首页 > 最新文献

bioRxiv - Genetics最新文献

英文 中文
Temporal and spatial population genetic variation in Chilean jack mackerel, Trachurus murphyi 智利鲐鱼(Trachurus murphyi)种群的时空遗传变异
Pub Date : 2024-08-07 DOI: 10.1101/2024.08.05.606603
CB Canales-Aguirre, S Ferrada-Fuentes, R Galleguillos
The Trachurus murphyi have been studied for population genetic structure for decades, identifying only one large population across the South Pacific Ocean. Although all these studies have extensively examined the spatial genetic pattern, there remains a gap in understanding the potential role of temporality. Our study aims to elucidate temporal and spatial genetic patterns in T. murphyi populations in the South Pacific Ocean, examining genetic composition across seasons, including feeding and spawning seasons, where the latter was not previously investigated. Using 10 microsatellite loci, our study confirms a consistent and stable population genetic pattern in T. murphyi across its geographic distribution, observed over multiple years and seasons. Furthermore, we identify potential genetic markers for monitoring variability in the species.
几十年来,人们一直在研究墨鱼的种群遗传结构,但只发现了一个横跨南太平洋的大型种群。尽管所有这些研究都广泛考察了空间遗传模式,但在了解时间性的潜在作用方面仍存在差距。我们的研究旨在阐明南太平洋 T. murphyi 种群的时间和空间遗传模式,考察不同季节的遗传组成,包括觅食和产卵季节,而后者以前没有调查过。通过使用 10 个微卫星位点,我们的研究证实了 T. murphyi 在其地理分布范围内具有一致且稳定的种群遗传模式,并可在多个年份和季节观察到。此外,我们还发现了监测该物种变异性的潜在遗传标记。
{"title":"Temporal and spatial population genetic variation in Chilean jack mackerel, Trachurus murphyi","authors":"CB Canales-Aguirre, S Ferrada-Fuentes, R Galleguillos","doi":"10.1101/2024.08.05.606603","DOIUrl":"https://doi.org/10.1101/2024.08.05.606603","url":null,"abstract":"The <em>Trachurus murphyi</em> have been studied for population genetic structure for decades, identifying only one large population across the South Pacific Ocean. Although all these studies have extensively examined the spatial genetic pattern, there remains a gap in understanding the potential role of temporality. Our study aims to elucidate temporal and spatial genetic patterns in <em>T. murphyi</em> populations in the South Pacific Ocean, examining genetic composition across seasons, including feeding and spawning seasons, where the latter was not previously investigated. Using 10 microsatellite loci, our study confirms a consistent and stable population genetic pattern in <em>T. murphyi</em> across its geographic distribution, observed over multiple years and seasons. Furthermore, we identify potential genetic markers for monitoring variability in the species.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"366 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A humanized yeast model for studying TRAPP complex mutations; proof-of-concept using variants from an individual with a TRAPPC1-associated neurodevelopmental syndrome 研究 TRAPP 复合体突变的人源化酵母模型;使用 TRAPPC1 相关神经发育综合征患者的变异体进行概念验证
Pub Date : 2024-08-06 DOI: 10.1101/2024.08.04.605925
Erta Zykaj, Chelsea Abboud, Paria Asadi, Simane Warsame, Brittany Greco, Marcos López-Sánchez, Drago Bratkovic, Aashiq Kachroo, Luis Alberto Pérez-Jurado, Michael Sacher
Variants in membrane trafficking proteins are known to cause rare disorders with severe symptoms. The highly conserved transport protein particle (TRAPP) complexes are key membrane trafficking regulators that are also involved in autophagy. Pathogenic genetic variants in specific TRAPP subunits are linked to neurological disorders, muscular dystrophies, and skeletal dysplasias. Characterizing these variants and their phenotypes is important for understanding general and specialized roles of TRAPP subunits as well as for patient diagnosis. Patient-derived cells are not always available, which poses a limitation for the study of these diseases. Therefore, other systems, like the yeast Saccharomyces cerevisiae, can be used to dissect the mechanisms at the intracellular level underlying these disorders. The development of CRISPR/Cas9 technology in yeast has enabled a scar-less editing method that creates an efficient humanized yeast model. In this study, core yeast subunits were humanized by replacing their human orthologs, and TRAPPC1, TRAPPC2, TRAPPC2L, TRAPPC6A, and TRAPPC6B were found to successfully replace their yeast counterparts. This system was used for studying the first reported individual with an autosomal recessive disorder caused by biallelic TRAPPC1 variants, a girl with a severe neurodevelopmental disorder and myopathy. We show that the maternal variant (TRAPPC1 p.(Val121Alafs*3)) is non-functional while the paternal variant (TRAPPC1 p.(His22_Lys24del)) is conditional-lethal and affects secretion and non-selective autophagy in yeast. This parallels defects seen in fibroblasts derived from this individual which also showed membrane trafficking defects and altered Golgi morphology, all of which were rescued in the human system by wild type TRAPPC1. This study suggests that humanized yeast can be an efficient means to study TRAPP subunit variants in the absence of human cells, and can assign significance to variants of unknown significance (VUS). This study lays the foundation for characterizing further TRAPP variants through this system, rapidly contributing to disease diagnosis.
