A. Hobart, S. Niccolai, M. Čuić, K. Kumerički, P. Achenbach, J. S. Alvarado, W. R. Armstrong, H. Atac, H. Avakian, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, S. Boiarinov, M. Bondi, W. A. Booth, F. Bossù, K. -Th. Brinkmann, W. J. Briscoe, W. K. Brooks, S. Bueltmann, V. D. Burkert, T. Cao, R. Capobianco, D. S. Carman, P. Chatagnon, G. Ciullo, P. L. Cole, M. Contalbrigo, A. D'Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, S. Fegan, A. Filippi, C. Fogler, K. Gates, G. Gavalian, G. P. Gilfoyle, D. Glazier, R. W. Gothe, Y. Gotra, M. Guidal, K. Hafidi, H. Hakobyan, M. Hattawy, F. Hauenstein, D. Heddle, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. Jiang, H. S. Jo, K. Joo, T. Kageya, A. Kim, W. Kim, V. Klimenko, A. Kripko, V. Kubarovsky, S. E. Kuhn, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, I. J. D. MacGregor, D. Marchand, V. Mascagna, M. Maynes, B. McKinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. Mokeev, C. Muñoz Camacho, P. Nadel-Turonski, P. Naidoo, K. Neupane, G. Niculescu, M. Osipenko, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, S. J. Paul, W. Phelps, N. Pilleux, M. Pokhrel, S. Polcher Rafael, J. Poudel, J. W. Price, Y. Prok, T. Reed, J. Richards, M. Ripani, J. Ritman, P. Rossi, A. A. Golubenko, C. Salgado, S. Schadmand, A. Schmidt, Marshall B. C. Scott, E. M. Seroka, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, N. Sparveris, M. Spreafico, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, N. Trotta, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, V. Tommaso, H. Voskanyan, E. Voutier, D. P Watts, X. Wei, R. Williams, M. H. Wood, L. Xu, N. Zachariou, J. Zhang, Z. W. Zhao, M. Zurek
Measuring Deeply Virtual Compton Scattering on the neutron is one of the necessary steps to understand the structure of the nucleon in terms of Generalized Parton Distributions (GPDs). Neutron targets play a complementary role to transversely polarized proton targets in the determination of the GPD $E$. This poorly known and poorly constrained GPD is essential to obtain the contribution of the quarks' angular momentum to the spin of the nucleon. DVCS on the neutron was measured for the first time selecting the exclusive final state by detecting the neutron, using the Jefferson Lab longitudinally polarized electron beam, with energies up to 10.6 GeV, and the CLAS12 detector. The extracted beam-spin asymmetries, combined with DVCS observables measured on the proton, allow a clean quark-flavor separation of the imaginary parts of the GPDs $H$ and $E$.
{"title":"First Measurement of Deeply Virtual Compton Scattering on the Neutron with Detection of the Active Neutron","authors":"A. Hobart, S. Niccolai, M. Čuić, K. Kumerički, P. Achenbach, J. S. Alvarado, W. R. Armstrong, H. Atac, H. Avakian, L. Baashen, N. A. Baltzell, L. Barion, M. Bashkanov, M. Battaglieri, B. Benkel, F. Benmokhtar, A. Bianconi, A. S. Biselli, S. Boiarinov, M. Bondi, W. A. Booth, F. Bossù, K. -Th. Brinkmann, W. J. Briscoe, W. K. Brooks, S. Bueltmann, V. D. Burkert, T. Cao, R. Capobianco, D. S. Carman, P. Chatagnon, G. Ciullo, P. L. Cole, M. Contalbrigo, A. D'Angelo, N. Dashyan, R. De