PHENIX Collaboration, N. J. Abdulameer, U. Acharya, A. Adare, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander, M. Alfred, K. Aoki, N. Apadula, L. Aphecetche, J. Asai, H. Asano, E. T. Atomssa, R. Averbeck, T. C. Awes, B. Azmoun, V. Babintsev, M. Bai, G. Baksay, L. Baksay, A. Baldisseri, N. S. Bandara, B. Bannier, K. N. Barish, P. D. Barnes, B. Bassalleck, A. T. Basye, S. Bathe, S. Batsouli, V. Baublis, C. Baumann, A. Bazilevsky, M. Beaumier, S. Beckman, S. Belikov, R. Belmont, R. Bennett, A. Berdnikov, Y. Berdnikov, L. Bichon, A. A. Bickley, B. Blankenship, D. S. Blau, J. G. Boissevain, J. S. Bok, H. Borel, V. Borisov, K. Boyle, M. L. Brooks, J. Bryslawskyj, H. Buesching, V. Bumazhnov, G. Bunce, S. Butsyk, C. M. Camacho, S. Campbell, B. S. Chang, W. C. Chang, J. L. Charvet, C. -H. Chen, D. Chen, S. Chernichenko, M. Chiu, C. Y. Chi, I. J. Choi, J. B. Choi, R. K. Choudhury, T. Chujo, P. Chung, A. Churyn, V. Cianciolo, Z. Citron, B. A. Cole, M. Connors, P. Constantin, R. Corliss, M. Csanád, T. Csörgő, D. d'Enterria, T. Dahms, S. Dairaku, T. W. Danley, K. Das, A. Datta, M. S. Daugherity, G. David, K. DeBlasio, K. Dehmelt, A. Denisov, A. Deshpande, E. J. Desmond, O. Dietzsch, A. Dion, P. B. Diss, M. Donadelli, V. Doomra, J. H. Do, O. Drapier, A. Drees, K. A. Drees, A. K. Dubey, J. M. Durham, A. Durum, D. Dutta, V. Dzhordzhadze, Y. V. Efremenko, F. Ellinghaus, H. En'yo, T. Engelmore, A. Enokizono, R. Esha, K. O. Eyser, B. Fadem, N. Feege, D. E. Fields, M. Finger, Jr., M. Finger, D. Firak, D. Fitzgerald, F. Fleuret, S. L. Fokin, Z. Fraenkel, J. E. Frantz, A. Franz, A. D. Frawley, K. Fujiwara, Y. Fukao, T. Fusayasu, P. Gallus, C. Gal, P. Garg, I. Garishvili, H. Ge, F. Giordano, A. Glenn, H. Gong, M. Gonin, J. Gosset, Y. Goto, R. Granier de Cassagnac, N. Grau, S. V. Greene, M. Grosse Perdekamp, T. Gunji, T. Guo, H. -Å. Gustafsson, T. Hachiya, A. Hadj Henni, J. S. Haggerty, K. I. Hahn, H. Hamagaki, H. F. Hamilton, J. Hanks, R. Han, S. Y. Han, E. P. Hartouni, K. Haruna, S. Hasegawa, T. O. S. Haseler, K. Hashimoto, E. Haslum, R. Hayano, M. Heffner, T. K. Hemmick, T. Hester, X. He, J. C. Hill, A. Hodges, M. Hohlmann, R. S. Hollis, W. Holzmann, K. Homma, B. Hong, T. Horaguchi, D. Hornback, T. Hoshino, N. Hotvedt, J. Huang, T. Ichihara, R. Ichimiya, H. Iinuma, Y. Ikeda, K. Imai, J. Imrek, M. Inaba, A. Iordanova, D. Isenhower, M. Ishihara, T. Isobe, M. Issah, A. Isupov, D. Ivanishchev, B. V. Jacak, M. Jezghani, X. Jiang, J. Jin, Z. Ji, B. M. Johnson, K. S. Joo, D. Jouan, D. S. Jumper, F. Kajihara, S. Kametani, N. Kamihara, J. Kamin, S. Kanda, J. H. Kang, J. Kapustinsky, D. Kawall, A. V. Kazantsev, T. Kempel, J. A. Key, V. Khachatryan, A. Khanzadeev, K. M. Kijima, J. Kikuchi, B. Kimelman, B. I. Kim, C. Kim, D. H. Kim, D. J. Kim, E. Kim, E. -J. Kim, G. W. Kim, M. Kim, S. H. Kim, E. Kinney, K. Kiriluk, Á. Kiss, E. Kistenev, R. Kitamura, J. Klatsky, J. Klay, C. Klein-Boesing, D. Kleinjan, P. Kline, T. Koblesky, L. Kochenda, B. Komkov, M. Konno, J. Koster, D. Kotov, L. Kovacs, A. Kozlov, A. Kravitz, A. Král, G. J. Kunde, B. Kurgyis, K. Kurita, M. Kurosawa, M. J. Kweon, Y. Kwon, G. S. Kyle, Y. S. Lai, J. G. Lajoie, D. Layton, A. Lebedev, D. M. Lee, K. B. Lee, S. Lee, S. H. Lee, T. Lee, M. J. Leitch, M. A. L. Leite, B. Lenzi, P. Liebing, S. H. Lim, A. Litvinenko, H. Liu, M. X. Liu, T. Liška, X. Li, S. Lokos, D. A. Loomis, B. Love, D. Lynch, C. F. Maguire, Y. I. Makdisi, M. Makek, A. Malakhov, M. D. Malik, A. Manion, V. I. Manko, E. Mannel, Y. Mao, H. Masui, F. Matathias, L. Mašek, M. McCumber, P. L. McGaughey, D. McGlinchey, C. McKinney, N. Means, A. Meles, M. Mendoza, B. Meredith, Y. Miake, A. C. Mignerey, P. Mikeš, K. Miki, A. Milov, D. K. Mishra, M. Mishra, J. T. Mitchell, M. Mitrankova, Iu. Mitrankov, S. Miyasaka, S. Mizuno, A. K. Mohanty, P. Montuenga, T. Moon, Y. Morino, A. Morreale, D. P. Morrison, T. V. Moukhanova, D. Mukhopadhyay, B. Mulilo, T. Murakami, J. Murata, A. Mwai, S. Nagamiya, K. Nagashima, J. L. Nagle, M. Naglis, M. I. Nagy, I. Nakagawa, H. Nakagomi, Y. Nakamiya, T. Nakamura, K. Nakano, C. Nattrass, P. K. Netrakanti, J. Newby, M. Nguyen, T. Niida, S. Nishimura, R. Nouicer, N. Novitzky, T. Novák, G. Nukazuka, A. S. Nyanin, E. O'Brien, S. X. Oda, C. A. Ogilvie, K. Okada, M. Oka, Y. Onuki, J. D. Orjuela Koop, M. Orosz, J. D. Osborn, A. Oskarsson, M. Ouchida, K. Ozawa, R. Pak, A. P. T. Palounek, V. Pantuev, V. Papavassiliou, J. Park, J. S. Park, S. Park, W. J. Park, M. Patel, S. F. Pate, H. Pei, J. -C. Peng, H. Pereira, D. V. Perepelitsa, G. D. N. Perera, V. Peresedov, D. Yu. Peressounko, J. Perry, R. Petti, C. Pinkenburg, R. Pinson, R. P. Pisani, M. Potekhin, M. L. Purschke, A. K. Purwar, H. Qu, A. Rakotozafindrabe, J. Rak, B. J. Ramson, I. Ravinovich