首页 > 最新文献

The Structural Design of Tall and Special Buildings最新文献

英文 中文
Interpretable machine learning model for shear strength estimation of circular concrete‐filled steel tubes 用于估算圆形混凝土填充钢管抗剪强度的可解释机器学习模型
Pub Date : 2024-05-06 DOI: 10.1002/tal.2111
Ali Mansouri, Maryam Mansouri, Sujith Mangalathu
SummaryPrecise estimation of the shear strength of concrete‐filled steel tubes (CFSTs) is a crucial requirement for the design of these members. The existing design codes and empirical equations are inconsistent in predicting the shear strength of these members. This paper provides a data‐driven approach for the shear strength estimation of circular CFSTs. For this purpose, the authors evaluated and compared the performance of nine machine learning (ML) methods, namely linear regression, decision tree (DT), k‐nearest neighbors (KNN), support vector regression (SVR), random forest (RF), bagging regression (BR), adaptive boosting (AdaBoost), gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) in estimating the shear strength of CFSTs on an experimental database compiled from the results of 230 shear tests on CFSTs in the literature. For each model, hyperparameter tuning was performed by conducting a grid search in combination with k‐fold cross‐validation (CV). Comparing the nine methods in terms of several performance measures showed that the XGBoost model was the most accurate in predicting the shear strength of CFSTs. This model also showed superior accuracy in predicting the shear strength of CFSTs when compared to the formulas provided in design codes and the existing empirical equations. The Shapley Additive exPlanations (SHAP) technique was also used to interpret the results of the XGBoost model. Using SHAP, the features with the greatest impact on the shear strength of CFSTs were found to be the cross‐sectional area of the steel tube, the axial load ratio, and the shear span ratio, in that order.
摘要精确估算混凝土填充钢管(CFST)的抗剪强度是这些构件设计的关键要求。现有的设计规范和经验公式在预测这些构件的抗剪强度方面不一致。本文提供了一种数据驱动的方法来估算圆形 CFST 的抗剪强度。为此,作者评估并比较了九种机器学习 (ML) 方法的性能,即线性回归、决策树 (DT)、k-近邻 (KNN)、支持向量回归 (SVR)、随机森林 (RF)、袋装回归 (BR)、自适应提升 (AdaBuilder) 和自适应增强 (AdaBuilder) 方法、自适应提升(AdaBoost)、梯度提升回归树(GBRT)和极端梯度提升(XGBoost),在根据文献中对 CFST 进行的 230 次剪切试验结果编制的试验数据库上估算 CFST 的剪切强度。每个模型的超参数调整都是通过网格搜索结合 k 倍交叉验证(CV)进行的。从多个性能指标对九种方法进行比较后发现,XGBoost 模型在预测 CFST 的剪切强度方面最为准确。与设计规范中提供的公式和现有的经验公式相比,该模型在预测 CFST 的剪切强度方面也表现出更高的准确性。Shapley Additive exPlanations(SHAP)技术也用于解释 XGBoost 模型的结果。使用 SHAP,发现对 CFST 抗剪强度影响最大的特征依次是钢管横截面积、轴向载荷比和剪跨比。
{"title":"Interpretable machine learning model for shear strength estimation of circular concrete‐filled steel tubes","authors":"Ali Mansouri, Maryam Mansouri, Sujith Mangalathu","doi":"10.1002/tal.2111","DOIUrl":"https://doi.org/10.1002/tal.2111","url":null,"abstract":"SummaryPrecise estimation of the shear strength of concrete‐filled steel tubes (CFSTs) is a crucial requirement for the design of these members. The existing design codes and empirical equations are inconsistent in predicting the shear strength of these members. This paper provides a data‐driven approach for the shear strength estimation of circular CFSTs. For this purpose, the authors evaluated and compared the performance of nine machine learning (ML) methods, namely linear regression, decision tree (DT), k‐nearest neighbors (KNN), support vector regression (SVR), random forest (RF), bagging regression (BR), adaptive boosting (AdaBoost), gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) in estimating the shear strength of CFSTs on an experimental database compiled from the results of 230 shear tests on CFSTs in the literature. For each model, hyperparameter tuning was performed by conducting a grid search in combination with k‐fold cross‐validation (CV). Comparing the nine methods in terms of several performance measures showed that the XGBoost model was the most accurate in predicting the shear strength of CFSTs. This model also showed superior accuracy in predicting the shear strength of CFSTs when compared to the formulas provided in design codes and the existing empirical equations. The Shapley Additive exPlanations (SHAP) technique was also used to interpret the results of the XGBoost model. Using SHAP, the features with the greatest impact on the shear strength of CFSTs were found to be the cross‐sectional area of the steel tube, the axial load ratio, and the shear span ratio, in that order.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning‐based wind‐induced response analysis in rectangular building models with limbs 基于机器学习的带肢体矩形建筑模型风致响应分析
Pub Date : 2024-05-04 DOI: 10.1002/tal.2116
Prasenjit Sanyal, Rajdip Paul, Sujit Kumar Dalui
SummaryThis study investigates the impact of different positions of two limbs on the structural response of a rectangular building model to wind forces. The building's geometry assumes Z and + shapes based on specific limb configurations. Computational fluid dynamics (CFD) simulations are performed to quantify wind‐induced pressures, resulting in wind force coefficients. These coefficients are used to develop predictive machine learning models through Gene Expression Programming, Group Method of Data Handling‐combinatorial (GMDH‐Combi), Model Tree, and Artificial Neural Network (ANN) techniques. The ANN analysis explores various combinations of training algorithms, adaptation functions, activation functions, and performance functions to enhance model accuracy. Among these, the Levenberg–Marquardt (LM) with gradient descent with momentum (GDM) adaptation function and sigmoid activation function exhibit superior performance with high R‐squared values. These predictive models are then employed for a comprehensive comparative assessment of the maximum wind force coefficient (CF, max) concerning different limb positions and angles of attack (AOA). For CF, max vs Limb position, variations of limb position are examined for most critical cases of AOA. Similarly, the study of CF, max vs AOA involves an exhaustive investigation into the variation of AOA for the building with the worst limb position. The analysis reveals that changes in AOA have a more pronounced effect on CF, max compared to alterations in limb position. Interestingly, within the AOA range of 1.5 to 2.5, the CF, max consistently reaches a minimum across all models. However, the relationship between CF, max and the critical structural parameter ‘S' (representing limb position) remains less conclusive for the most significant AOAs.
摘要 本研究探讨了两个肢体的不同位置对矩形建筑模型的风力结构响应的影响。根据特定的肢体配置,建筑物的几何形状假设为 Z 形和 + 形。通过计算流体动力学(CFD)模拟来量化风引起的压力,从而得出风力系数。这些系数用于通过基因表达编程、数据处理组方法-组合(GMDH-Combi)、模型树和人工神经网络(ANN)技术开发预测性机器学习模型。人工神经网络分析探索了各种训练算法、适应函数、激活函数和性能函数的组合,以提高模型的准确性。其中,Levenberg-Marquardt(LM)与带动量梯度下降(GDM)的适应函数和 sigmoid 激活函数表现出卓越的性能和较高的 R 平方值。然后,利用这些预测模型对不同肢体位置和攻角(AOA)下的最大风力系数(CF,max)进行综合比较评估。对于最大风力系数与肢体位置的关系,研究了 AOA 最关键情况下肢体位置的变化。同样,最大 CF 值与 AOA 值的对比研究涉及到对肢体位置最差的建筑物的 AOA 值变化的详尽调查。分析表明,与肢体位置的变化相比,AOA 的变化对 CF 最大值的影响更为明显。有趣的是,在 1.5 到 2.5 的 AOA 范围内,所有模型的最大 CF 值都达到了最小值。然而,对于最显著的AOA,最大CF值与关键结构参数 "S"(代表肢体位置)之间的关系仍然不那么确定。
{"title":"Machine learning‐based wind‐induced response analysis in rectangular building models with limbs","authors":"Prasenjit Sanyal, Rajdip Paul, Sujit Kumar Dalui","doi":"10.1002/tal.2116","DOIUrl":"https://doi.org/10.1002/tal.2116","url":null,"abstract":"SummaryThis study investigates the impact of different positions of two limbs on the structural response of a rectangular building model to wind forces. The building's geometry assumes Z and + shapes based on specific limb configurations. Computational fluid dynamics (CFD) simulations are performed to quantify wind‐induced pressures, resulting in wind force coefficients. These coefficients are used to develop predictive machine learning models through Gene Expression Programming, Group Method of Data Handling‐combinatorial (GMDH‐Combi), Model Tree, and Artificial Neural Network (ANN) techniques. The ANN analysis explores various combinations of training algorithms, adaptation functions, activation functions, and performance functions to enhance model accuracy. Among these, the Levenberg–Marquardt (LM) with gradient descent with momentum (GDM) adaptation function and sigmoid activation function exhibit superior performance with high R‐squared values. These predictive models are then employed for a comprehensive comparative assessment of the maximum wind force coefficient (C<jats:sub>F, max</jats:sub>) concerning different limb positions and angles of attack (AOA). For C<jats:sub>F, max</jats:sub> vs Limb position, variations of limb position are examined for most critical cases of AOA. Similarly, the study of C<jats:sub>F, max</jats:sub> vs AOA involves an exhaustive investigation into the variation of AOA for the building with the worst limb position. The analysis reveals that changes in AOA have a more pronounced effect on C<jats:sub>F, max</jats:sub> compared to alterations in limb position. Interestingly, within the AOA range of 1.5 to 2.5, the C<jats:sub>F, max</jats:sub> consistently reaches a minimum across all models. However, the relationship between C<jats:sub>F, max</jats:sub> and the critical structural parameter ‘S' (representing limb position) remains less conclusive for the most significant AOAs.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent crack identification method for high‐rise buildings aided by synthetic environments 合成环境辅助下的高层建筑智能裂缝识别方法
Pub Date : 2024-05-03 DOI: 10.1002/tal.2117
Ziluo Yao, Sheng Jiang, Shuo Wang, Jingjing Wang, Hai Liu, Yasutaka Narazaki, Jie Cui, Billie F. Spencer
SummaryCracks can develop in high‐rise buildings because of long‐term environmental changes and extreme loading events such as strong winds or earthquakes. Although deep learning‐based identification methods can efficiently identify cracks, the accuracy of crack identification in high‐rise buildings needs to be improved due to the lack of crack datasets specifically related to high‐rise structures. Moreover, the number of available images of cracks in high‐rise is limited. To this end, this paper establishes an intelligent crack identification method based on a photorealistic synthetic modeling technique. First, a computer graphics (CG) model of a high‐rise building with assumed damage is constructed. Subsequently, the CG model is utilized to generate a dataset that includes photorealistic images of the high‐rise building as well as corresponding labels for various components and types of damage. The generated dataset is then used to train a DeepLabv3 + neural network for structural component and damage identification, followed by validation by employing images of both synthetic and full‐scale high‐rise buildings. The trained network can accurately identify different components in images of the full‐scale, high‐rise building and identify cracks that are intentionally synthesized in those images. The results show that the synthetic dataset generated by the CG model not only allows for fast and efficient labeling for the purpose of neural network training but also outperforms methods that do not consider any application‐specific context in crack identification.
