首页 > 最新文献

arXiv - PHYS - Materials Science最新文献

英文 中文
Probing Optoelectronic Properties of Stable Vacancy-Ordered Double Perovskites: Insights from Many-Body Perturbation Theory 探究稳定空位有序双包晶的光电特性:多体扰动理论的启示
Pub Date : 2024-09-09 DOI: arxiv-2409.05538
Surajit Adhikari, Priya Johari
A$_{2}$BX$_{6}$ vacancy-ordered double perovskites (VODPs) have capturedsubstantial research interest in the scientific community as they offerenvironmentally friendly and stable alternatives to lead halide perovskites. Inthis study, we investigate Rb$_{2}$BCl$_{6}$ (B = Ti, Se, Ru, Pd) VODPs aspromising optoelectronic materials employing state-of-the-artfirst-principles-based methodologies, specifically density functional theorycombined with density functional perturbation theory (DFPT) and many-bodyperturbation theory [within the framework of GW and BSE]. Our calculationsreveal that all these materials possess a cubic lattice structure and are bothdynamically and mechanically stable. Interestingly, they all exhibit indirectbandgaps, except Rb$_{2}$RuCl$_{6}$ displays a metallic character. TheG$_{0}$W$_{0}$ bandgap values for these compounds fall within the range of 3.63to 5.14 eV. Additionally, the results of the BSE indicate that they exhibitexceptional absorption capabilities across the near-ultraviolet tomid-ultraviolet light region. Furthermore, studies on transport and excitonicproperties suggest that they exhibit lower effective electron masses comparedto holes, with exciton binding energies spanning between 0.16$-$0.98 eV. Weadditionally observed a prevalent hole-phonon coupling compared toelectron-phonon coupling in these compounds. Overall, this study providesvaluable insights to guide the design of vacancy-ordered double perovskites aspromising lead-free candidates for future optoelectronic applications.
A$_{2}$BX$_{6}$空位有序双包晶(VODPs)为卤化铅包晶提供了环境友好且稳定的替代品,因此在科学界引起了极大的研究兴趣。在这项研究中,我们采用最先进的基于第一性原理的方法,特别是密度泛函理论结合密度泛函扰动理论(DFPT)和多体扰动理论(在 GW 和 BSE 的框架内),研究了 Rb$_{2}$BCl$_{6}$(B = Ti、Se、Ru、Pd)VODPs,将其视为一种具有潜力的光电材料。我们的计算显示,所有这些材料都具有立方晶格结构,在动力学和机械学上都很稳定。有趣的是,除了 Rb$_{2}$RuCl$_{6}$ 显示出金属特性外,它们都显示出间接带隙。这些化合物的 G$_{0}$W$_{0}$ 带隙值在 3.63 至 5.14 eV 之间。此外,BSE 的结果表明,这些化合物在近紫外光和中紫外光区域表现出卓越的吸收能力。此外,对传输和激子特性的研究表明,与空穴相比,它们表现出较低的有效电子质量,激子结合能介于 0.16 美元至 0.98 美元 eV 之间。此外,我们还观察到,与电子-声子耦合相比,这些化合物中的空穴-声子耦合更为普遍。总之,这项研究为指导设计空位有序双包晶石提供了宝贵的见解,有望成为未来光电应用的无铅候选化合物。
{"title":"Probing Optoelectronic Properties of Stable Vacancy-Ordered Double Perovskites: Insights from Many-Body Perturbation Theory","authors":"Surajit Adhikari, Priya Johari","doi":"arxiv-2409.05538","DOIUrl":"https://doi.org/arxiv-2409.05538","url":null,"abstract":"A$_{2}$BX$_{6}$ vacancy-ordered double perovskites (VODPs) have captured\u0000substantial research interest in the scientific community as they offer\u0000environmentally friendly and stable alternatives to lead halide perovskites. In\u0000this study, we investigate Rb$_{2}$BCl$_{6}$ (B = Ti, Se, Ru, Pd) VODPs as\u0000promising optoelectronic materials employing state-of-the-art\u0000first-principles-based methodologies, specifically density functional theory\u0000combined with density functional perturbation theory (DFPT) and many-body\u0000perturbation theory [within the framework of GW and BSE]. Our calculations\u0000reveal that all these materials possess a cubic lattice structure and are both\u0000dynamically and mechanically stable. Interestingly, they all exhibit indirect\u0000bandgaps, except Rb$_{2}$RuCl$_{6}$ displays a metallic character. The\u0000G$_{0}$W$_{0}$ bandgap values for these compounds fall within the range of 3.63\u0000to 5.14 eV. Additionally, the results of the BSE indicate that they exhibit\u0000exceptional absorption capabilities across the near-ultraviolet to\u0000mid-ultraviolet light region. Furthermore, studies on transport and excitonic\u0000properties suggest that they exhibit lower effective electron masses compared\u0000to holes, with exciton binding energies spanning between 0.16$-$0.98 eV. We\u0000additionally observed a prevalent hole-phonon coupling compared to\u0000electron-phonon coupling in these compounds. Overall, this study provides\u0000valuable insights to guide the design of vacancy-ordered double perovskites as\u0000promising lead-free candidates for future optoelectronic applications.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p-(001)NiO/n-(0001)ZnO heterostructures grown by pulsed laser deposition technique 利用脉冲激光沉积技术生长的 p-(001)NiO/n-(0001)ZnO 异质结构
Pub Date : 2024-09-08 DOI: arxiv-2409.05003
Bhabani Prasad Sahu, Amandeep Kaur, Simran Arora, Subhabrata Dhar
NiO/ZnO heterostructures are grown on c-sapphire substrates using pulsedlaser deposition (PLD) technique. X-ray diffraction study shows that the ZnOlayer epitaxially grows along [0001]-direction on (0001)sapphire surface asexpected. While, the epitaxial NiO film is found to be deposited along[001]-direction on the (0001)ZnO surface. Moreover, the presence of three(001)NiO domains laterally rotated by 30{deg} with respect to each other, hasalso been observed in our NiO films. The study reveals the continuous nature ofthe NiO film, which also possesses a very smooth surface morphology. In a sharpcontrast, ZnO films are found to grow along [0001]-direction when deposited on(111)NiO layers. These films also show columnar morphology. (001)NiO/(0001)ZnOlayers exhibit the rectifying current-voltage characteristics that suggests theexistence of p-n junction in these devices. However, the behavior could not beobserved in (0001)ZnO/(111)NiO heterojunctions. The reason could be thecolumnar morphology of the ZnO layer. Such a morphology can facilitate thepropagation of the metal ions from the contact pads to the underlying NiO layerand suppress the p-n junction effect.