众所周知,膜转运蛋白的变异可导致症状严重的罕见疾病。高度保守的转运蛋白颗粒(TRAPP)复合物是关键的膜转运调节因子,也参与自噬。特定 TRAPP 亚基的致病基因变异与神经系统疾病、肌肉萎缩症和骨骼发育不良有关。鉴定这些变异及其表型对于了解 TRAPP 亚基的一般和特殊作用以及诊断患者非常重要。患者衍生细胞并不总是可用的,这对这些疾病的研究造成了限制。因此,可以利用酵母等其他系统来剖析这些疾病的细胞内机制。CRISPR/Cas9技术在酵母中的发展使无疤痕编辑方法成为可能,这种方法可以创建高效的人源化酵母模型。在这项研究中,通过替换酵母核心亚基的人类同源物实现了人源化,并发现 TRAPPC1、TRAPPC2、TRAPPC2L、TRAPPC6A 和 TRAPPC6B 成功替换了酵母对应物。该系统被用于研究首个报道的由双侧TRAPPC1变体引起的常染色体隐性遗传疾病患者--一名患有严重神经发育障碍和肌病的女孩。我们发现,母系变体(TRAPPC1 p.(Val121Alafs*3) )是无功能的,而父系变体(TRAPPC1 p.(His22_Lys24del) )是条件致死的,会影响酵母的分泌和非选择性自噬。这与从该个体衍生的成纤维细胞中发现的缺陷相似,这些成纤维细胞也表现出膜贩运缺陷和高尔基体形态改变,而在人类系统中,野生型 TRAPPC1 能挽救所有这些缺陷。这项研究表明,在没有人类细胞的情况下,人源化酵母是研究 TRAPP 亚基变体的有效方法,并能对意义不明的变体(VUS)进行鉴定。这项研究为通过该系统进一步鉴定 TRAPP 变异奠定了基础,从而为疾病诊断做出快速贡献。
{"title":"A humanized yeast model for studying TRAPP complex mutations; proof-of-concept using variants from an individual with a TRAPPC1-associated neurodevelopmental syndrome","authors":"Erta Zykaj, Chelsea Abboud, Paria Asadi, Simane Warsame, Brittany Greco, Marcos López-Sánchez, Drago Bratkovic, Aashiq Kachroo, Luis Alberto Pérez-Jurado, Michael Sacher","doi":"10.1101/2024.08.04.605925","DOIUrl":"https://doi.org/10.1101/2024.08.04.605925","url":null,"abstract":"Variants in membrane trafficking proteins are known to cause rare disorders with severe symptoms. The highly conserved transport protein particle (TRAPP) complexes are key membrane trafficking regulators that are also involved in autophagy. Pathogenic genetic variants in specific TRAPP subunits are linked to neurological disorders, muscular dystrophies, and skeletal dysplasias. Characterizing these variants and their phenotypes is important for understanding general and specialized roles of TRAPP subunits as well as for patient diagnosis. Patient-derived cells are not always available, which poses a limitation for the study of these diseases. Therefore, other systems, like the yeast <em>Saccharomyces cerevisiae</em>, can be used to dissect the mechanisms at the intracellular level underlying these disorders. The development of CRISPR/Cas9 technology in yeast has enabled a scar-less editing method that creates an efficient humanized yeast model. In this study, core yeast subunits were humanized by replacing their human orthologs, and TRAPPC1, TRAPPC2, TRAPPC2L, TRAPPC6A, and TRAPPC6B were found to successfully replace their yeast counterparts. This system was used for studying the first reported individual with an autosomal recessive disorder caused by biallelic <em>TRAPPC1</em> variants, a girl with a severe neurodevelopmental disorder and myopathy. We show that the maternal variant (TRAPPC1 p.(Val121Alafs*3)) is non-functional while the paternal variant (TRAPPC1 p.(His22_Lys24del)) is conditional-lethal and affects secretion and non-selective autophagy in yeast. This parallels defects seen in fibroblasts derived from this individual which also showed membrane trafficking defects and altered Golgi morphology, all of which were rescued in the human system by wild type <em>TRAPPC1</em>. This study suggests that humanized yeast can be an efficient means to study TRAPP subunit variants in the absence of human cells, and can assign significance to variants of unknown significance (VUS). This study lays the foundation for characterizing further TRAPP variants through this system, rapidly contributing to disease diagnosis.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic classification of gene-by-treatment interactions on molecular count phenotypes 分子计数表型上基因与治疗相互作用的概率分类
Pub Date : 2024-08-06 DOI: 10.1101/2024.08.03.605142
Yuriko Harigaya, Nana Matoba, Brandon D. Le, Jordan M. Valone, Jason L. Stein, Michael I. Love, William Valdar