, K. F. Read, S. Rembeczki, K. Reygers, D. Reynolds, V. Riabov, Y. Riabov, D. Richford, T. Rinn, D. Roach, G. Roche, S. D. Rolnick, M. Rosati, S. S. E. Rosendahl, P. Rosnet, Z. Rowan, J. G. Rubin, P. Rukoyatkin, P. Ružička, V. L. Rykov, B. Sahlmueller, N. Saito, T. Sakaguchi, S. Sakai, K. Sakashita, H. Sako, V. Samsonov, M. Sarsour, S. Sato, T. Sato, S. Sawada, B. Schaefer, B. K. Schmoll, K. Sedgwick, J. Seele, R. Seidl, A. Yu. Semenov, V. Semenov, A. Sen, R. Seto, P. Sett, A. Sexton, D. Sharma, I. Shein, T. -A. Shibata, K. Shigaki, M. Shimomura, K. Shoji, P. Shukla, A. Sickles, C. L. Silva, D. Silvermyr, C. Silvestre, K. S. Sim, B. K. Singh, C. P. Singh, C. P. Singh, V. Singh, M. Slunečka, K. L. Smith, M. Snowball, A. Soldatov, R. A. Soltz, W. E. Sondheim, S. P. Sorensen, I. V. Sourikova, F. Staley, P. W. Stankus, E. Stenlund, M. Stepanov, A. Ster, S. P. Stoll, T. Sugitate, C. Suire, A. Sukhanov, T. Sumita, J. Sun, Z. Sun, J. Sziklai, E. M. Takagui, A. Taketani, R. Tanabe, Y. Tanaka, K. Tanida, M. J. Tannenbaum, S. Tarafdar, A. Taranenko, P. Tarján, H. Themann, T. L. Thomas, R. Tieulent, A. Timilsina, T. Todoroki, M. Togawa, A. Toia, Y. Tomita, L. Tomášek, M. Tomášek, H. Torii, C. L. Towell, R. Towell, R. S. Towell, V-N. Tram, I. Tserruya, Y. Tsuchimoto, B. Ujvari, C. Vale, H. Valle, H. W. van Hecke, A. Veicht, J. Velkovska, A. A. Vinogradov, M. Virius, V. Vrba, E. Vznuzdaev, R. Vértesi, X. R. Wang, Y. Watanabe, Y. S. Watanabe, F. Wei, J. Wessels, A. S. White, S. N. White, D. Winter, C. L. Woody, M. Wysocki, B. Xia, W. Xie, L. Xue, S. Yalcin, Y. L. Yamaguchi, K. Yamaura, R. Yang, A. Yanovich, J. Ying, S. Yokkaichi, I. Yoon, J. H. Yoo, G. R. Young, I. Younus, I. E. Yushmanov, H. Yu, W. A. Zajc, O. Zaudtke, A. Zelenski, C. Zhang, S. Zhou, L. Zolin, L. Zou
High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by the PHENIX experiment in 2014 for Au$+$Au collisions at $sqrt{s_{_{NN}}}=200$~GeV. Suppression is observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for low-momentum particles. The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$ collisions, $I_{AA}$ and $Delta_{AA}$, as a function of the trigger-hadron azimuthal separation, $Deltaphi$, are measured for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-$p_T$ associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as well as medium-response effects.