利用脉冲激光沉积(PLD)技术在 c 蓝宝石衬底上生长出氧化镍/氧化锌异质结构。X 射线衍射研究表明,氧化锌层沿着[0001]方向外延生长在(0001)蓝宝石表面,符合预期。而氧化镍外延膜则是沿着[001]方向沉积在(0001)氧化锌表面。此外,在我们的氧化镍薄膜中还观察到了三个相对于彼此横向旋转 30{/deg}的(001)氧化镍畴。这项研究揭示了氧化镍薄膜的连续性,它还具有非常光滑的表面形态。与此形成鲜明对比的是,氧化锌薄膜沉积在(111)氧化镍层上时沿着[0001]方向生长。这些薄膜也呈现柱状形态。(001)氧化镍/(0001)氧化锌层表现出整流电流-电压特性,这表明这些器件中存在 p-n 结。然而,在(0001)氧化锌/(111)氧化镍异质结中却观察不到这种行为。原因可能是氧化锌层的柱状形态。这种形态有利于金属离子从接触垫传播到下面的氧化镍层,从而抑制了 p-n 结效应。
{"title":"p-(001)NiO/n-(0001)ZnO heterostructures grown by pulsed laser deposition technique","authors":"Bhabani Prasad Sahu, Amandeep Kaur, Simran Arora, Subhabrata Dhar","doi":"arxiv-2409.05003","DOIUrl":"https://doi.org/arxiv-2409.05003","url":null,"abstract":"NiO/ZnO heterostructures are grown on c-sapphire substrates using pulsed\u0000laser deposition (PLD) technique. X-ray diffraction study shows that the ZnO\u0000layer epitaxially grows along [0001]-direction on (0001)sapphire surface as\u0000expected. While, the epitaxial NiO film is found to be deposited along\u0000[001]-direction on the (0001)ZnO surface. Moreover, the presence of three\u0000(001)NiO domains laterally rotated by 30{deg} with respect to each other, has\u0000also been observed in our NiO films. The study reveals the continuous nature of\u0000the NiO film, which also possesses a very smooth surface morphology. In a sharp\u0000contrast, ZnO films are found to grow along [0001]-direction when deposited on\u0000(111)NiO layers. These films also show columnar morphology. (001)NiO/(0001)ZnO\u0000layers exhibit the rectifying current-voltage characteristics that suggests the\u0000existence of p-n junction in these devices. However, the behavior could not be\u0000observed in (0001)ZnO/(111)NiO heterojunctions. The reason could be the\u0000columnar morphology of the ZnO layer. Such a morphology can facilitate the\u0000propagation of the metal ions from the contact pads to the underlying NiO layer\u0000and suppress the p-n junction effect.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning polycrystal plasticity using mesh-based subgraph geometric deep learning 利用基于网格的子图几何深度学习多晶体塑性
Pub Date : 2024-09-08 DOI: arxiv-2409.05169
Hanfeng Zhai
Polycrystal plasticity in metals is characterized by nonlinear behavior andstrain hardening, making numerical models computationally intensive. We employGraph Neural Network (GNN) to surrogate polycrystal plasticity from finiteelement method (FEM) simulations. We present a novel message-passing GNN thatencodes nodal strain and edge distances between FEM mesh cells, aggregates themto obtain embeddings, and combines the decoded embeddings with the nodalstrains to predict stress tensors on graph nodes. We demonstrate training GNNbased on subgraphs generated from FEM mesh-graphs, in which the mesh cells areconverted to nodes and edges are created between adjacent cells. The GNN istrained on 72 graphs and tested on 18 graphs. We apply the trained GNN toperiodic polycrystals and learn the stress-strain maps based on strain-gradientplasticity theory. The GNN is accurately trained based on FEM graphs, in whichthe $R^2$ for both training and testing sets are 0.993. The proposed GNNplasticity constitutive model speeds up more than 150 times compared with thebenchmark FEM method on randomly selected test polycrystals. We also apply thetrained GNN to 30 unseen FEM simulations and the GNN generalizes well with anoverall $R^2$ of 0.992. Analysis of the von Mises stress distributions inpolycrystals shows that the GNN model accurately learns the stress distributionwith low error. By comparing the error distribution across training, testing,and unseen datasets, we can deduce that the proposed model does not overfit andgeneralizes well beyond the training data. This work is expected to pave theway for using graphs as surrogates in polycrystal plasticity modeling.