Genetic variation can modulate response to treatment (G×T) or environmental stimuli (G×E), both of which may be highly consequential in biomedicine. An effective approach to identifying G×T signals and gaining insight into molecular mechanisms is mapping quantitative trait loci (QTL) of molecular count phenotypes, such as gene expression and chromatin accessibility, under multiple treatment conditions, which is termed response molecular QTL mapping. Although standard approaches evaluate the interaction between genetics and treatment conditions, they do not distinguish between meaningful interpretations such as whether a genetic effect is only observed in the treated condition or whether a genetic effect is observed but accentuated in the treated condition. To address this gap, we have developed a downstream method for classifying response molecular QTLs into subclasses with meaningful genetic interpretations. Our method uses Bayesian model selection and assigns posterior probabilities to different types of G×T interactions for a given feature-SNP pair. We compare linear and nonlinear regression of log-scale counts, noting that the latter accounts for an expected biological relationship between the genotype and the molecular count phenotype. Through simulation and application to existing datasets of molecular response QTLs, we show that our method provides an intuitive and well-powered framework to report and interpret G×T interactions. We provide a software package, ClassifyGxT, which is available at https://github.com/yharigaya/classifygxt.
遗传变异可调节对治疗(G×T)或环境刺激(G×E)的反应,这两种反应在生物医学中都可能具有重大影响。确定 G×T 信号并深入了解分子机制的一种有效方法是绘制多种处理条件下分子计数表型(如基因表达和染色质可及性)的数量性状位点(QTL)图,即反应分子 QTL 图。虽然标准方法评估了遗传与处理条件之间的相互作用,但它们并没有区分有意义的解释,例如是否仅在处理条件下观察到遗传效应,或者是否观察到遗传效应,但在处理条件下更加突出。为了弥补这一缺陷,我们开发了一种下游方法,用于将反应分子 QTL 分类为具有有意义遗传解释的子类。我们的方法使用贝叶斯模型选择,并为给定特征-SNP 对的不同类型 G×T 相互作用分配后验概率。我们比较了对数规模计数的线性回归和非线性回归,注意到后者考虑了基因型和分子计数表型之间的预期生物学关系。通过模拟和应用于现有的分子反应 QTL 数据集,我们表明我们的方法为报告和解释 G×T 相互作用提供了一个直观且功能强大的框架。我们提供了一个软件包:ClassifyGxT,可在 https://github.com/yharigaya/classifygxt 上下载。
{"title":"Probabilistic classification of gene-by-treatment interactions on molecular count phenotypes","authors":"Yuriko Harigaya, Nana Matoba, Brandon D. Le, Jordan M. Valone, Jason L. Stein, Michael I. Love, William Valdar","doi":"10.1101/2024.08.03.605142","DOIUrl":"https://doi.org/10.1101/2024.08.03.605142","url":null,"abstract":"Genetic variation can modulate response to treatment (G×T) or environmental stimuli (G×E), both of which may be highly consequential in biomedicine. An effective approach to identifying G×T signals and gaining insight into molecular mechanisms is mapping quantitative trait loci (QTL) of molecular count phenotypes, such as gene expression and chromatin accessibility, under multiple treatment conditions, which is termed response molecular QTL mapping. Although standard approaches evaluate the interaction between genetics and treatment conditions, they do not distinguish between meaningful interpretations such as whether a genetic effect is only observed in the treated condition or whether a genetic effect is observed but accentuated in the treated condition. To address this gap, we have developed a downstream method for classifying response molecular QTLs into subclasses with meaningful genetic interpretations. Our method uses Bayesian model selection and assigns posterior probabilities to different types of G×T interactions for a given feature-SNP pair. We compare linear and nonlinear regression of log-scale counts, noting that the latter accounts for an expected biological relationship between the genotype and the molecular count phenotype. Through simulation and application to existing datasets of molecular response QTLs, we show that our method provides an intuitive and well-powered framework to report and interpret G×T interactions. We provide a software package, ClassifyGxT, which is available at https://github.com/yharigaya/classifygxt.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"108 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Context effects on repair of 5’-overhang DSB induced by Cas12a in Arabidopsis 背景对拟南芥中 Cas12a 诱导的 5'-overhang DSB 修复的影响