摘要由于长期的环境变化以及强风或地震等极端荷载事件,高层建筑可能会出现裂缝。虽然基于深度学习的识别方法可以有效识别裂缝,但由于缺乏专门与高层建筑结构相关的裂缝数据集,高层建筑裂缝识别的准确性还有待提高。此外,现有的高层建筑裂缝图像数量有限。为此,本文建立了一种基于逼真合成建模技术的智能裂缝识别方法。首先,构建一个具有假定损伤的高层建筑计算机图形(CG)模型。随后,利用该计算机图形模型生成一个数据集,其中包括高层建筑的逼真图像以及各种组件和损坏类型的相应标签。生成的数据集随后用于训练 DeepLabv3 + 神经网络,以识别结构部件和损坏,然后使用合成和全尺寸高层建筑的图像进行验证。经过训练的网络可以准确识别全尺寸高层建筑图像中的不同组件,并识别这些图像中有意合成的裂缝。结果表明,CG 模型生成的合成数据集不仅可以快速有效地标记神经网络训练,而且优于在裂缝识别中不考虑任何特定应用背景的方法。
{"title":"Intelligent crack identification method for high‐rise buildings aided by synthetic environments","authors":"Ziluo Yao, Sheng Jiang, Shuo Wang, Jingjing Wang, Hai Liu, Yasutaka Narazaki, Jie Cui, Billie F. Spencer","doi":"10.1002/tal.2117","DOIUrl":"https://doi.org/10.1002/tal.2117","url":null,"abstract":"SummaryCracks can develop in high‐rise buildings because of long‐term environmental changes and extreme loading events such as strong winds or earthquakes. Although deep learning‐based identification methods can efficiently identify cracks, the accuracy of crack identification in high‐rise buildings needs to be improved due to the lack of crack datasets specifically related to high‐rise structures. Moreover, the number of available images of cracks in high‐rise is limited. To this end, this paper establishes an intelligent crack identification method based on a photorealistic synthetic modeling technique. First, a computer graphics (CG) model of a high‐rise building with assumed damage is constructed. Subsequently, the CG model is utilized to generate a dataset that includes photorealistic images of the high‐rise building as well as corresponding labels for various components and types of damage. The generated dataset is then used to train a DeepLabv3 + neural network for structural component and damage identification, followed by validation by employing images of both synthetic and full‐scale high‐rise buildings. The trained network can accurately identify different components in images of the full‐scale, high‐rise building and identify cracks that are intentionally synthesized in those images. The results show that the synthetic dataset generated by the CG model not only allows for fast and efficient labeling for the purpose of neural network training but also outperforms methods that do not consider any application‐specific context in crack identification.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic responses of reinforced concrete silo considering pile–soil‐structure–granular solid interaction 考虑桩-土-结构-粒状固体相互作用的钢筋混凝土筒仓动态响应
Pub Date : 2024-05-03 DOI: 10.1002/tal.2118
Jinping Yang, Kaixin Sun, Meng Gao, Peizhen Li
SummaryThe columned‐supported reinforced concrete silo models with different filling conditions considering soil‐structure dynamic interaction (SSI) are established based on the finite element program ANSYS to thoroughly investigate the complex interaction mechanism of the soil–pile–silo structure with granular solid. The dynamic characteristics and seismic responses of the SSI system and fixed‐base condition are analyzed and compared when the filling conditions are empty‐filled state, half‐filled state and full‐filled state. The numerical results reveal that the SSI effect reduces the seismic acceleration response of columned‐supported silos effectively. However, in terms of displacement, the SSI effect often amplifies the relative deformation of the supporting column and the cylindrical silos. Furthermore, the SSI effect often increases the relative dynamic lateral pressure of the storage material in the half‐filled silo condition. In the full‐filled silo condition, the relative dynamic lateral pressure at the top and bottom of the storage material is increased by the SSI effect; while it is decreased in the middle part of the granular solid, demonstrating that the SSI effect could change and increase the seismic responses of the silo structure in certain areas. Therefore, the investigation provides a comprehensive insight into the interaction mechanism of the pile–soil–silo structure with different filling conditions.