金属中的多晶体塑性以非线性行为和应变硬化为特征,因此数值模型的计算量很大。我们采用图神经网络(GNN)从有限元法(FEM)模拟中代入多晶体塑性。我们提出了一种新颖的消息传递 GNN,它可以编码 FEM 网格单元之间的节点应变和边缘距离,将其聚合以获得嵌入,并将解码后的嵌入与节点应变相结合,从而预测图节点上的应力张量。我们演示了基于有限元网格图生成的子图的 GNN 训练,其中网格单元被转换为节点,相邻单元之间创建了边。我们在 72 个图形上训练了 GNN,并在 18 个图形上进行了测试。我们将训练好的 GNN 应用于周期多晶体,并根据应变梯度塑性理论学习应力应变图。基于有限元图形对 GNN 进行了精确训练,训练集和测试集的 R^2$ 均为 0.993。在随机选择的测试多晶体上,与基准有限元方法相比,所提出的 GNN 塑性构成模型的速度提高了 150 多倍。我们还将训练好的 GNN 应用于 30 个未见过的有限元模拟,GNN 的泛化效果很好,总 R^2$ 为 0.992。对多晶体中 von Mises 应力分布的分析表明,GNN 模型以较低的误差准确地学习了应力分布。通过比较训练数据集、测试数据集和未见数据集的误差分布,我们可以推断出所提出的模型没有过拟合,并且在训练数据之外具有良好的泛化能力。这项工作有望为在多晶体塑性建模中使用图形作为替代物铺平道路。
{"title":"Learning polycrystal plasticity using mesh-based subgraph geometric deep learning","authors":"Hanfeng Zhai","doi":"arxiv-2409.05169","DOIUrl":"https://doi.org/arxiv-2409.05169","url":null,"abstract":"Polycrystal plasticity in metals is characterized by nonlinear behavior and\u0000strain hardening, making numerical models computationally intensive. We employ\u0000Graph Neural Network (GNN) to surrogate polycrystal plasticity from finite\u0000element method (FEM) simulations. We present a novel message-passing GNN that\u0000encodes nodal strain and edge distances between FEM mesh cells, aggregates them\u0000to obtain embeddings, and combines the decoded embeddings with the nodal\u0000strains to predict stress tensors on graph nodes. We demonstrate training GNN\u0000based on subgraphs generated from FEM mesh-graphs, in which the mesh cells are\u0000converted to nodes and edges are created between adjacent cells. The GNN is\u0000trained on 72 graphs and tested on 18 graphs. We apply the trained GNN to\u0000periodic polycrystals and learn the stress-strain maps based on strain-gradient\u0000plasticity theory. The GNN is accurately trained based on FEM graphs, in which\u0000the $R^2$ for both training and testing sets are 0.993. The proposed GNN\u0000plasticity constitutive model speeds up more than 150 times compared with the\u0000benchmark FEM method on randomly selected test polycrystals. We also apply the\u0000trained GNN to 30 unseen FEM simulations and the GNN generalizes well with an\u0000overall $R^2$ of 0.992. Analysis of the von Mises stress distributions in\u0000polycrystals shows that the GNN model accurately learns the stress distribution\u0000with low error. By comparing the error distribution across training, testing,\u0000and unseen datasets, we can deduce that the proposed model does not overfit and\u0000generalizes well beyond the training data. This work is expected to pave the\u0000way for using graphs as surrogates in polycrystal plasticity modeling.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lead-free room-temperature ferroelectric thermal conductivity switch using anisotropies in thermal conductivities 利用热导率各向异性实现无铅室温铁电导热开关
Pub Date : 2024-09-08 DOI: arxiv-2409.05216
Lucile FégerGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Carlos Escorihuela-SayaleroDepartament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona, Spain, Jean-Michel RampnouxUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Kyriaki KontouUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, France, Micka BahGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Jorge Íñiguez-GonzálezMaterials Research and Technology Department, Luxembourg Institute of Science and TechnologyDepartment of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg, Claudio CazorlaDepartament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona, Spain, Isabelle Monot-LaffezGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Sarah DouriUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, FranceLaboratoire National de Métrologie et d'Essais, Stéphane GraubyUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Riccardo RuraliInstitut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain, Stefan DilhaireUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Séverine GomèsUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, France, Guillaume F. NatafGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France
Materials with on-demand control of thermal conductivity are theprerequisites to build thermal conductivity switches, where the thermalconductivity can be turned ON and OFF. However, the ideal switch, whilerequired to develop novel approaches to solid-state refrigeration, energyharvesting, and even phononic circuits, is still missing. It should consist ofan active material only, be environment friendly, and operate near roomtemperature with a reversible, fast, and large switching ratio. Here, we firstpredict by ab initio electronic structure calculations that ferroelectricdomains in barium titanate exhibit anisotropic thermal conductivities. Weconfirm this prediction by combining frequency-domain thermoreflectance andscanning thermal microscopy measurements on a single crystal of bariumtitanate. We then use this gained knowledge to propose a lead-free thermalconductivity switch without inactive material, operating reversibly with anelectric field. At room temperature, we find a switching ratio of 1.6 $pm$0.3, exceeding the performances of state-of-the-art materials suggested forthermal conductivity switches.