Pub Date : 2024-08-06 DOI: 10.1101/2024.08.05.606594
Sébastien Lageix, Miguel Hernandez Sanchez-Rebato, Maria E. Gallego, Jérémy Verbeke, Yannick Bidet, Sandrine Viala, Charles I. White
Sequence-specific endonucleases have been key to the study of the mechanisms and control of DNA double-strand break (DSB) repair and recombination and the availability of CRISPR-Cas nucleases over the last decade has driven rapid progress in understanding and application of targeted recombination in many organisms, including plants. We present here an analysis of recombination at targeted chromosomal 5’overhang DSB generated by the FnCas12a endonuclease in the plant, Arabidopsis thaliana. The much-studied Cas9 nuclease cleaves DNA to generate blunt-ended, double-strand breaks (DSB), but relatively less is known about the repair of other types of breaks, such as those with 5’-overhanging ends. Sequencing the repaired breaks clearly shows that the majority of repaired DSB carry small deletions and are thus repaired locally by End-Joining recombination, confirmed by Nanopore sequencing of larger amplicons. Paired DSB generate deletions at one or both cut-sites, as well as deletions and reinsertions of the deleted segment between the two cuts, visible as inversions. While differences are seen in the details, overall the deletion patterns are similar between repair at single-cut and double-cut events, notwithstanding the fact that only the former involve cohesive DNA overhangs. A strikingly different repair pattern is however observed at breaks flanked by direct repeats. This change in sequence context results in the presence of an alternative class of repair events, corresponding to highly efficient repair by Single-strand Annealing recombination.
序列特异性内切酶是研究 DNA 双链断裂(DSB)修复和重组机制与控制的关键,过去十年中 CRISPR-Cas 核酸酶的出现推动了对包括植物在内的许多生物体中靶向重组的理解和应用的快速进展。我们在本文中分析了拟南芥(Arabidopsis thaliana)中由 FnCas12a 内切酶产生的靶向染色体 5'overhang DSB 重组。人们对 Cas9 核酸内切酶切割 DNA 产生钝端双链断裂(DSB)的情况研究颇多,但对其他类型断裂(如 5'overhanging end)的修复情况了解较少。对修复的断裂进行测序清楚地表明,大多数修复的 DSB 都带有小的缺失,因此是通过末端连接重组(End-Joining recombination)进行局部修复的,较大的扩增子的 Nanopore 测序也证实了这一点。成对的 DSB 会在一个或两个切割位点产生缺失,以及在两个切割位点之间的缺失片段的缺失和再插入,表现为倒位。虽然在细节上存在差异,但总的来说,单切和双切事件的缺失修复模式是相似的,尽管只有前者涉及内聚 DNA 悬垂。然而,在断裂两侧有直接重复序列的情况下,修复模式却截然不同。序列上下文的这种变化导致了另一类修复事件的出现,即单链退火重组的高效修复。
{"title":"Context effects on repair of 5’-overhang DSB induced by Cas12a in Arabidopsis","authors":"Sébastien Lageix, Miguel Hernandez Sanchez-Rebato, Maria E. Gallego, Jérémy Verbeke, Yannick Bidet, Sandrine Viala, Charles I. White","doi":"10.1101/2024.08.05.606594","DOIUrl":"https://doi.org/10.1101/2024.08.05.606594","url":null,"abstract":"Sequence-specific endonucleases have been key to the study of the mechanisms and control of DNA double-strand break (DSB) repair and recombination and the availability of CRISPR-Cas nucleases over the last decade has driven rapid progress in understanding and application of targeted recombination in many organisms, including plants. We present here an analysis of recombination at targeted chromosomal 5’overhang DSB generated by the FnCas12a endonuclease in the plant, <em>Arabidopsis thaliana</em>. The much-studied Cas9 nuclease cleaves DNA to generate blunt-ended, double-strand breaks (DSB), but relatively less is known about the repair of other types of breaks, such as those with 5’-overhanging ends. Sequencing the repaired breaks clearly shows that the majority of repaired