{"title":"Jet modification via $π^0$-hadron correlations in Au$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV","authors":"PHENIX Collaboration, N. J. Abdulameer, U. Acharya, A. Adare, S. Afanasiev, C. Aidala, N. N. Ajitanand, Y. Akiba, H. Al-Bataineh, J. Alexander, M. Alfred, K. Aoki, N. Apadula, L. Aphecetche, J. Asai, H. Asano, E. T. Atomssa, R. Averbeck, T. C. Awes, B. Azmoun, V. Babintsev, M. Bai, G. Baksay, L. Baksay, A. Baldisseri, N. S. Bandara, B. Bannier, K. N. Barish, P. D. Barnes, B. Bassalleck, A. T. Basye, S. Bathe, S. Batsouli, V. Baublis, C. Baumann, A. Bazilevsky, M. Beaumier, S. Beckman, S. Belikov, R. Belmont, R. Bennett, A. Berdnikov, Y. Berdnikov, L. Bichon, A. A. Bickley, B. Blankenship, D. S. Blau, J. G. Boissevain, J. S. Bok, H. Borel, V. Borisov, K. Boyle, M. L. Brooks, J. Bryslawskyj, H. Buesching, V. Bumazhnov, G. Bunce, S. Butsyk, C. M. Camacho, S. Campbell, B. S. Chang, W. C. Chang, J. L. Charvet, C. -H. Chen, D. Chen, S. Chernichenko, M. Chiu, C. Y. Chi, I. J. Choi, J. B. Choi, R. K. Choudhury, T. Chujo, P. Chung, A. Churyn, V. Cianciolo, Z. Citron, B. A. Cole, M. Connors, P. Constantin, R. Corliss, M. Csanád, T. Csörgő, D. d'Enterria, T. Dahms, S. Dairaku, T. W. Danley, K. Das, A. Datta, M. S. Daugherity, G. David, K. DeBlasio, K. Dehmelt, A. Denisov, A. Deshpande, E. J. Desmond, O. Dietzsch, A. Dion, P. B. Diss, M. Donadelli, V. Doomra, J. H. Do, O. Drapier, A. Drees, K. A. Drees, A. K. Dubey, J. M. Durham, A. Durum, D. Dutta, V. Dzhordzhadze, Y. V. Efremenko, F. Ellinghaus, H. En'yo, T. Engelmore, A. Enokizono, R. Esha, K. O. Eyser, B. Fadem, N. Feege, D. E. Fields, M. Finger, Jr., M. Finger, D. Firak, D. Fitzgerald, F. Fleuret, S. L. Fokin, Z. Fraenkel, J. E. Frantz, A. Franz, A. D. Frawley, K. Fujiwara, Y. Fukao, T. Fusayasu, P. Gallus, C. Gal, P. Garg, I. Garishvili, H. Ge, F. Giordano, A. Glenn, H. Gong, M. Gonin, J. Gosset, Y. Goto, R. Granier de Cassagnac, N. Grau, S. V. Greene, M. Grosse Perdekamp, T. Gunji, T. Guo, H. -Å. Gustafsson, T. Hachiya, A. Hadj Henni, J. S. Haggerty, K. I. Hahn, H. Hamagaki, H. F. Hamilton, J. Hanks, R. Han, S. Y. Han, E. P. Hartouni, K. Haruna, S. Hasegawa, T. O. S. Haseler, K. Hashimoto, E. Haslum, R. Hayano, M. Heffner, T. K. Hemmick, T. Hester, X. He, J. C. Hill, A. Hodges, M. Hohlmann, R. S. Hollis, W. Holzmann, K. Homma, B. Hong, T. Horaguchi, D. Hornback, T. Hoshino, N. Hotvedt, J. Huang, T. Ichihara, R. Ichimiya, H. Iinuma, Y. Ikeda, K. Imai, J. Imrek, M. Inaba, A. Iordanova, D. Isenhower, M. Ishihara, T. Isobe, M. Issah, A. Isupov, D. Ivanishchev, B. V. Jacak, M. Jezghani, X. Jiang, J. Jin, Z. Ji, B. M. Johnson, K. S. Joo, D. Jouan, D. S. Jumper, F. Kajihara, S. Kametani, N. Kamihara, J. Kamin, S. Kanda, J. H. Kang, J. Kapustinsky, D. Kawall, A. V. Kazantsev, T. Kempel