摘要 基于有限元程序 ANSYS,建立了考虑土-结构动力相互作用(SSI)的不同填充条件的柱支撑钢筋混凝土筒仓模型,深入研究了土-桩-筒仓结构与颗粒固体的复杂相互作用机理。分析比较了空填充状态、半填充状态和全填充状态下 SSI 系统和固定基底状态的动力特性和地震响应。数值结果表明,SSI效应可有效降低柱式支撑筒仓的地震加速度响应。然而,就位移而言,SSI效应往往会放大支撑柱和圆柱形筒仓的相对变形。此外,在半填充筒仓条件下,SSI 效应通常会增加储料的相对动态侧压力。在全填充筒仓条件下,SSI效应会增加储料顶部和底部的相对动侧压力,而降低颗粒固体中间部分的相对动侧压力,这表明 SSI效应会改变和增加筒仓结构在某些区域的地震响应。因此,该研究可全面了解不同填充条件下桩-土-筒仓结构的相互作用机理。
{"title":"Dynamic responses of reinforced concrete silo considering pile–soil‐structure–granular solid interaction","authors":"Jinping Yang, Kaixin Sun, Meng Gao, Peizhen Li","doi":"10.1002/tal.2118","DOIUrl":"https://doi.org/10.1002/tal.2118","url":null,"abstract":"SummaryThe columned‐supported reinforced concrete silo models with different filling conditions considering soil‐structure dynamic interaction (SSI) are established based on the finite element program ANSYS to thoroughly investigate the complex interaction mechanism of the soil–pile–silo structure with granular solid. The dynamic characteristics and seismic responses of the SSI system and fixed‐base condition are analyzed and compared when the filling conditions are empty‐filled state, half‐filled state and full‐filled state. The numerical results reveal that the SSI effect reduces the seismic acceleration response of columned‐supported silos effectively. However, in terms of displacement, the SSI effect often amplifies the relative deformation of the supporting column and the cylindrical silos. Furthermore, the SSI effect often increases the relative dynamic lateral pressure of the storage material in the half‐filled silo condition. In the full‐filled silo condition, the relative dynamic lateral pressure at the top and bottom of the storage material is increased by the SSI effect; while it is decreased in the middle part of the granular solid, demonstrating that the SSI effect could change and increase the seismic responses of the silo structure in certain areas. Therefore, the investigation provides a comprehensive insight into the interaction mechanism of the pile–soil–silo structure with different filling conditions.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subway‐induced floor vibration predictions in super high‐rise multi‐tower building located on over‐depot based on one‐dimensional impedance model 基于一维阻抗模型的超高层多塔楼地面振动预测
Pub Date : 2024-05-03 DOI: 10.1002/tal.2126
Can Mei, Dayang Wang, Yongshan Zhang
SummaryThe regular operation of the subway negatively impacts the occupants of super high‐rise multi‐tower buildings located on over‐depot (MBLO), causing undesirable vibrations. To save engineers time and computational cost, an improved one‐dimensional impedance model of super high‐rise MBLO is established to predict undesirable vibration in the design phase and devise measures to enhance human comfort. The stiffness factor of the thick plate of a large chassis is introduced, and the impedance relationships of coupled beam and floor based on the equivalence of mass and bending stiffness are considered for an improved one‐dimensional impedance model. The vibration response of multi‐story buildings and super high‐rise MBLO is predicted by an improved one‐dimensional impedance model and compared with field measurements and experimental results, respectively. The results show that the vibration transmission law of super high‐rise MBLO can be more accurately predicted when the stiffness factor of thick plates and the impedance relationships of coupled beam and floor are adopted in an improved one‐dimensional impedance model of super high‐rise MBLO.
摘要地铁的正常运行会对位于超深基坑上的超高层多塔建筑(MBLO)的居住者造成负面影响,引起不良振动。为了节省工程师的时间和计算成本,本文建立了超高层 MBLO 的改进型一维阻抗模型,以便在设计阶段预测不良振动,并制定提高人体舒适度的措施。在改进的一维阻抗模型中,引入了大型底盘厚板的刚度系数,并考虑了基于质量和弯曲刚度等效的耦合梁和楼板的阻抗关系。通过改进的一维阻抗模型预测了多层建筑和超高层 MBLO 的振动响应,并分别与现场测量和实验结果进行了比较。结果表明,在改进的超高层 MBLO 一维阻抗模型中采用厚板的刚度系数以及耦合梁和楼板的阻抗关系,可以更准确地预测超高层 MBLO 的振动传递规律。
{"title":"Subway‐induced floor vibration predictions in super high‐rise multi‐tower building located on over‐depot based on one‐dimensional impedance model","authors":"Can Mei, Dayang Wang, Yongshan Zhang","doi":"10.1002/tal.2126","DOIUrl":"https://doi.org/10.1002/tal.2126","url":null,"abstract":"SummaryThe regular operation of the subway negatively impacts the occupants of super high‐rise multi‐tower buildings located on over‐depot (MBLO), causing undesirable vibrations. To save engineers time and computational cost, an improved one‐dimensional impedance model of super high‐rise MBLO is established to predict undesirable vibration in the design phase and devise measures to enhance human comfort. The stiffness factor of the thick plate of a large chassis is introduced, and the impedance relationships of coupled beam and floor based on the equivalence of mass and bending stiffness are considered for an improved one‐dimensional impedance model. The vibration response of multi‐story buildings and super high‐rise MBLO is predicted by an improved one‐dimensional impedance model and compared with field measurements and experimental results, respectively. The results show that the vibration transmission law of super high‐rise MBLO can be more accurately predicted when the stiffness factor of thick plates and the impedance relationships of coupled beam and floor are adopted in an improved one‐dimensional impedance model of super high‐rise MBLO.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model updating of a shear‐wall tall building using various vibration monitoring data: Accuracy and robustness 利用各种振动监测数据更新剪力墙高层建筑的模型:准确性和稳健性
Pub Date : 2024-04-24 DOI: 10.1002/tal.2114
Jiazeng Shan, Changhao Zhuang, Xi Chao, C. Loong