DSB carry small deletions and are thus repaired locally by End-Joining recombination, confirmed by Nanopore sequencing of larger amplicons. Paired DSB generate deletions at one or both cut-sites, as well as deletions and reinsertions of the deleted segment between the two cuts, visible as inversions. While differences are seen in the details, overall the deletion patterns are similar between repair at single-cut and double-cut events, notwithstanding the fact that only the former involve cohesive DNA overhangs. A strikingly different repair pattern is however observed at breaks flanked by direct repeats. This change in sequence context results in the presence of an alternative class of repair events, corresponding to highly efficient repair by Single-strand Annealing recombination.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"366 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Six drivers of aging identified among genes differentially expressed with age 在随年龄差异表达的基因中发现六种衰老驱动因素
Pub Date : 2024-08-06 DOI: 10.1101/2024.08.02.606402
Ariella Coler-Reilly, Zachary Pincus, Erica L. Scheller, Roberto Civitelli
Many studies have compared gene expression in young and old samples to gain insights on aging, the primary risk factor for most major chronic diseases. However, these studies only describe associations, failing to distinguish drivers of aging from compensatory geroprotective responses and incidental downstream effects. Here, we introduce a workflow to characterize the causal effects of differentially expressed genes on lifespan. First, we performed a meta-analysis of 25 gene expression datasets comprising samples of various tissues from healthy, untreated adult mammals (humans, dogs, and rodents) at two distinct ages. We ranked each gene according to the number of distinct datasets in which the gene was differentially expressed with age in a consistent direction. The top age-upregulated genes were TMEM176A, EFEMP1, CP, and HLA-A; the top age-downregulated genes were CA4, SIAH, SPARC, and UQCR10. Second, the effects of the top ranked genes on lifespan were measured by applying post-developmental RNA interference of the corresponding ortholog in the nematode C. elegans (two trials, with roughly 100 animals per genotype per trial). Out of 10 age-upregulated and 9 age-downregulated genes that were tested, two age-upregulated genes (csp-3/CASP1 and spch-2/RSRC1) and four age-downregulated genes (C42C1.8/DIRC2, ost-1/SPARC, fzy-1/CDC20, and cah-3/CA4) produced significant and reproducible lifespan extension. Notably, the data do not suggest that the direction of differential expression with age is predictive of the effect on lifespan. Our study provides novel insight into the relationship between differential gene expression and aging phenotypes, pilots an unbiased workflow that can be easily repeated and expanded, and pinpoints six genes with evolutionarily conserved, causal roles in the aging process for further study.
衰老是大多数主要慢性疾病的主要风险因素,许多研究通过比较年轻样本和老年样本的基因表达来了解衰老。然而,这些研究只描述了相关性,未能将衰老的驱动因素与代偿性老年保护反应和偶然的下游效应区分开来。在这里,我们介绍了一种工作流程,用于描述差异表达基因对寿命的因果效应。首先,我们对 25 个基因表达数据集进行了荟萃分析,这些数据集包括健康、未经治疗的成年哺乳动物(人类、狗和啮齿动物)在两个不同年龄段的各种组织样本。我们根据基因随年龄呈一致方向差异表达的不同数据集的数量对每个基因进行了排序。年龄上调最多的基因是 TMEM176A、EFEMP1、CP 和 HLA-A;年龄下调最多的基因是 CA4、SIAH、SPARC 和 UQCR10。其次,通过对线虫C. elegans中相应的直向同源物进行发育后RNA干扰(两次试验,每次试验每个基因型约100只动物),测量了排名靠前的基因对寿命的影响。在测试的 10 个年龄上调基因和 9 个年龄下调基因中,两个年龄上调基因(csp-3/CASP1 和 spch-2/RSRC1)和四个年龄下调基因(C42C1.8/DIRC2、ost-1/SPARC、fzy-1/CDC20 和 cah-3/CA4)产生了显著的、可重复的寿命延长。值得注意的是,这些数据并不表明随年龄变化的差异表达方向能预测对寿命的影响。我们的研究为差异基因表达与衰老表型之间的关系提供了新的见解,试制了一种无偏见的工作流程,可以很容易地重复和扩展,并指出了在衰老过程中具有进化保守性和因果作用的六个基因,供进一步研究。