, J. A. Key, V. Khachatryan, A. Khanzadeev, K. M. Kijima, J. Kikuchi, B. Kimelman, B. I. Kim, C. Kim, D. H. Kim, D. J. Kim, E. Kim, E. -J. Kim, G. W. Kim, M. Kim, S. H. Kim, E. Kinney, K. Kiriluk, Á. Kiss, E. Kistenev, R. Kitamura, J. Klatsky, J. Klay, C. Klein-Boesing, D. Kleinjan, P. Kline, T. Koblesky, L. Kochenda, B. Komkov, M. Konno, J. Koster, D. Kotov, L. Kovacs, A. Kozlov, A. Kravitz, A. Král, G. J. Kunde, B. Kurgyis, K. Kurita, M. Kurosawa, M. J. Kweon, Y. Kwon, G. S. Kyle, Y. S. Lai, J. G. Lajoie, D. Layton, A. Lebedev, D. M. Lee, K. B. Lee, S. Lee, S. H. Lee, T. Lee, M. J. Leitch, M. A. L. Leite, B. Lenzi, P. Liebing, S. H. Lim, A. Litvinenko, H. Liu, M. X. Liu, T. Liška, X. Li, S. Lokos, D. A. Loomis, B. Love, D. Lynch, C. F. Maguire, Y. I. Makdisi, M. Makek, A. Malakhov, M. D. Malik, A. Manion, V. I. Manko, E. Mannel, Y. Mao, H. Masui, F. Matathias, L. Mašek, M. McCumber, P. L. McGaughey, D. McGlinchey, C. McKinney, N. Means, A. Meles, M. Mendoza, B. Meredith, Y. Miake, A. C. Mignerey, P. Mikeš, K. Miki, A. Milov, D. K. Mishra, M. Mishra, J. T. Mitchell, M. Mitrankova, Iu. Mitrankov, S. Miyasaka, S. Mizuno, A. K. Mohanty, P. Montuenga, T. Moon, Y. Morino, A. Morreale, D. P. Morrison, T. V. Moukhanova, D. Mukhopadhyay, B. Mulilo, T. Murakami, J. Murata, A. Mwai, S. Nagamiya, K. Nagashima, J. L. Nagle, M. Naglis, M. I. Nagy, I. Nakagawa, H. Nakagomi, Y. Nakamiya, T. Nakamura, K. Nakano, C. Nattrass, P. K. Netrakanti, J. Newby, M. Nguyen, T. Niida, S. Nishimura, R. Nouicer, N. Novitzky, T. Novák, G. Nukazuka, A. S. Nyanin, E. O'Brien, S. X. Oda, C. A. Ogilvie, K. Okada, M. Oka, Y. Onuki, J. D. Orjuela Koop, M. Orosz, J. D. Osborn, A. Oskarsson, M. Ouchida, K. Ozawa, R. Pak, A. P. T. Palounek, V. Pantuev, V. Papavassiliou, J. Park, J. S. Park, S. Park, W. J. Park, M. Patel, S. F. Pate, H. Pei, J. -C. Peng, H. Pereira, D. V. Perepelitsa, G. D. N. Perera, V. Peresedov, D. Yu. Peressounko, J. Perry, R. Petti, C. Pinkenburg, R. Pinson, R. P. Pisani, M. Potekhin, M. L. Purschke, A. K. Purwar, H. Qu, A. Rakotozafindrabe, J. Rak, B. J. Ramson, I. Ravinovich, K. F. Read, S. Rembeczki, K. Reygers, D. Reynolds, V. Riabov, Y. Riabov, D. Richford, T. Rinn, D. Roach, G. Roche, S. D. Rolnick, M. Rosati, S. S. E. Rosendahl, P. Rosnet, Z. Rowan, J. G. Rubin, P. Rukoyatkin, P. Ružička, V. L. Rykov, B. Sahlmueller, N. Saito, T. Sakaguchi, S. Sakai, K. Sakashita, H. Sako, V. Samsonov, M. Sarsour, S. Sato, T. Sato, S. Sawada, B. Schaefer, B. K. Schmoll, K. Sedgwick, J. Seele, R. Seidl, A. Yu. Semenov, V. Semenov, A. Sen, R. Seto, P. Sett, A. Sexton, D. Sharma, I. Shein, T. -A. Shibata, K. Shigaki, M. Shimomura, K. Shoji, P. Shukla, A. Sickles, C. L. Silva, D. Silvermyr, C. Silvestre, K. S. Sim, B. K. Singh, C. P. Singh, C. P. Singh, V. Singh, M. Slunečka, K. L