Vita, M. Defurne, A. Deur, S. Diehl, C. Dilks, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, S. Fegan, A. Filippi, C. Fogler, K. Gates, G. Gavalian, G. P. Gilfoyle, D. Glazier, R. W. Gothe, Y. Gotra, M. Guidal, K. Hafidi, H. Hakobyan, M. Hattawy, F. Hauenstein, D. Heddle, M. Holtrop, Y. Ilieva, D. G. Ireland, E. L. Isupov, H. Jiang, H. S. Jo, K. Joo, T. Kageya, A. Kim, W. Kim, V. Klimenko, A. Kripko, V. Kubarovsky, S. E. Kuhn, L. Lanza, M. Leali, S. Lee, P. Lenisa, X. Li, I. J. D. MacGregor, D. Marchand, V. Mascagna, M. Maynes, B. McKinnon, Z. E. Meziani, S. Migliorati, R. G. Milner, T. Mineeva, M. Mirazita, V. Mokeev, C. Muñoz Camacho, P. Nadel-Turonski, P. Naidoo, K. Neupane, G. Niculescu, M. Osipenko, P. Pandey, M. Paolone, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, S. J. Paul, W. Phelps, N. Pilleux, M. Pokhrel, S. Polcher Rafael, J. Poudel, J. W. Price, Y. Prok, T. Reed, J. Richards, M. Ripani, J. Ritman, P. Rossi, A. A. Golubenko, C. Salgado, S. Schadmand, A. Schmidt, Marshall B. C. Scott, E. M. Seroka, Y. G. Sharabian, E. V. Shirokov, U. Shrestha, N. Sparveris, M. Spreafico, S. Stepanyan, I. I. Strakovsky, S. Strauch, J. A. Tan, N. Trotta, R. Tyson, M. Ungaro, S. Vallarino, L. Venturelli, V. Tommaso, H. Voskanyan, E. Voutier, D. P Watts, X. Wei, R. Williams, M. H. Wood, L. Xu, N. Zachariou, J. Zhang, Z. W. Zhao, M. Zurek","doi":"arxiv-2406.15539","DOIUrl":"https://doi.org/arxiv-2406.15539","url":null,"abstract":"Measuring Deeply Virtual Compton Scattering on the neutron is one of the\u0000necessary steps to understand the structure of the nucleon in terms of\u0000Generalized Parton Distributions (GPDs). Neutron targets play a complementary\u0000role to transversely polarized proton targets in the determination of the GPD\u0000$E$. This poorly known and poorly constrained GPD is essential to obtain the\u0000contribution of the quarks' angular momentum to the spin of the nucleon. DVCS\u0000on the neutron was measured for the first time selecting the exclusive final\u0000state by detecting the neutron, using the Jefferson Lab longitudinally\u0000polarized electron beam, with energies up to 10.6 GeV, and the CLAS12 detector.\u0000The extracted beam-spin asymmetries, combined with DVCS observables measured on\u0000the proton, allow a clean quark-flavor separation of the imaginary parts of the\u0000GPDs $H$ and $E$.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"203 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141520866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We measured the nuclear dependence of the di-pion azimuthal correlation function in deep-inelastic scattering (DIS) using the CEBAF Large Acceptance Spectrometer (CLAS) and a 5 GeV electron beam. As the nuclear-target size increases, transitioning from deuterium to carbon, iron, and lead, the correlation function broadens monotonically. Its shape exhibits a significant dependence on kinematics, including the transverse momentum of the pions and the difference in their rapidity. None of the various Monte-Carlo event generators we evaluated could fully replicate the observed correlation functions and nuclear effects throughout the entire phase space. As the first study of its kind in DIS experiments, this research provides an important baseline for enhancing our understanding of the interplay between the nuclear medium and the hadronization process in hadron production.