{"title":"Six drivers of aging identified among genes differentially expressed with age","authors":"Ariella Coler-Reilly, Zachary Pincus, Erica L. Scheller, Roberto Civitelli","doi":"10.1101/2024.08.02.606402","DOIUrl":"https://doi.org/10.1101/2024.08.02.606402","url":null,"abstract":"Many studies have compared gene expression in young and old samples to gain insights on aging, the primary risk factor for most major chronic diseases. However, these studies only describe associations, failing to distinguish drivers of aging from compensatory geroprotective responses and incidental downstream effects. Here, we introduce a workflow to characterize the causal effects of differentially expressed genes on lifespan. First, we performed a meta-analysis of 25 gene expression datasets comprising samples of various tissues from healthy, untreated adult mammals (humans, dogs, and rodents) at two distinct ages. We ranked each gene according to the number of distinct datasets in which the gene was differentially expressed with age in a consistent direction. The top age-upregulated genes were TMEM176A, EFEMP1, CP, and HLA-A; the top age-downregulated genes were CA4, SIAH, SPARC, and UQCR10. Second, the effects of the top ranked genes on lifespan were measured by applying post-developmental RNA interference of the corresponding ortholog in the nematode C. elegans (two trials, with roughly 100 animals per genotype per trial). Out of 10 age-upregulated and 9 age-downregulated genes that were tested, two age-upregulated genes (<em>csp-3</em>/CASP1 and <em>spch-2</em>/RSRC1) and four age-downregulated genes (<em>C42C1.8</em>/DIRC2, <em>ost-1</em>/SPARC, <em>fzy-1</em>/CDC20, and <em>cah-3</em>/CA4) produced significant and reproducible lifespan extension. Notably, the data do not suggest that the direction of differential expression with age is predictive of the effect on lifespan. Our study provides novel insight into the relationship between differential gene expression and aging phenotypes, pilots an unbiased workflow that can be easily repeated and expanded, and pinpoints six genes with evolutionarily conserved, causal roles in the aging process for further study.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variant-to-function dissection of rare non-coding GWAS loci with high impact on blood traits 从变异到功能剖析对血液性状影响较大的罕见非编码 GWAS 基因位点
Pub Date : 2024-08-06 DOI: 10.1101/2024.08.05.606572
Manuel Tardaguila, Dominique Von Schiller, Michela Colombo, Ilaria Gori, Eve L. Coomber, Thomas Vanderstichele, Paola Benaglio, Chiara Chiereghin, Sebastian Gerety, Dragana Vuckovic, Arianna Landini, Giuditta Clerici, Patrick Albers, Helen Ray-Jones, Katie L. Burnham, Alex Tokolyi, Elodie Persyn, Mikhail Spivakov, Vijay G. Sankaran, Klaudia Walter, Kousik Kundu, Nicola Pirastu, Michael Inouye, Dirk S. Paul, Emma E. Davenport, Pelin Sahlén, Stephen Watt, Nicole Soranzo
Two decades of Genome Wide Association Studies (GWAS) have yielded hundreds of thousands of robust genetic associations to human complex traits and diseases. Nevertheless, the dissection of the functional consequences of variants lags behind, especially for non-coding variants (RNVs). Here we have characterised a set of rare, non-coding variants with large effects on haematological traits by integrating (i) a massively parallel reporter assay with (ii) a CRISPR/Cas9 screen and (iii) in vivo gene expression and transcript relative abundance analysis of whole blood and immune cells. After extensive manual curation we identify 22 RNVs with robust mechanistic hypotheses and perform an in-depth characterization of one of them, demonstrating its impact on megakaryopoiesis through regulation of the CUX1 transcriptional cascade. With this work we advance the understanding of the translational value of GWAS findings for variants implicated in blood and immunity.