Acceleration measurements are often used for model updating of civil engineering structures, especially in the case of seismic monitoring. It is yet unclear if accelerations alone would generate an accurate and robust finite‐element (FE) model. This study examines this notion and analyzes the possibility of using other vibration monitoring data for model updating of shear‐wall tall buildings. This study compares the accuracy and robustness of the FE models being optimized via accelerations, roof displacement, wall rotations, interstory drift ratios, and the linear combination of these measurements. A numerical case study is analyzed using Timoshenko beams for modeling the lateral vibration of a benchmark 42‐story building under seismic excitations. Results show that the acceleration response of the examined building is mostly governed by its higher vibration modes. Depending on the characteristics of ground motions, using accelerations alone may generate an FE model biased towards higher‐order modes without effectively capturing the lower‐order modes. For instance, the first modal frequency of the updated FE model could be 12.0% lower than the true value, and the reconstructed displacement and rotation responses are noticeably inaccurate. Employing multi‐source monitoring data for model updating, for example, the combinations of roof displacement and acceleration measurements, could reduce the normalized root‐mean‐square errors in displacements by more than 70%. This study also quantifies the robustness of the FE model under various measurement noise levels and 50 pairs of earthquake records. Finally, the effects of multi‐source data on FE model updating are validated via experiments on a 7‐story shear wall building. Analysis reveals that a more accurate and robust FE model can be determined via a combination of accelerations and top displacement than via acceleration alone.
加速度测量通常用于土木工程结构的模型更新,尤其是在地震监测情况下。但目前还不清楚仅靠加速度是否就能生成准确、稳健的有限元(FE)模型。本研究探讨了这一概念,并分析了使用其他振动监测数据更新剪力墙高层建筑模型的可能性。本研究比较了通过加速度、屋顶位移、墙体旋转、层间漂移比以及这些测量数据的线性组合进行优化的有限元模型的准确性和稳健性。一项数值案例研究使用 Timoshenko 梁对地震激励下 42 层基准建筑的横向振动进行了建模分析。结果表明,受测建筑的加速度响应主要由其较高的振动模式控制。根据地面运动的特点,仅使用加速度可能会生成偏向高阶模态的有限元模型,而无法有效捕捉低阶模态。例如,更新后的 FE 模型的第一模态频率可能比真实值低 12.0%,重建的位移和旋转响应也明显不准确。采用多源监测数据进行模型更新,例如屋顶位移和加速度测量组合,可将位移的归一化均方根误差降低 70% 以上。本研究还量化了 FE 模型在不同测量噪声水平和 50 对地震记录下的稳健性。最后,通过对一栋 7 层剪力墙建筑的实验,验证了多源数据对 FE 模型更新的影响。分析表明,通过加速度和顶部位移的组合确定的 FE 模型比仅通过加速度确定的模型更准确、更稳健。
{"title":"Model updating of a shear‐wall tall building using various vibration monitoring data: Accuracy and robustness","authors":"Jiazeng Shan, Changhao Zhuang, Xi Chao, C. Loong","doi":"10.1002/tal.2114","DOIUrl":"https://doi.org/10.1002/tal.2114","url":null,"abstract":"Acceleration measurements are often used for model updating of civil engineering structures, especially in the case of seismic monitoring. It is yet unclear if accelerations alone would generate an accurate and robust finite‐element (FE) model. This study examines this notion and analyzes the possibility of using other vibration monitoring data for model updating of shear‐wall tall buildings. This study compares the accuracy and robustness of the FE models being optimized via accelerations, roof displacement, wall rotations, interstory drift ratios, and the linear combination of these measurements. A numerical case study is analyzed using Timoshenko beams for modeling the lateral vibration of a benchmark 42‐story building under seismic excitations. Results show that the acceleration response of the examined building is mostly governed by its higher vibration modes. Depending on the characteristics of ground motions, using accelerations alone may generate an FE model biased towards higher‐order modes without effectively capturing the lower‐order modes. For instance, the first modal frequency of the updated FE model could be 12.0% lower than the true value, and the reconstructed displacement and rotation responses are noticeably inaccurate. Employing multi‐source monitoring data for model updating, for example, the combinations of roof displacement and acceleration measurements, could reduce the normalized root‐mean‐square errors in displacements by more than 70%. This study also quantifies the robustness of the FE model under various measurement noise levels and 50 pairs of earthquake records. Finally, the effects of multi‐source data on FE model updating are validated via experiments on a 7‐story shear wall building. Analysis reveals that a more accurate and robust FE model can be determined via a combination of accelerations and top displacement than via acceleration alone.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140661617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of corrugated steel angle on the damage characteristics and anti‐explosion performance of corrugated steel–concrete composite structures 波纹角钢对波纹钢-混凝土复合结构的破坏特性和抗爆性能的影响
Pub Date : 2024-04-24 DOI: 10.1002/tal.2112
Kelei Cao, Qiaofeng Fu, Jianwei Zhang, Changxing Tang, Jinlin Huang, Chao Wang, Weifeng Bai
A three‐dimensional refined numerical simulation model of a corrugated steel–concrete slab composite structure under contact explosion load was established by the finite element model and smoothed particle hydrodynamics(FEM‐SPH) coupling method to explore the anti‐knock properties of corrugated steel reinforced concrete slabs with different angles. The effects of corrugated steel angle on the dynamic response, damage evolution characteristics, damage mode, anti‐knock property, and propagation mechanism of the shock wave in the composite structure were investigated, and the damage prediction and anti‐knock property evaluation of the composite structure were carried out. The results show that the simulation results of the mid‐span displacement of the corrugated steel are consistent with the experimental results, and the maximum error is 2.3%, which verifies the effectiveness of the contact explosion simulation process. The mid‐span displacement, peak stress, acceleration at the center point, and energy absorption value of 90° corrugated steel are 17.9%, 70.5%, 88.6%, and 59.4% lower than those of 30° corrugated steel. The damage range of the composite structure gradually decreases with increasing angle of the corrugated steel. The failure volume of the concrete slab reinforced by corrugated steel with different angles decreases with increasing angle of the corrugated steel, and the energy absorption value of the composite structure increases with increasing of angle of the corrugated steel, mainly because the corrugated steel increases the number of reflections of the stress wave. The research results can provide a theoretical basis for the application of composite structures in the field of structural anti‐explosion protection.
