. Görgen, T. Kibédi, M. Markova, V. Modamio, E. Sahin, A. E Stuchbery, G. M. Tveten, V. M. Valsdòttir","doi":"arxiv-2406.00397","DOIUrl":"https://doi.org/arxiv-2406.00397","url":null,"abstract":"The radiative branching ratio of the Hoyle state is crucial to estimate the\u0000triple-$alpha$ reaction rate in stellar environments at medium temperatures.\u0000Knowledge of the $gamma$-decay channel is critical as this is the dominant\u0000radiative decay channel for the Hoyle state. A recent study by Kib'edi et al.\u0000[Phys. Rev. Lett. 125, 182701 (2020)] has challenged our understanding of this\u0000astrophysically significant branching ratio and its constraints. The objective\u0000of this work was to perform a new measurement of the $gamma$-decay branching\u0000ratio of the Hoyle state to deduce the radiative branching ratio of the Hoyle\u0000state. An additional objective was to independently verify aspects of the\u0000aforementioned measurement conducted by Kib'edi et al. For the main experiment\u0000of this work, the Hoyle state was populated by the $^{12}textrm{C}(p,p')$\u0000reaction at 10.8 MeV at the Oslo Cyclotron Laboratory. The $gamma$-decay\u0000branching ratio was deduced through triple-coincidence events, each consisting\u0000of a proton ejectile corresponding to the Hoyle state, and the subsequent\u0000$gamma$-ray cascade. In the main experiment of this work, a $gamma$-decay\u0000branching ratio of the Hoyle state of $Gamma_{gamma}/Gamma=4.0(4)times\u000010^{-4}$ was determined, yielding a corresponding radiative branching ratio of\u0000$Gamma_{textrm{rad}}/Gamma=4.1(4) times 10^{-4}$, which is in agreement\u0000with several recent studies, as well as the previously adopted ENSDF average of\u0000$Gamma_{textrm{rad}}/Gamma=4.16(11)times 10^{-4}$. Aspects of the analysis\u0000performed by Kib'edi et al. were verified in this work and the source of\u0000discrepancy between the results of this work and that of Kib'edi et al. could\u0000not be determined. Further independent and innovative studies for the radiative\u0000width of the Hoyle state will substantiate whether the discrepant result by\u0000Kib'edi et al. should be excluded from future evaluations.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Highlights from STAR BES Phase II STAR BES 第二阶段的近期亮点
Pub Date : 2024-05-31 DOI: arxiv-2405.20928
Dylan Nefffor the STAR Collaboration
The second phase of the RHIC Beam Energy Scan (BES-II) was conducted between2019 and 2021. High statistics data was collected by the STAR experiment forAu+Au collisions at $sqrt{s_{NN}}$ from 7.7 to 27 GeV in collider mode andfrom 3 to 13.7 GeV in fixed target mode. A selection of results from thevarious BES-II analyses are presented here to showcase the wide range ofphysics accessible.
RHIC光束能量扫描(BES-II)的第二阶段在2019年至2021年期间进行。STAR实验收集了对撞机模式下7.7到27 GeV的Au+Au对撞和固定靶模式下3到13.7 GeV的Au+Au对撞的高统计数据。本文介绍了从各种BES-II分析中选取的一些结果,以展示可以获得的广泛物理范围。
{"title":"Recent Highlights from STAR BES Phase II","authors":"Dylan Nefffor the STAR Collaboration","doi":"arxiv-2405.20928","DOIUrl":"https://doi.org/arxiv-2405.20928","url":null,"abstract":"The second phase of the RHIC Beam Energy Scan (BES-II) was conducted between\u00002019 and 2021. High statistics data was collected by the STAR experiment for\u0000Au+Au collisions at $sqrt{s_{NN}}$ from 7.7 to 27 GeV in collider mode and\u0000from 3 to 13.7 GeV in fixed target mode. A selection of results from the\u0000various BES-II analyses are presented here to showcase the wide range of\u0000physics accessible.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"127 Suppl 4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the nature of the QCD phase transition with higher-order net-proton number fluctuation and local parton density fluctuation measurements at RHIC-STAR 利用 RHIC-STAR 的高阶净质子数波动和局部 Parton 密度波动测量探究 QCD 相变的性质
Pub Date : 2024-05-31 DOI: arxiv-2405.20929
Dylan Nefffor the STAR Collaboration
The moments of proton and net-proton multiplicity distributions areobservables expected to be sensitive to the QCD critical point and the natureof the QCD phase transition from QGP to hadron gas. Hyper-order cumulants aremeasured in wide centrality bins in STAR BES-I data and found to bequalitatively consistent with trends predicted by lattice QCD which finds across-over phase transition at low $mu_text{B}$. Data collected at$sqrt{s_{NN}}=3$ GeV in BES-II exhibit trends opposite of those observed inhigher energy collisions which may suggest the dominance of hadronicinteractions at this energy. The variance of proton multiplicity distributionsin azimuthal partitions is measured to search for signals of clusteringindicative of a first-order phase transition. A strong dependence on the eventmultiplicity is observed. This dependence is independent of energy in AMPTwhile in STAR data a significant trend with energy is observed.