按需控制热导率的材料是制造热导率开关的先决条件,在这种开关中,热导率可以打开或关闭。然而,要开发固态制冷、能量收集甚至声波电路的新方法,理想的开关仍未出现。它应该只由活性材料组成,对环境友好,在室温附近工作,具有可逆、快速和大开关比。在这里,我们首先通过ab initio 电子结构计算预测出钛酸钡中的铁电层具有各向异性的热导率。通过对钛酸钡单晶体进行频域热反射和扫描热显微镜测量,我们证实了这一预测。然后,我们利用所获得的知识提出了一种无铅热导开关,它不含非活性材料,在电场作用下可逆运行。在室温下,我们发现开关比为 1.6 美元/pm$0.3,超过了建议用于热导开关的最先进材料的性能。
{"title":"Lead-free room-temperature ferroelectric thermal conductivity switch using anisotropies in thermal conductivities","authors":"Lucile FégerGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Carlos Escorihuela-SayaleroDepartament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona, Spain, Jean-Michel RampnouxUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Kyriaki KontouUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, France, Micka BahGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Jorge Íñiguez-GonzálezMaterials Research and Technology Department, Luxembourg Institute of Science and TechnologyDepartment of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg, Claudio CazorlaDepartament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona, Spain, Isabelle Monot-LaffezGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Sarah DouriUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, FranceLaboratoire National de Métrologie et d'Essais, Stéphane GraubyUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Riccardo RuraliInstitut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain, Stefan DilhaireUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Séverine GomèsUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, France, Guillaume F. NatafGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France","doi":"arxiv-2409.05216","DOIUrl":"https://doi.org/arxiv-2409.05216","url":null,"abstract":"Materials with on-demand control of thermal conductivity are the\u0000prerequisites to build thermal conductivity switches, where the thermal\u0000conductivity can be turned ON and OFF. However, the ideal switch, while\u0000required to develop novel approaches to solid-state refrigeration, energy\u0000harvesting, and even phononic circuits, is still missing. It should consist of\u0000an active material only, be environment friendly, and operate near room\u0000temperature with a reversible, fast, and large switching ratio. Here, we first\u0000predict by ab initio electronic structure calculations that ferroelectric\u0000domains in barium titanate exhibit anisotropic thermal conductivities. We\u0000confirm this prediction by combining frequency-domain thermoreflectance and\u0000scanning thermal microscopy measurements on a single crystal of barium\u0000titanate. We then use this gained knowledge to propose a lead-free thermal\u0000conductivity switch without inactive material, operating reversibly with an\u0000electric field. At room temperature, we find a switching ratio of 1.6 $pm$\u00000.3, exceeding the performances of state-of-the-art materials suggested for\u0000thermal conductivity switches.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142224530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferro-Valleytricity with In-Plane Magnetization 具有平面内磁化的铁谷性
Pub Date : 2024-09-07 DOI: arxiv-2409.04739
Yibo Liu, Yangyang Feng, Ying Dai, Baibiao Huang, Yandong Ma
Ferro-valleytricity, a fundamental phenomenon that manifests spontaneousvalley polarization, is generally considered to occur in two-dimensional (2D)materials with out-of-plane magnetization. Here, we propose a mechanism torealize ferro-valleytricity in 2D materials with in-plane magnetization,wherein the physics correlates to non-collinear magnetism in triangularlattice. Our model analysis provides comprehensive ingredients that allows forin-plane ferro-valleytricity, revealing that mirror symmetry is required forremarkable valley polarization and time-reversal-mirror joint-symmetry shouldbe excluded. Through modulating in-plane magnetization offset, the valleypolarization could be reversed. Followed by first-principles, such mechanism isdemonstrated in a multiferroic triangular lattice of single-layer W3Cl8. Wefurther show that the reversal of valley polarization could also be driven byapplying electric field that modulates ferroelectricity. Our findings greatlyenrich the valley physics research and significantly extend the scope formaterial classes of ferro-valleytricity.