采用有限元模型和平滑粒子流体力学(FEM-SPH)耦合方法,建立了接触爆炸荷载作用下波纹钢-混凝土板复合结构的三维精细数值模拟模型,探讨了不同角度波纹钢筋混凝土板的抗冲击性能。研究了波纹钢角度对复合结构动态响应、损伤演化特征、损伤模式、抗冲击性能以及冲击波在复合结构中传播机理的影响,并对复合结构进行了损伤预测和抗冲击性能评价。结果表明,波纹钢的中跨位移模拟结果与实验结果一致,最大误差为 2.3%,验证了接触爆炸模拟过程的有效性。与 30°波纹钢相比,90°波纹钢的中跨位移、峰值应力、中心点加速度和能量吸收值分别降低了 17.9%、70.5%、88.6% 和 59.4%。随着波纹钢角度的增大,复合结构的破坏范围逐渐减小。不同角度波纹钢加固的混凝土板的破坏体积随波纹钢角度的增大而减小,复合结构的能量吸收值随波纹钢角度的增大而增大,这主要是因为波纹钢增加了应力波的反射次数。研究结果可为复合结构在结构防爆领域的应用提供理论依据。
{"title":"Effect of corrugated steel angle on the damage characteristics and anti‐explosion performance of corrugated steel–concrete composite structures","authors":"Kelei Cao, Qiaofeng Fu, Jianwei Zhang, Changxing Tang, Jinlin Huang, Chao Wang, Weifeng Bai","doi":"10.1002/tal.2112","DOIUrl":"https://doi.org/10.1002/tal.2112","url":null,"abstract":"A three‐dimensional refined numerical simulation model of a corrugated steel–concrete slab composite structure under contact explosion load was established by the finite element model and smoothed particle hydrodynamics(FEM‐SPH) coupling method to explore the anti‐knock properties of corrugated steel reinforced concrete slabs with different angles. The effects of corrugated steel angle on the dynamic response, damage evolution characteristics, damage mode, anti‐knock property, and propagation mechanism of the shock wave in the composite structure were investigated, and the damage prediction and anti‐knock property evaluation of the composite structure were carried out. The results show that the simulation results of the mid‐span displacement of the corrugated steel are consistent with the experimental results, and the maximum error is 2.3%, which verifies the effectiveness of the contact explosion simulation process. The mid‐span displacement, peak stress, acceleration at the center point, and energy absorption value of 90° corrugated steel are 17.9%, 70.5%, 88.6%, and 59.4% lower than those of 30° corrugated steel. The damage range of the composite structure gradually decreases with increasing angle of the corrugated steel. The failure volume of the concrete slab reinforced by corrugated steel with different angles decreases with increasing angle of the corrugated steel, and the energy absorption value of the composite structure increases with increasing of angle of the corrugated steel, mainly because the corrugated steel increases the number of reflections of the stress wave. The research results can provide a theoretical basis for the application of composite structures in the field of structural anti‐explosion protection.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised structural damage identification based on covariance matrix and deep clustering 基于协方差矩阵和深度聚类的无监督结构损伤识别
Pub Date : 2024-04-23 DOI: 10.1002/tal.2115
Xianwen Zhang, Zifa Wang, Dengke Zhao, Jianming Wang, Zhaoyan Li
Structural damage identification is a major task in structural health monitoring. Machine learning and deep learning algorithms have been widely applied in the research of structural damage identification. Supervised algorithms require expert labeling, making it difficult to implement in engineering applications. Unsupervised structural damage identification algorithms are generally divided into two parts: damage‐sensitive factor extraction and damage determination. Existing algorithms all perform these two steps separately. This paper proposes a damage identification method combining covariance matrix and improved deep embedding clustering network (IDEC). IDEC can perform damage‐sensitive factor extraction and damage determination operations at the same time. The covariance matrix that introduces delay information contains rich damage features, and the combination of the two has been proven to effectively mine the damage‐sensitive feature space. After network hyperparameter optimization via Bayesian optimization, the proposed method is applied to the damage identification and quantification using real bridge acceleration response data under vehicle load. The results show that this method can identify structural damage with an accuracy of up to 97% with better performance than existing technologies, and it also has great performance in identifying small damages. The proposed method is expected to increase the damage identification accuracy if applied in engineering practice.