. Smith, M. Snowball, A. Soldatov, R. A. Soltz, W. E. Sondheim, S. P. Sorensen, I. V. Sourikova, F. Staley, P. W. Stankus, E. Stenlund, M. Stepanov, A. Ster, S. P. Stoll, T. Sugitate, C. Suire, A. Sukhanov, T. Sumita, J. Sun, Z. Sun, J. Sziklai, E. M. Takagui, A. Taketani, R. Tanabe, Y. Tanaka, K. Tanida, M. J. Tannenbaum, S. Tarafdar, A. Taranenko, P. Tarján, H. Themann, T. L. Thomas, R. Tieulent, A. Timilsina, T. Todoroki, M. Togawa, A. Toia, Y. Tomita, L. Tomášek, M. Tomášek, H. Torii, C. L. Towell, R. Towell, R. S. Towell, V-N. Tram, I. Tserruya, Y. Tsuchimoto, B. Ujvari, C. Vale, H. Valle, H. W. van Hecke, A. Veicht, J. Velkovska, A. A. Vinogradov, M. Virius, V. Vrba, E. Vznuzdaev, R. Vértesi, X. R. Wang, Y. Watanabe, Y. S. Watanabe, F. Wei, J. Wessels, A. S. White, S. N. White, D. Winter, C. L. Woody, M. Wysocki, B. Xia, W. Xie, L. Xue, S. Yalcin, Y. L. Yamaguchi, K. Yamaura, R. Yang, A. Yanovich, J. Ying, S. Yokkaichi, I. Yoon, J. H. Yoo, G. R. Young, I. Younus, I. E. Yushmanov, H. Yu, W. A. Zajc, O. Zaudtke, A. Zelenski, C. Zhang, S. Zhou, L. Zolin, L. Zou","doi":"arxiv-2406.08301","DOIUrl":"https://doi.org/arxiv-2406.08301","url":null,"abstract":"High-momentum two-particle correlations are a useful tool for studying\u0000jet-quenching effects in the quark-gluon plasma. Angular correlations between\u0000neutral-pion triggers and charged hadrons with transverse momenta in the range\u00004--12~GeV/$c$ and 0.5--7~GeV/$c$, respectively, have been measured by the\u0000PHENIX experiment in 2014 for Au$+$Au collisions at $sqrt{s_{_{NN}}}=200$~GeV.\u0000Suppression is observed in the yield of high-momentum jet fragments opposite\u0000the trigger particle, which indicates jet suppression stemming from in-medium\u0000partonic energy loss, while enhancement is observed for low-momentum particles.\u0000The ratio and differences between the yield in Au$+$Au collisions and $p$$+$$p$\u0000collisions, $I_{AA}$ and $Delta_{AA}$, as a function of the trigger-hadron\u0000azimuthal separation, $Deltaphi$, are measured for the first time at the\u0000Relativistic Heavy Ion Collider. These results better quantify how the yield of\u0000low-$p_T$ associated hadrons is enhanced at wide angle, which is crucial for\u0000studying energy loss as well as medium-response effects.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"135 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experiments conducted in the last decade to search for the Chiral Magnetic Effect (CME) in heavy-ion collisions have been inconclusive. The Isobar program at RHIC was undertaken to address this problem. Also, a new approach known as the Sliding Dumbbell Method (SDM) has been developed to study the CME. This method searches for the back-to-back charge separation on an event-by-event basis.