铁谷性是一种表现自发谷极化的基本现象,通常被认为发生在平面外磁化的二维(2D)材料中。在这里,我们提出了一种在具有面内磁化的二维材料中实现铁谷性的机制,其中的物理学原理与三角形晶格中的非共线磁性相关。我们的模型分析提供了实现面内磁化铁谷性的综合成分,揭示了显著的谷极化需要镜像对称性,并且应排除时间反转镜像联合对称性。通过调节面内磁化偏移,可以逆转谷极化。根据第一性原理,我们在单层 W3Cl8 的多铁三角形晶格中演示了这种机制。我们进一步证明,谷极化反转也可以通过施加电场来驱动,从而调节铁电性。我们的发现极大地丰富了谷物物理学研究的内容,并大大扩展了铁电谷性材料类别的范围。
{"title":"Ferro-Valleytricity with In-Plane Magnetization","authors":"Yibo Liu, Yangyang Feng, Ying Dai, Baibiao Huang, Yandong Ma","doi":"arxiv-2409.04739","DOIUrl":"https://doi.org/arxiv-2409.04739","url":null,"abstract":"Ferro-valleytricity, a fundamental phenomenon that manifests spontaneous\u0000valley polarization, is generally considered to occur in two-dimensional (2D)\u0000materials with out-of-plane magnetization. Here, we propose a mechanism to\u0000realize ferro-valleytricity in 2D materials with in-plane magnetization,\u0000wherein the physics correlates to non-collinear magnetism in triangular\u0000lattice. Our model analysis provides comprehensive ingredients that allows for\u0000in-plane ferro-valleytricity, revealing that mirror symmetry is required for\u0000remarkable valley polarization and time-reversal-mirror joint-symmetry should\u0000be excluded. Through modulating in-plane magnetization offset, the valley\u0000polarization could be reversed. Followed by first-principles, such mechanism is\u0000demonstrated in a multiferroic triangular lattice of single-layer W3Cl8. We\u0000further show that the reversal of valley polarization could also be driven by\u0000applying electric field that modulates ferroelectricity. Our findings greatly\u0000enrich the valley physics research and significantly extend the scope for\u0000material classes of ferro-valleytricity.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Powder Diffraction Crystal Structure Determination Using Generative Models 使用生成模型进行粉末衍射晶体结构测定
Pub Date : 2024-09-07 DOI: arxiv-2409.04727
Qi Li, Rui Jiao, Liming Wu, Tiannian Zhu, Wenbing Huang, Shifeng Jin, Yang Liu, Hongming Weng, Xiaolong Chen
Accurate crystal structure determination is critical across all scientificdisciplines involving crystalline materials. However, solving and refininginorganic crystal structures from powder X-ray diffraction (PXRD) data istraditionally a labor-intensive and time-consuming process that demandssubstantial expertise. In this work, we introduce PXRDGen, an end-to-end neuralnetwork that determines crystal structures by learning joint structuraldistributions from experimentally stable crystals and their PXRD, producingatomically accurate structures refined through PXRD data. PXRDGen integrates apretrained XRD encoder, a diffusion/flow-based structure generator, and aRietveld refinement module, enabling the solution of structures withunparalleled accuracy in a matter of seconds. Evaluation on MP-20 inorganicdataset reveals a remarkable matching rate of 82% (1 sample) and 96% (20samples) for valid compounds, with Root Mean Square Error (RMSE) approachingthe precision limits of Rietveld refinement. PXRDGen effectively tackles keychallenges in XRD, such as the precise localization of light atoms,differentiation of neighboring elements, and resolution of overlapping peaks.Overall, PXRDGen marks a significant advancement in the automated determinationof crystal structures from powder diffraction data.
精确的晶体结构测定对所有涉及晶体材料的科学领域都至关重要。然而,从粉末 X 射线衍射(PXRD)数据中求解和完善无机晶体结构传统上是一个劳动密集型的耗时过程,需要大量的专业知识。在这项工作中,我们介绍了 PXRDGen,它是一种端到端神经网络,通过学习实验稳定晶体及其 PXRD 的联合结构分布来确定晶体结构,从而生成通过 PXRD 数据精炼的解剖学精确结构。PXRDGen 集成了经过训练的 XRD 编码器、基于扩散/流动的结构生成器和里特维尔德细化模块,可在几秒钟内求解出无比精确的结构。在 MP-20 无机数据集上进行的评估显示,有效化合物的匹配率分别达到 82%(1 个样品)和 96%(20 个样品),均方根误差(RMSE)接近里特维尔德细化的精度极限。总之,PXRDGen 标志着从粉末衍射数据自动确定晶体结构方面的重大进步。
{"title":"Powder Diffraction Crystal Structure Determination Using Generative Models","authors":"Qi Li, Rui Jiao, Liming Wu, Tiannian Zhu, Wenbing Huang, Shifeng Jin, Yang Liu, Hongming Weng, Xiaolong Chen","doi":"arxiv-2409.04727","DOIUrl":"https://doi.org/arxiv-2409.04727","url":null,"abstract":"Accurate crystal structure determination is critical across all scientific\u0000disciplines involving crystalline materials. However, solving and refining\u0000inorganic crystal structures from powder X-ray diffraction (PXRD) data is\u0000traditionally a labor-intensive and time-consuming process that demands\u0000substantial expertise. In this work, we introduce PXRDGen, an end-to-end neural\u0000network that determines crystal structures by learning joint structural\u0000distributions from experimentally stable crystals and their PXRD, producing\u0000atomically accurate structures refined through PXRD data. PXRDGen integrates a\u0000pretrained XRD encoder, a diffusion/flow-based structure generator, and a\u0000Rietveld refinement module, enabling the solution of structures with\u0000unparalleled accuracy in a matter of seconds. Evaluation on MP-20 inorganic\u0000dataset reveals a remarkable matching rate of 82% (1 sample) and 96% (20\u0000samples) for valid compounds, with Root Mean Square Error (RMSE) approaching\u0000the precision limits of Rietveld refinement. PXRDGen effectively tackles key\u0000challenges in XRD, such as the precise localization of light atoms,\u0000differentiation of neighboring elements, and resolution of overlapping peaks.\u0000Overall, PXRDGen marks a significant advancement in the automated determination\u0000of crystal structures from powder diffraction data.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A meta-generalized gradient approximation-based time-dependent and dielectric function dependent method for optical properties of solid materials 基于元广义梯度近似的时间相关和介电函数相关固体材料光学特性方法
Pub Date : 2024-09-07 DOI: arxiv-2409.04904
Hong Tang, Niraj Pangeni, Adrienn Ruzsinszky
Accurate and efficient calculation of optical response properties of solidmaterials is still challenging. We present a meta-generalized gradientapproximation (metaGGA) density functional based time-dependent and dielectricfunction dependent method for calculating optical absorption, exciton bindingenergy and intrinsic exciton lifetime for bulk solids and two-dimensional (2D)monolayer materials. This method uses advanced metaGGA functionals to describethe band structures, and a dielectric function mBSE (model Bethe-Salpeterequation) to capture the screening effect accurately and efficiently and theinteraction between electrons and holes. The calculated optical absorptionspectra of bulk Si, diamond, SiC, MgO, and monolayer MoS2 qualitatively agreewith experimental results. The exciton binding energies of the first prominentpeak in the optical absorption spectra of the direct band gap solids Ar, NaCland MgO from mBSE qualitatively agree with those from standard GW-BSE. Formonolayer MoS2, mBSE predicts quantitatively accurate binding energy for thefirst prominent peak, better than GW-BSE does. The calculated intrinsic excitonlifetimes for materials considered here show magnitudes of several nanosecondsfor most bright excitons. The presented mtaGGA-mBSE method is established as acomputationally efficient alternative for optical properties of materials withan overall qualitative accuracy.