经过二十年的全基因组关联研究(GWAS),已经发现了数十万个与人类复杂性状和疾病相关的基因变异。然而,对变异功能后果的研究却相对滞后,尤其是对非编码变异(RNV)的研究。在这里,我们通过整合(1)大规模并行报告分析(2)CRISPR/Cas9 筛选(3)全血和免疫细胞的体内基因表达和转录本相对丰度分析,描述了一组对血液学特征有重大影响的罕见非编码变异。经过大量人工筛选,我们确定了 22 个具有可靠机制假说的 RNV,并对其中一个进行了深入鉴定,证明了它通过调控 CUX1 转录级联对巨核细胞生成的影响。通过这项工作,我们加深了对与血液和免疫有关的变异的 GWAS 发现的转化价值的理解。
{"title":"Variant-to-function dissection of rare non-coding GWAS loci with high impact on blood traits","authors":"Manuel Tardaguila, Dominique Von Schiller, Michela Colombo, Ilaria Gori, Eve L. Coomber, Thomas Vanderstichele, Paola Benaglio, Chiara Chiereghin, Sebastian Gerety, Dragana Vuckovic, Arianna Landini, Giuditta Clerici, Patrick Albers, Helen Ray-Jones, Katie L. Burnham, Alex Tokolyi, Elodie Persyn, Mikhail Spivakov, Vijay G. Sankaran, Klaudia Walter, Kousik Kundu, Nicola Pirastu, Michael Inouye, Dirk S. Paul, Emma E. Davenport, Pelin Sahlén, Stephen Watt, Nicole Soranzo","doi":"10.1101/2024.08.05.606572","DOIUrl":"https://doi.org/10.1101/2024.08.05.606572","url":null,"abstract":"Two decades of Genome Wide Association Studies (GWAS) have yielded hundreds of thousands of robust genetic associations to human complex traits and diseases. Nevertheless, the dissection of the functional consequences of variants lags behind, especially for non-coding variants (RNVs). Here we have characterised a set of rare, non-coding variants with large effects on haematological traits by integrating (i) a massively parallel reporter assay with (ii) a CRISPR/Cas9 screen and (iii) <em>in vivo</em> gene expression and transcript relative abundance analysis of whole blood and immune cells. After extensive manual curation we identify 22 RNVs with robust mechanistic hypotheses and perform an in-depth characterization of one of them, demonstrating its impact on megakaryopoiesis through regulation of the <em>CUX1</em> transcriptional cascade. With this work we advance the understanding of the translational value of GWAS findings for variants implicated in blood and immunity.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"86 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inferring the composition of a mixed culture of natural microbial isolates by deep sequencing 通过深度测序推断天然微生物分离物混合培养物的组成
Pub Date : 2024-08-05 DOI: 10.1101/2024.08.05.606565
Mark Samuel Voorhies, Bastian Joehnk, Jessie Uehling, Keith Walcott, Claire Dubin, Heather Mead, Christina Homer, John Galgiani, Bridget Barker, Rachel Brem, Anita Sil
Next generation sequencing has unlocked a wealth of genotype information for microbial populations, but phenotyping remains a bottleneck for exploiting this information, particularly for pathogens that are difficult to manipulate. Here, we establish a method for high-throughput phenotyping of mixed cultures, in which the pattern of naturally occurring single-nucleotide polymorphisms in each isolate is used as intrinsic barcodes which can be read out by sequencing. We demonstrate that our method can correctly deconvolute strain proportions in simulated mixed-strain pools. As an experimental test of our method, we perform whole genome sequencing of 66 natural isolates of the thermally dimorphic pathogenic fungus Coccidioides posadasii and infer the strain compositions for large mixed pools of these strains after competition at 37 deg C and room temperature. We validate the results of these selection experiments by recapitulating the temperature-specific enrichment results in smaller pools. Additionally, we demonstrate that strain fitness estimated by our method can be used as a quantitative trait for genome-wide association studies. We anticipate that our method will be broadly applicable to natural populations of microbes and allow high-throughput phenotyping to match the rate of genomic data acquisition.