{"title":"Dihadron Azimuthal Correlations in Deep-Inelastic Scattering Off Nuclear Targets","authors":"CLAS Collaboration","doi":"arxiv-2406.14387","DOIUrl":"https://doi.org/arxiv-2406.14387","url":null,"abstract":"We measured the nuclear dependence of the di-pion azimuthal correlation\u0000function in deep-inelastic scattering (DIS) using the CEBAF Large Acceptance\u0000Spectrometer (CLAS) and a 5 GeV electron beam. As the nuclear-target size\u0000increases, transitioning from deuterium to carbon, iron, and lead, the\u0000correlation function broadens monotonically. Its shape exhibits a significant\u0000dependence on kinematics, including the transverse momentum of the pions and\u0000the difference in their rapidity. None of the various Monte-Carlo event\u0000generators we evaluated could fully replicate the observed correlation\u0000functions and nuclear effects throughout the entire phase space. As the first\u0000study of its kind in DIS experiments, this research provides an important\u0000baseline for enhancing our understanding of the interplay between the nuclear\u0000medium and the hadronization process in hadron production.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Aker, D. Batzler, A. Beglarian, J. Behrens, J. Beisenkötter, M. Biassoni, B. Bieringer, Y. Biondi, F. Block, S. Bobien, M. Böttcher, B. Bornschein, L. Bornschein, T. S. Caldwell, M. Carminati, A. Chatrabhuti, S. Chilingaryan, B. A. Daniel, K. Debowski, M. Descher, D. Díaz Barrero, P. J. Doe, O. Dragoun, G. Drexlin, F. Edzards, K. Eitel, E. Ellinger, R. Engel, S. Enomoto, A. Felden, C. Fengler, C. Fiorini, J. A. Formaggio, C. Forstner, F. M. Fränkle, K. Gauda, A. S. Gavin, W. Gil, F. Glück, S. Grohmann, R. Grössle, R. Gumbsheimer, N. Gutknecht, V. Hannen, L. Hasselmann, N. Haußmann, K. Helbing, H. Henke, S. Heyns, S. Hickford, R. Hiller, D. Hillesheimer, D. Hinz, T. Höhn, A. Huber, A. Jansen, C. Karl, J. Kellerer, K. Khosonthongkee, M. Kleifges, M. Klein, J. Kohpeiß, C. Köhler, L. Köllenberger, A. Kopmann, N. Kovač, A. Kovalík, H. Krause, L. La Cascio, T. Lasserre, J. Lauer, T. Le, O. Lebeda, B. Lehnert, G. Li, A. Lokhov M. Machatschek, M. Mark, A. Marsteller, E. L. Martin, C. Melzer, S. Mertens, S. Mohanty, J. Mostafa, K. Müller, A. Nava, H. Neumann, S. Niemes, A. Onillon, D. S. Parno, M. Pavan, U. Pinsook, A. W. P. Poon, J. M. Lopez Poyato, S. Pozzi, F. Priester, J. Ráliš, S. Ramachandran, R. G. H. Robertson, C. Rodenbeck, M. Röllig, C. Röttele, M. Ryšavý, R. Sack, A. Saenz, R. Salomon, P. Schäfer, M. Schlösser, K. Schlösser, L. Schlüter, S. Schneidewind, U. Schnurr, M. Schrank, J. Schürmann, A. Schütz, A. Schwemmer, A. Schwenck, M. Šefčík, D. Siegmann, F. Simon, F. Spanier, D. Spreng, W. Sreethawong, M. Steidl, J. Štorek, X. Stribl, M. Sturm, N. Suwonjandee, N. Tan Jerome, H. H. Telle, L. A. Thorne, T. Thümmler, S. Tirolf, N. Titov, I. Tkachev, K. Urban, K. Valerius, D. Vénos, C. Weinheimer, S. Welte, J. Wendel, C. Wiesinger, J. F. Wilkerson, J. Wolf, S. Wüstling, J. Wydra, W. Xu, S. Zadorozhny, G. Zeller
The fact that neutrinos carry a non-vanishing rest mass is evidence of physics beyond the Standard Model of elementary particles. Their absolute mass bears important relevance from particle physics to cosmology. In this work, we report on the search for the effective electron antineutrino mass with the KATRIN experiment. KATRIN performs precision spectroscopy of the tritium $beta$-decay close to the kinematic endpoint. Based on the first five neutrino-mass measurement campaigns, we derive a best-fit value of $m_nu^{2} = {-0.14^{+0.13}_{-0.15}}~mathrm{eV^2}$, resulting in an upper limit of $m_nu <