准确、高效地计算固体材料的光响应特性仍然是一项挑战。我们提出了一种基于元广义梯度逼近(metaGGA)密度函数的时变和介电函数相关方法,用于计算块状固体和二维(2D)单层材料的光吸收、激子结合能和本征激子寿命。该方法使用先进的 metaGGA 函数来描述能带结构,并使用介电函数 mBSE(模型贝特-萨尔佩特公式)来准确有效地捕捉屏蔽效应以及电子和空穴之间的相互作用。计算得到的块状硅、金刚石、碳化硅、氧化镁和单层 MoS2 的光吸收谱与实验结果基本吻合。根据 mBSE 计算的直接带隙固体 Ar、NaCland MgO 光吸收光谱中第一个突出峰的激子结合能与标准 GW-BSE 的结果基本一致。对于单层 MoS2,mBSE 比 GW-BSE 更好地定量预测了第一个突出峰的精确结合能。本文所考虑的材料的本征激子寿命计算结果显示,大多数亮激子的寿命为几纳秒。本文提出的 mtaGGA-mBSE 方法是一种计算高效的替代方法,可用于计算材料的光学性质,并具有总体定性精度。
{"title":"A meta-generalized gradient approximation-based time-dependent and dielectric function dependent method for optical properties of solid materials","authors":"Hong Tang, Niraj Pangeni, Adrienn Ruzsinszky","doi":"arxiv-2409.04904","DOIUrl":"https://doi.org/arxiv-2409.04904","url":null,"abstract":"Accurate and efficient calculation of optical response properties of solid\u0000materials is still challenging. We present a meta-generalized gradient\u0000approximation (metaGGA) density functional based time-dependent and dielectric\u0000function dependent method for calculating optical absorption, exciton binding\u0000energy and intrinsic exciton lifetime for bulk solids and two-dimensional (2D)\u0000monolayer materials. This method uses advanced metaGGA functionals to describe\u0000the band structures, and a dielectric function mBSE (model Bethe-Salpeter\u0000equation) to capture the screening effect accurately and efficiently and the\u0000interaction between electrons and holes. The calculated optical absorption\u0000spectra of bulk Si, diamond, SiC, MgO, and monolayer MoS2 qualitatively agree\u0000with experimental results. The exciton binding energies of the first prominent\u0000peak in the optical absorption spectra of the direct band gap solids Ar, NaCl\u0000and MgO from mBSE qualitatively agree with those from standard GW-BSE. For\u0000monolayer MoS2, mBSE predicts quantitatively accurate binding energy for the\u0000first prominent peak, better than GW-BSE does. The calculated intrinsic exciton\u0000lifetimes for materials considered here show magnitudes of several nanoseconds\u0000for most bright excitons. The presented mtaGGA-mBSE method is established as a\u0000computationally efficient alternative for optical properties of materials with\u0000an overall qualitative accuracy.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CrysAtom: Distributed Representation of Atoms for Crystal Property Prediction CrysAtom:用于晶体性质预测的原子分布式表示法
Pub Date : 2024-09-07 DOI: arxiv-2409.04737
Shrimon Mukherjee, Madhusudan Ghosh, Partha Basuchowdhuri
Application of artificial intelligence (AI) has been ubiquitous in the growthof research in the areas of basic sciences. Frequent use of machine learning(ML) and deep learning (DL) based methodologies by researchers has resulted insignificant advancements in the last decade. These techniques led to notableperformance enhancements in different tasks such as protein structureprediction, drug-target binding affinity prediction, and molecular propertyprediction. In material science literature, it is well-known that crystallinematerials exhibit topological structures. Such topological structures may berepresented as graphs and utilization of graph neural network (GNN) basedapproaches could help encoding them into an augmented representation space.Primarily, such frameworks adopt supervised learning techniques targetedtowards downstream property prediction tasks on the basis of electronicproperties (formation energy, bandgap, total energy, etc.) and crystallinestructures. Generally, such type of frameworks rely highly on the handcraftedatom feature representations along with the structural representations. In thispaper, we propose an unsupervised framework namely, CrysAtom, using untaggedcrystal data to generate dense vector representation of atoms, which can beutilized in existing GNN-based property predictor models to accurately predictimportant properties of crystals. Empirical results show that our denserepresentation embeds chemical properties of atoms and enhance the performanceof the baseline property predictor models significantly.