结构损伤识别是结构健康监测的一项重要任务。机器学习和深度学习算法已被广泛应用于结构损伤识别的研究中。有监督算法需要专家标注,因此很难在工程应用中实现。无监督结构损伤识别算法一般分为两部分:损伤敏感因子提取和损伤判定。现有算法都是分别执行这两个步骤。本文提出了一种结合协方差矩阵和改进的深度嵌入聚类网络(IDEC)的损伤识别方法。IDEC 可同时执行损伤敏感因子提取和损伤判定操作。引入延迟信息的协方差矩阵包含丰富的损伤特征,两者的结合被证明能有效挖掘损伤敏感特征空间。通过贝叶斯优化对网络超参数进行优化后,将所提出的方法应用于车辆荷载下真实桥梁加速度响应数据的损伤识别和量化。结果表明,该方法识别结构损伤的准确率高达 97%,性能优于现有技术,在识别小损伤方面也有很好的表现。如果将提出的方法应用于工程实践,有望提高损伤识别的准确性。
{"title":"Unsupervised structural damage identification based on covariance matrix and deep clustering","authors":"Xianwen Zhang, Zifa Wang, Dengke Zhao, Jianming Wang, Zhaoyan Li","doi":"10.1002/tal.2115","DOIUrl":"https://doi.org/10.1002/tal.2115","url":null,"abstract":"Structural damage identification is a major task in structural health monitoring. Machine learning and deep learning algorithms have been widely applied in the research of structural damage identification. Supervised algorithms require expert labeling, making it difficult to implement in engineering applications. Unsupervised structural damage identification algorithms are generally divided into two parts: damage‐sensitive factor extraction and damage determination. Existing algorithms all perform these two steps separately. This paper proposes a damage identification method combining covariance matrix and improved deep embedding clustering network (IDEC). IDEC can perform damage‐sensitive factor extraction and damage determination operations at the same time. The covariance matrix that introduces delay information contains rich damage features, and the combination of the two has been proven to effectively mine the damage‐sensitive feature space. After network hyperparameter optimization via Bayesian optimization, the proposed method is applied to the damage identification and quantification using real bridge acceleration response data under vehicle load. The results show that this method can identify structural damage with an accuracy of up to 97% with better performance than existing technologies, and it also has great performance in identifying small damages. The proposed method is expected to increase the damage identification accuracy if applied in engineering practice.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on viscoelastic damper with amplified mechanism and seismic mitigation evaluation 具有放大机制的粘弹性阻尼器实验研究与减震评估
Pub Date : 2024-04-17 DOI: 10.1002/tal.2113
Hao Xu, Sufan Jia, Feng Shang, Wenfu He
SummaryIn this study, a viscoelastic damper (VED) employing an additional amplification device is proposed to enhance the stiffness as well as energy dissipation. The mechanical model of the amplified viscoelastic damper (AVED) is developed and the amplification efficiency is explored. The mechanical behaviors of AVED and the traditional VED are experimentally investigated. By adopting a leverage system, the stiffness and the dissipated energy of AVED are significantly improved and the amplification factors are confirmed. Meanwhile, the seismic responses and structural damages are addressed through a numerical study on a frame attached to the AVEDs and VEDs. The AVED reinforced building employing fewer dampers has close seismic responses compared with VED reinforced building. Furthermore, the installation of AVEDs significantly reduces the risk of structural damage.
摘要 在本研究中,提出了一种采用附加放大装置的粘弹性阻尼器(VED),以增强刚度和能量耗散。建立了放大粘弹性阻尼器(AVED)的机械模型,并探讨了放大效率。实验研究了 AVED 和传统 VED 的力学行为。通过采用杠杆系统,AVED 的刚度和耗能得到了显著改善,放大系数也得到了证实。同时,通过对连接 AVED 和 VED 的框架进行数值研究,探讨了地震响应和结构破坏问题。与 VED 加固建筑相比,采用较少阻尼器的 AVED 加固建筑具有接近的地震响应。此外,AVED 的安装大大降低了结构损坏的风险。
{"title":"Experimental study on viscoelastic damper with amplified mechanism and seismic mitigation evaluation","authors":"Hao Xu, Sufan Jia, Feng Shang, Wenfu He","doi":"10.1002/tal.2113","DOIUrl":"https://doi.org/10.1002/tal.2113","url":null,"abstract":"SummaryIn this study, a viscoelastic damper (VED) employing an additional amplification device is proposed to enhance the stiffness as well as energy dissipation. The mechanical model of the amplified viscoelastic damper (AVED) is developed and the amplification efficiency is explored. The mechanical behaviors of AVED and the traditional VED are experimentally investigated. By adopting a leverage system, the stiffness and the dissipated energy of AVED are significantly improved and the amplification factors are confirmed. Meanwhile, the seismic responses and structural damages are addressed through a numerical study on a frame attached to the AVEDs and VEDs. The AVED reinforced building employing fewer dampers has close seismic responses compared with VED reinforced building. Furthermore, the installation of AVEDs significantly reduces the risk of structural damage.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analytical investigation into the lateral load response of curved RC shear walls 曲线钢筋混凝土剪力墙侧向荷载响应的分析研究
Pub Date : 2024-03-25 DOI: 10.1002/tal.2097
Hatef Abdoos, Alireza Khaloo, Mohammad Tabiee