质子和净质子多重性分布的矩是预计对 QCD 临界点和从 QGP 到强子气体的 QCD 相变性质敏感的观测值。在STAR BES-I数据的宽中心区测量了超阶累积量,发现其定性与格子QCD预测的趋势一致,格子QCD发现在低$mu_text{B}$时存在跨过相变。在BES-II中收集的$sqrt{s_{NN}}=3GeV的数据显示出与在更高能量对撞中观测到的趋势相反的趋势,这可能表明强子相互作用在该能量占主导地位。测量了方位角分区中质子多重性分布的方差,以寻找表明一阶相变的聚类信号。结果表明,质子多倍性与事件多倍性有很强的相关性。在 AMPT 数据中,这种依赖性与能量无关,而在 STAR 数据中,则观察到与能量有关的显著趋势。
{"title":"Probing the nature of the QCD phase transition with higher-order net-proton number fluctuation and local parton density fluctuation measurements at RHIC-STAR","authors":"Dylan Nefffor the STAR Collaboration","doi":"arxiv-2405.20929","DOIUrl":"https://doi.org/arxiv-2405.20929","url":null,"abstract":"The moments of proton and net-proton multiplicity distributions are\u0000observables expected to be sensitive to the QCD critical point and the nature\u0000of the QCD phase transition from QGP to hadron gas. Hyper-order cumulants are\u0000measured in wide centrality bins in STAR BES-I data and found to be\u0000qualitatively consistent with trends predicted by lattice QCD which finds a\u0000cross-over phase transition at low $mu_text{B}$. Data collected at\u0000$sqrt{s_{NN}}=3$ GeV in BES-II exhibit trends opposite of those observed in\u0000higher energy collisions which may suggest the dominance of hadronic\u0000interactions at this energy. The variance of proton multiplicity distributions\u0000in azimuthal partitions is measured to search for signals of clustering\u0000indicative of a first-order phase transition. A strong dependence on the event\u0000multiplicity is observed. This dependence is independent of energy in AMPT\u0000while in STAR data a significant trend with energy is observed.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of ${}_Λ^{3}mathrm{H}$ production in Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 5.02 TeV 在$sqrt{s_{mathrm{NN}}$ = 5.02 TeV的Pb-Pb对撞中测量${}_Λ^{3}mathrm{H}$的产生
Pub Date : 2024-05-30 DOI: arxiv-2405.19839
ALICE Collaboration
The first measurement of $_{Lambda}^{3}mathrm{H}$ and $^3_{overline{Lambda}}overline{mathrm{H}}$ differential production with respectto transverse momentum and centrality in Pb$-$Pb collisions at$sqrt{s_{mathrm{NN}}}=5.02$~TeV is presented. The $_{Lambda}^{3}mathrm{H}$has been reconstructed via its two-charged-body decay channel, i.e.,$_{Lambda}^{3}mathrm{H} rightarrow {}^{3}mathrm{He} + pi^{-}$. ABlast-Wave model fit of the $p_{rm T}$-differential spectra of all nuclearspecies measured by the ALICE collaboration suggests that the$_{Lambda}^{3}mathrm{H}$ kinetic freeze-out surface is consistent with thatof other nuclei. The ratio between the integrated yields of$_{Lambda}^{3}mathrm{H}$ and $^3mathrm{He}$ is compared to predictions fromthe statistical hadronisation model and the coalescence model, with the latterbeing favoured by the presented measurements.
首次测量了在$sqrt{s_{mathrm{NN}}=5.02$~TeV的Pb$-$Pb对撞中$_{Lambda}^{3}mathrm{H}$和$^3_{overlineLambda}}overline{mathrm{H}}$的差分产生与横动量和中心性的关系。$_{λ}^{3}mathrm{H}$是通过它的双电荷体衰变通道重建的,即$_{λ}^{3}mathrm{H}。rightarrow {}^{3}mathrm{He}+ pi^{-}$。对ALICE合作组测量到的所有核物种的$p_{rm T}$差分光谱进行的爆破波模型拟合表明,$_{Lambda}^{3}mathrm{H}$动力学冻结表面与其他核的冻结表面是一致的。将{{Lambda}^{3}mathrm{H}$和{{3}mathrm{He}$的综合产率与统计强子化模型和凝聚模型的预测进行了比较,结果表明后者更受测量结果的支持。
{"title":"Measurement of ${}_Λ^{3}mathrm{H}$ production in Pb-Pb collisions at $sqrt{s_{mathrm{NN}}}$ = 5.02 TeV","authors":"ALICE Collaboration","doi":"arxiv-2405.19839","DOIUrl":"https://doi.org/arxiv-2405.19839","url":null,"abstract":"The first measurement of $_{Lambda}^{3}mathrm{H}$ and $^3_\u0000{overline{Lambda}}overline{mathrm{H}}$ differential production with respect\u0000to transverse momentum and centrality in Pb$-$Pb collisions at\u0000$sqrt{s_{mathrm{NN}}}=5.02$~TeV is presented. The $_{Lambda}^{3}mathrm{H}$\u0000has been reconstructed via its two-charged-body decay channel, i.e.,\u0000$_{Lambda}^{3}mathrm{H} rightarrow {}^{3}mathrm{He} + pi^{-}$. A\u0000Blast-Wave model fit of the $p_{rm T}$-differential spectra of all nuclear\u0000species measured by the ALICE collaboration suggests that the\u0000$_{Lambda}^{3}mathrm{H}$ kinetic freeze-out surface is consistent with that\u0000of other nuclei. The ratio between the integrated yields of\u0000$_{Lambda}^{3}mathrm{H}$ and $^3mathrm{He}$ is compared to predictions from\u0000the statistical hadronisation model and the coalescence model, with the latter\u0000being favoured by the presented measurements.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - PHYS - Nuclear Experiment
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1