在基础科学领域的研究发展中,人工智能(AI)的应用无处不在。研究人员频繁使用基于机器学习(ML)和深度学习(DL)的方法,在过去十年中取得了显著进步。这些技术在蛋白质结构预测、药物目标结合亲和力预测和分子特性预测等不同任务中带来了显著的性能提升。在材料科学文献中,众所周知,晶体材料表现出拓扑结构。这种拓扑结构可以用图来表示,利用基于图神经网络(GNN)的方法可以帮助将拓扑结构编码到增强的表示空间中。一般来说,这类框架高度依赖于手工制作的原子特征表征和结构表征。在本文中,我们提出了一种无监督框架,即 CrysAtom,利用未标记的晶体数据生成原子的密集矢量表示,可用于现有的基于 GNN 的性质预测模型,以准确预测晶体的重要性质。实证结果表明,我们的密集表示嵌入了原子的化学性质,显著提高了基线性质预测模型的性能。
{"title":"CrysAtom: Distributed Representation of Atoms for Crystal Property Prediction","authors":"Shrimon Mukherjee, Madhusudan Ghosh, Partha Basuchowdhuri","doi":"arxiv-2409.04737","DOIUrl":"https://doi.org/arxiv-2409.04737","url":null,"abstract":"Application of artificial intelligence (AI) has been ubiquitous in the growth\u0000of research in the areas of basic sciences. Frequent use of machine learning\u0000(ML) and deep learning (DL) based methodologies by researchers has resulted in\u0000significant advancements in the last decade. These techniques led to notable\u0000performance enhancements in different tasks such as protein structure\u0000prediction, drug-target binding affinity prediction, and molecular property\u0000prediction. In material science literature, it is well-known that crystalline\u0000materials exhibit topological structures. Such topological structures may be\u0000represented as graphs and utilization of graph neural network (GNN) based\u0000approaches could help encoding them into an augmented representation space.\u0000Primarily, such frameworks adopt supervised learning techniques targeted\u0000towards downstream property prediction tasks on the basis of electronic\u0000properties (formation energy, bandgap, total energy, etc.) and crystalline\u0000structures. Generally, such type of frameworks rely highly on the handcrafted\u0000atom feature representations along with the structural representations. In this\u0000paper, we propose an unsupervised framework namely, CrysAtom, using untagged\u0000crystal data to generate dense vector representation of atoms, which can be\u0000utilized in existing GNN-based property predictor models to accurately predict\u0000important properties of crystals. Empirical results show that our dense\u0000representation embeds chemical properties of atoms and enhance the performance\u0000of the baseline property predictor models significantly.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chiral damping of magnons 磁子的手性阻尼
Pub Date : 2024-09-07 DOI: arxiv-2409.04713
Dae-Yun Kim, Imane Berrai, T. S. Suraj, Yves Roussigne, Shuhan Yang, Mohamed Belmeguenai, Fanrui Hu, Guoyi Shi, Hui Ru Tan, Jifei Huang, Anjan Soumyanarayanan, Kyoung-Whan Kim, Salim Mourad Cherif, Hyunsoo Yang
Chiral magnets have garnered significant interest due to the emergence ofunique phenomena prohibited in inversion-symmetric magnets. While theequilibrium characteristics of chiral magnets have been extensively exploredthrough the Dzyaloshinskii-Moriya interaction (DMI), non-equilibrium propertieslike magnetic damping have received comparatively less attention. We presentthe inaugural direct observation of chiral damping through Brillouin lightscattering (BLS) spectroscopy. Employing BLS spectrum analysis, weindependently deduce the Dzyaloshinskii-Moriya interaction (DMI) and chiraldamping, extracting them from the frequency shift and linewidth of the spectrumpeak, respectively. The resulting linewidths exhibit clear odd symmetry withrespect to the magnon wave vector, unambiguously confirming the presence ofchiral damping. Our study introduces a novel methodology for quantifying chiraldamping, with potential ramifications on diverse nonequilibrium phenomenawithin chiral magnets.
由于反转对称磁体中禁止出现的独特现象,手性磁体引起了人们的极大兴趣。虽然通过 Dzyaloshinskii-Moriya 相互作用(DMI)对手性磁体的平衡特性进行了广泛的探索,但类似磁阻尼的非平衡特性受到的关注相对较少。我们首次通过布里渊光散射(BLS)光谱直接观测到了手性阻尼。利用布里渊光谱分析,我们分别从频移和谱峰线宽中独立地推导出了Dzyaloshinski-Moriya相互作用(DMI)和手性阻尼。由此得出的线宽相对于磁子波矢量呈现出明显的奇对称性,明确证实了手性阻尼的存在。我们的研究引入了一种量化手性阻尼的新方法,对手性磁体中的各种非平衡现象具有潜在影响。
{"title":"Chiral damping of magnons","authors":"Dae-Yun Kim, Imane Berrai, T. S. Suraj, Yves Roussigne, Shuhan Yang, Mohamed Belmeguenai, Fanrui Hu, Guoyi Shi, Hui Ru Tan, Jifei Huang, Anjan Soumyanarayanan, Kyoung-Whan Kim, Salim Mourad Cherif, Hyunsoo Yang","doi":"arxiv-2409.04713","DOIUrl":"https://doi.org/arxiv-2409.04713","url":null,"abstract":"Chiral magnets have garnered significant interest due to the emergence of\u0000unique phenomena prohibited in inversion-symmetric magnets. While the\u0000equilibrium characteristics of chiral magnets have been extensively explored\u0000through the Dzyaloshinskii-Moriya interaction (DMI), non-equilibrium properties\u0000like magnetic damping have received