{"title":"Search for the Chiral Magnetic Effect using Sliding Dumbbell Method in Isobar Collisions ($^{96}_{44}Ru$+$^{96}_{44}Ru$ and $^{96}_{40}Zr$+$^{96}_{40}Zr$) at RHIC","authors":"Jagbir Singh","doi":"arxiv-2406.06503","DOIUrl":"https://doi.org/arxiv-2406.06503","url":null,"abstract":"Experiments conducted in the last decade to search for the Chiral Magnetic\u0000Effect (CME) in heavy-ion collisions have been inconclusive. The Isobar program\u0000at RHIC was undertaken to address this problem. Also, a new approach known as\u0000the Sliding Dumbbell Method (SDM) has been developed to study the CME. This\u0000method searches for the back-to-back charge separation on an event-by-event\u0000basis.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"161 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Kostyleva, X. -D. Xu, I. Mukha, L. Acosta, M. Bajzek, E. Casarejos, A. A. Ciemny, D. Cortina-Gil, W. Dominik, J. A. Dueñas, J. M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, J. Gómez-Camacho, A. Gorshkov, L. V. Grigorenko, Z. Janas, G. Kamiński, O. Kiselev, R. Knöbel, A. A. Korsheninnikov, S. Krupko, M. Kuich, N. Kurz, Yu. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, E. Yu. Nikolskii, C. Nociforo, A. K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, C. Rodríguez-Tajes, S. Rymzhanova, A. M. Sánchez-Benítez, C. Scheidenberger, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, K. Sümmerer, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, J. S. Winfield, P. J. Woods, M. V. Zhukov
We report on the observation of previously-unknown isotope $^{21}$Al, the first unbound aluminum isotope located beyond the proton dripline. The $^{21}$Al nucleus decays by one-proton (1p) emission, and its in-flight decays were detected by tracking trajectories of all decay products with micro-strip silicon detectors. The 1p-emission processes were studied by analyses of the measured angular correlations of decay products $^{20}$Mg+p. The 1p-decay energies of ground and low-lying excited states of $^{21}$Al, its mass excess and proton separation energy value $S_p$=$-1.1(1)$ MeV were determined.
{"title":"Observation and spectroscopy of proton-unbound nucleus $^{21}$Al","authors":"D. Kostyleva, X. -D. Xu, I. Mukha, L. Acosta, M. Bajzek, E. Casarejos, A. A. Ciemny, D. Cortina-Gil, W. Dominik, J. A. Dueñas, J. M. Espino, A. Estradé, F. Farinon, A. Fomichev, H. Geissel, J. Gómez-Camacho, A. Gorshkov, L. V. Grigorenko, Z. Janas, G. Kamiński, O. Kiselev, R. Knöbel, A. A. Korsheninnikov, S. Krupko, M. Kuich, N. Kurz, Yu. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, E. Yu. Nikolskii, C. Nociforo, A. K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, C. Rodríguez-Tajes, S. Rymzhanova, A. M. Sánchez-Benítez, C. Scheidenberger, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, K. Sümmerer, I. Szarka, M. Takechi, Y. K. Tanaka, H. Weick, J. S. Winfield, P. J. Woods, M. V. Zhukov","doi":"arxiv-2406.04771","DOIUrl":"https://doi.org/arxiv-2406.04771","url":null,"abstract":"We report on the observation of previously-unknown isotope $^{21}$Al, the\u0000first unbound aluminum isotope located beyond the proton dripline. The\u0000$^{21}$Al nucleus decays by one-proton (1p) emission, and its in-flight decays\u0000were detected by tracking trajectories of all decay products with micro-strip\u0000silicon detectors. The 1p-emission processes were studied by analyses of the\u0000measured angular correlations of decay products $^{20}$Mg+p. The 1p-decay\u0000energies of ground and low-lying excited states of $^{21}$Al, its mass excess\u0000and proton separation energy value $S_p$=$-1.1(1)$ MeV were determined.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neutron stars in Low Mass X-ray Binaries (LMXBs) can accrete matter onto their surface from the companion star. Transiently accreting neutron stars go through alternating phases of active accretion outbursts and quiescence. X-ray observations during the quiescence phase show a drop in X-ray luminosity with the time in quiescence. This is also inferred as the drop in surface temperature or the cooling of accreting neutron stars in quiescence. Analyzing these cooling curves reveals a great deal of information about the structure and composition of neutron stars. However, model-observation comparisons of such cooling curves are challenging - partly due to observational uncertainties, and partly due to incomplete knowledge of heating mechanisms during accretion outbursts. This situation is further exacerbated by the recent discovery of Urca cooling in the neutron star crust. These are cycles that alternate between electron-capture and beta-decay to produce a large flux of neutrinos and anti-neutrinos. These freely stream out of the star and carry energy with them, essentially cooling the neutron star crust without changing the composition. As a result, it is necessary to accurately quantify the strength of Urca cooling to constrain the heat sources in neutron star crusts and facilitate better model-observation comparisons of the cooling curves.