SummaryCurved structural elements can extensively be employed in engineering applications, to which structural designers and architects can resort in order to cope with the existing structural limitations and architectural challenges. In this regard, the current study is an attempt to provide insight into the overall performance of curved reinforced concrete (RC) shear walls (CRCSWs) due to the gaps existing in the literature. In order to fulfill this purpose, a CRCSW with general cross‐section has been considered subjected to the applied bi‐lateral and axial loadings. Equivalent non‐rectangular T‐, U‐, and L‐shaped sections are then introduced in lieu of a curved section. Thereafter, the stress and displacement distributions of CRCSWs have been analytically established. In order to highlight the structural merits of CRCSWs, a comparative study is performed based on the six non‐dimensional parameters defined in this study. According to the comparative study conducted between the CRCSWs and the equivalent non‐rectangular flanged walls, unlike latter wall types, the shear‐lag effects do not make serious issues for the performance of CRCSWs. Furthermore, to make a more realistic judgment on the response of CRCSWs, a numerical investigation has been carried out utilizing the finite element (FE) software Abaqus. On the strength of the data obtained from the FE simulation of 90 CRCSWs in three categories of short, squat, and slender walls, a regression model has been established, which is advantageous in that it can supply a means for the initial estimation of the shear strength of CRCSWs. The average R‐factor of 0.88 indicates that the established formulations can potentially well predict the shear strength of CRCSWs. The findings of this study divulge that, in addition to the inherent aesthetical advantages of CRCSWs, these structural elements can effectively resist against bi‐directional loadings as compared with the equivalent RC walls with flanged sections.
摘要弧形结构构件可广泛应用于工程领域,结构设计师和建筑师可利用这些构件来应对现有的结构限制和建筑挑战。在这方面,由于文献中存在空白,目前的研究试图为曲线钢筋混凝土(RC)剪力墙(CRCSWs)的整体性能提供深入见解。为了实现这一目的,我们考虑了具有一般横截面的 CRCSW 在施加双侧和轴向荷载时的情况。然后引入等效的非矩形 T 形、U 形和 L 形截面来代替曲线截面。随后,通过分析确定了 CRCSW 的应力和位移分布。为了突出 CRCSW 的结构优点,根据本研究中定义的六个非尺寸参数进行了比较研究。根据 CRCSW 与等效的非矩形凸缘墙之间的比较研究,与后者不同,剪力滞后效应不会对 CRCSW 的性能造成严重影响。此外,为了更真实地判断 CRCSW 的响应,还利用有限元(FE)软件 Abaqus 进行了数值研究。根据对 90 个 CRCSW(短墙、蹲墙和细长墙)进行有限元模拟所获得的数据,建立了一个回归模型,该模型的优点是可以提供一种初步估算 CRCSW 抗剪强度的方法。平均 R 系数为 0.88,表明所建立的公式可以很好地预测 CRCSW 的剪切强度。本研究的结果表明,与带凸缘截面的等效 RC 墙相比,CRCSW 除了具有固有的美观优势外,还能有效抵抗双向荷载。
{"title":"An analytical investigation into the lateral load response of curved RC shear walls","authors":"Hatef Abdoos, Alireza Khaloo, Mohammad Tabiee","doi":"10.1002/tal.2097","DOIUrl":"https://doi.org/10.1002/tal.2097","url":null,"abstract":"SummaryCurved structural elements can extensively be employed in engineering applications, to which structural designers and architects can resort in order to cope with the existing structural limitations and architectural challenges. In this regard, the current study is an attempt to provide insight into the overall performance of curved reinforced concrete (RC) shear walls (CRCSWs) due to the gaps existing in the literature. In order to fulfill this purpose, a CRCSW with general cross‐section has been considered subjected to the applied bi‐lateral and axial loadings. Equivalent non‐rectangular T‐, U‐, and L‐shaped sections are then introduced in lieu of a curved section. Thereafter, the stress and displacement distributions of CRCSWs have been analytically established. In order to highlight the structural merits of CRCSWs, a comparative study is performed based on the six non‐dimensional parameters defined in this study. According to the comparative study conducted between the CRCSWs and the equivalent non‐rectangular flanged walls, unlike latter wall types, the shear‐lag effects do not make serious issues for the performance of CRCSWs. Furthermore, to make a more realistic judgment on the response of CRCSWs, a numerical investigation has been carried out utilizing the finite element (FE) software Abaqus. On the strength of the data obtained from the FE simulation of 90 CRCSWs in three categories of short, squat, and slender walls, a regression model has been established, which is advantageous in that it can supply a means for the initial estimation of the shear strength of CRCSWs. The average R‐factor of 0.88 indicates that the established formulations can potentially well predict the shear strength of CRCSWs. The findings of this study divulge that, in addition to the inherent aesthetical advantages of CRCSWs, these structural elements can effectively resist against bi‐directional loadings as compared with the equivalent RC walls with flanged sections.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Structural Design of Tall and Special Buildings
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1