comparatively less attention. We present\u0000the inaugural direct observation of chiral damping through Brillouin light\u0000scattering (BLS) spectroscopy. Employing BLS spectrum analysis, we\u0000independently deduce the Dzyaloshinskii-Moriya interaction (DMI) and chiral\u0000damping, extracting them from the frequency shift and linewidth of the spectrum\u0000peak, respectively. The resulting linewidths exhibit clear odd symmetry with\u0000respect to the magnon wave vector, unambiguously confirming the presence of\u0000chiral damping. Our study introduces a novel methodology for quantifying chiral\u0000damping, with potential ramifications on diverse nonequilibrium phenomena\u0000within chiral magnets.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical spin transport analysis for a spin pseudovalve-type $mathrm{L}_j$/semiconductor/$mathrm{L}_j$ trilayer (with $mathrm{L}_j$ = ferromagnetic) 自旋伪ovalve 型 $mathrm{L}_j$/semiconductor/$mathrm{L}_j$ 三层($mathrm{L}_j$ = 铁磁)的理论自旋输运分析
Pub Date : 2024-09-06 DOI: arxiv-2409.04635
Julián A. Zúñiga, Arles V. Gil Rebaza, Diego F. Coral Coral
In this work, a theoretical study of spin transport in a pseudovalve spin(PSV) heterostructure is conducted. For the semiconductor (SC), the conductionband at the $Gamma$ point of reciprocal space and spin-orbit coupling (SOC)are considered. For the ferromagnetic (FM) electrodes on the left ($l$) andright ($r$), the internal exchange energy ($Delta_j$, where $j =left(l,rright)$) and the magnetization normal vector ($mathbf{n}_j$) on thebarrier plane are taken into account. An analytical expression for thetransmission probability as a function of $mathbf{n}_j$ direction was obtainedfrom the {em Schr"odinger-Pauli} equations with the boundary conditions.Furthermore, the tunnel magnetoresistance (TMR) at T $approx$ 0 K wascalculated, depending on the direction of the crystallographic axis favoringthe magnetization ($theta_m$) of the FM and the thickness of the SC, using the{em Landauer-B"{u}ttiker} formula for a single channel. It is observed thatthe TMR reaches its maximum value when the $mathbf{n}_l$ direction is parallelto $theta_m$. Applying this physico-mathematical model to the Fe/SC/Fe PSV,with SC as GaAs, GaSb, and InAs, it was found that the {em Dresselhaus} SOCdoes not significantly contribute to the TMR.
在这项工作中,我们对伪自旋(PSV)异质结构中的自旋传输进行了理论研究。对于半导体(SC),考虑了倒易空间 $Gamma$ 点的导带和自旋轨道耦合(SOC)。对于左侧($l$)和右侧($r$)的铁磁(FM)电极,考虑了内部交换能($Delta_j$,其中$j =left(l,rright)$)和势垒平面上的磁化法向量($mathbf{n}_j$)。根据带有边界条件的{em Schr"odinger-Pauli} 方程,得到了传输概率作为 $mathbf{n}_j$ 方向函数的解析表达式。此外,利用单通道的{em Landauer-B"{u}ttiker}公式计算了T $/approx$ 0 K时的隧道磁阻(TMR),这取决于有利于调频磁化($theta_m$)的晶体学轴的方向和SC的厚度。观察发现,当 $mathbf{n}_l$ 方向与 $theta_m$ 平行时,TMR 达到最大值。将这一物理数学模型应用于 Fe/SC/Fe PSV(SC 为 GaAs、GaSb 和 InAs)时,发现{em Dresselhaus} SOC 并未显著影响 TMR。SOC 对 TMR 的影响不大。
{"title":"Theoretical spin transport analysis for a spin pseudovalve-type $mathrm{L}_j$/semiconductor/$mathrm{L}_j$ trilayer (with $mathrm{L}_j$ = ferromagnetic)","authors":"Julián A. Zúñiga, Arles V. Gil Rebaza, Diego F. Coral Coral","doi":"arxiv-2409.04635","DOIUrl":"https://doi.org/arxiv-2409.04635","url":null,"abstract":"In this work, a theoretical study of spin transport in a pseudovalve spin\u0000(PSV) heterostructure is conducted. For the semiconductor (SC), the conduction\u0000band at the $Gamma$ point of reciprocal space and spin-orbit coupling (SOC)\u0000are considered. For the ferromagnetic (FM) electrodes on the left ($l$) and\u0000right ($r$), the internal exchange energy ($Delta_j$, where $j =\u0000left(l,rright)$) and the magnetization normal vector ($mathbf{n}_j$) on the\u0000barrier plane are taken into account. An analytical expression for the\u0000transmission probability as a function of $mathbf{n}_j$ direction was obtained\u0000from the {em Schr\"odinger-Pauli} equations with the boundary conditions.\u0000Furthermore, the tunnel magnetoresistance (TMR) at T $approx$ 0 K was\u0000calculated, depending on the direction of the crystallographic axis favoring\u0000the magnetization ($theta_m$) of the FM and the thickness of the SC, using the\u0000{em Landauer-B\"{u}ttiker} formula for a single channel. It is observed that\u0000the TMR reaches its maximum value when the $mathbf{n}_l$ direction is parallel\u0000to $theta_m$. Applying this physico-mathematical model to the Fe/SC/Fe PSV,\u0000with SC as GaAs, GaSb, and InAs, it was found that the {em Dresselhaus} SOC\u0000does not significantly contribute to the TMR.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
arXiv - PHYS - Materials Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1