低质量X射线双星(LMXB)中的中子星可以从伴星表面吸积物质。瞬态吸积中子星会经历活跃的吸积爆发和静止交替阶段。静止阶段的 X 射线观测显示,X 射线光度随着静止时间的延长而下降。这也被推断为表面温度的下降或增殖中子星在静止期的冷却。分析这些冷却曲线可以揭示有关中子星结构和组成的大量信息。然而,对这些冷却曲线进行模型-观测比较是一项挑战--部分原因是观测的不确定性,部分原因是对吸积爆发时的加热机制了解不全面。最近在中子星外壳中发现的乌卡冷却现象进一步加剧了这种状况。这些循环在电子捕获和β衰变之间交替进行,产生大量中微子和反中微子。这些中微子自由流出中子星,并携带能量,实质上冷却了中子星外壳,而不改变其成分。因此,有必要精确地量化乌卡冷却的强度,以限制中子星外壳的热源,并便于更好地对冷却曲线进行模型-观测比较。
{"title":"Nuclear Data to Quantify Urca Cooling in Accreting Neutron Stars","authors":"Rahul Jain","doi":"arxiv-2406.02634","DOIUrl":"https://doi.org/arxiv-2406.02634","url":null,"abstract":"Neutron stars in Low Mass X-ray Binaries (LMXBs) can accrete matter onto\u0000their surface from the companion star. Transiently accreting neutron stars go\u0000through alternating phases of active accretion outbursts and quiescence. X-ray\u0000observations during the quiescence phase show a drop in X-ray luminosity with\u0000the time in quiescence. This is also inferred as the drop in surface\u0000temperature or the cooling of accreting neutron stars in quiescence. Analyzing\u0000these cooling curves reveals a great deal of information about the structure\u0000and composition of neutron stars. However, model-observation comparisons of\u0000such cooling curves are challenging - partly due to observational\u0000uncertainties, and partly due to incomplete knowledge of heating mechanisms\u0000during accretion outbursts. This situation is further exacerbated by the recent\u0000discovery of Urca cooling in the neutron star crust. These are cycles that\u0000alternate between electron-capture and beta-decay to produce a large flux of\u0000neutrinos and anti-neutrinos. These freely stream out of the star and carry\u0000energy with them, essentially cooling the neutron star crust without changing\u0000the composition. As a result, it is necessary to accurately quantify the\u0000strength of Urca cooling to constrain the heat sources in neutron star crusts\u0000and facilitate better model-observation comparisons of the cooling curves.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"237 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the recent decades of high energy physics research, it was demonstrated that strongly interacting quark-gluon plasma (sQGP) is created in ultra-relativistic nucleus-nucleus collisions. Investigation and understanding of properties of the hadronic matter is among the important goals of NA61/SHINE collaboration at CERN SPS. Mapping of the phase diagram is achieved by varying the collision energy (5 GeV $