新一代测序技术为微生物种群提供了大量基因型信息,但表型分析仍然是利用这些信息的瓶颈,尤其是对于难以操作的病原体。在这里,我们建立了一种对混合培养物进行高通量表型分析的方法,其中每个分离物中天然存在的单核苷酸多态性模式被用作内在条形码,可通过测序读出。我们证明,我们的方法可以在模拟混合菌株池中正确地分辨菌株比例。为了对我们的方法进行实验测试,我们对 66 个天然分离的热二态致病真菌 Coccidioides posadasii 进行了全基因组测序,并推断了这些菌株在 37 摄氏度和室温下竞争后的大型混合菌株池的菌株组成。我们在较小的菌种池中重现了温度特异性富集结果,从而验证了这些选择实验的结果。此外,我们还证明了用我们的方法估算出的菌株适合度可作为全基因组关联研究的定量性状。我们预计,我们的方法将广泛适用于微生物自然种群,并使高通量表型分析与基因组数据获取速度相匹配。
{"title":"Inferring the composition of a mixed culture of natural microbial isolates by deep sequencing","authors":"Mark Samuel Voorhies, Bastian Joehnk, Jessie Uehling, Keith Walcott, Claire Dubin, Heather Mead, Christina Homer, John Galgiani, Bridget Barker, Rachel Brem, Anita Sil","doi":"10.1101/2024.08.05.606565","DOIUrl":"https://doi.org/10.1101/2024.08.05.606565","url":null,"abstract":"Next generation sequencing has unlocked a wealth of genotype information for microbial populations, but phenotyping remains a bottleneck for exploiting this information, particularly for pathogens that are difficult to manipulate. Here, we establish a method for high-throughput phenotyping of mixed cultures, in which the pattern of naturally occurring single-nucleotide polymorphisms in each isolate is used as intrinsic barcodes which can be read out by sequencing. We demonstrate that our method can correctly deconvolute strain proportions in simulated mixed-strain pools. As an experimental test of our method, we perform whole genome sequencing of 66 natural isolates of the thermally dimorphic pathogenic fungus Coccidioides posadasii and infer the strain compositions for large mixed pools of these strains after competition at 37 deg C and room temperature. We validate the results of these selection experiments by recapitulating the temperature-specific enrichment results in smaller pools. Additionally, we demonstrate that strain fitness estimated by our method can be used as a quantitative trait for genome-wide association studies. We anticipate that our method will be broadly applicable to natural populations of microbes and allow high-throughput phenotyping to match the rate of genomic data acquisition.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequences within and upstream of the mouse Ets1 gene drive high level expression in B cells, but are not sufficient for consistent expression in T cells 小鼠 Ets1 基因内部和上游的序列驱动 B 细胞的高水平表达,但不足以在 T 细胞中实现一致表达
Pub Date : 2024-08-05 DOI: 10.1101/2024.08.02.606433
Alyssa Kearly, Prontip Saelee, Jonathan Bard, Satrajit Sinha, Anne Satterthwaite, Lee Ann Garrett-Sinha
The levels of transcription factor Ets1 are high in resting B and T cells, but are downregulated by signaling through antigen receptors and Toll-like receptors (TLRs). Loss of Ets1 in mice leads to excessive immune cell activation and development of an autoimmune syndrome and reduced Ets1 expression has been observed in human PBMCs in the context of autoimmune diseases. In B cells, Ets1 serves to prevent premature activation and differentiation to antibody-secreting cells. Given these important roles for Ets1 in the immune response, stringent control of Ets1 gene expression levels is required for homeostasis. However, the genetic regulatory elements that control expression of the Ets1 gene remain relatively unknown. Here we identify a topologically-associating domain (TAD) in the chromatin of B cells that includes the mouse Ets1 gene locus and describe an interaction hub that extends over 100 kb upstream and into the gene body. Additionally, we compile epigenetic datasets to find several putative regulatory elements within the interaction hub by identifying regions of high DNA accessibility and enrichment of active enhancer histone marks. Using reporter constructs, we determine that DNA sequences within this interaction hub are sufficient to direct reporter gene expression in lymphoid tissues of transgenic mice. Further analysis indicates that the reporter construct drives faithful expression of the reporter gene in mouse B cells, but variegated expression in T cells, suggesting the existence of T cell regulatory elements outside this region. To investigate how the downregulation of Ets1 transcription is associated with alterations in the epigenetic landscape of stimulated B cells, we performed ATAC-seq in resting and BCR-stimulated primary B cells and identified four regions within and upstream of the Ets1 locus that undergo changes in chromatin accessibility that correlate to Ets1 gene expression. Interestingly, functional analysis of several putative Ets1 regulatory elements using luciferase constructs suggested a high level of functional redundancy. Taken together our studies reveal a complex network of regulatory elements and transcription factors that coordinate the B cell-specific expression of Ets1
静息的 B 细胞和 T 细胞中转录因子 Ets1 的水平很高,但通过抗原受体和 Toll 样受体(TLRs)发出信号时,Ets1 的水平会被下调。小鼠体内 Ets1 的缺失会导致免疫细胞过度活化和自身免疫综合症的发生,在自身免疫性疾病的情况下,也观察到人类 PBMCs 中 Ets1 的表达减少。在 B 细胞中,Ets1 的作用是防止过早活化和分化为分泌抗体的细胞。鉴于 Ets1 在免疫反应中的这些重要作用,需要对 Ets1 基因表达水平进行严格控制,以保持体内平衡。然而,控制 Ets1 基因表达的遗传调控元件仍然相对未知。在这里,我们确定了 B 细胞染色质中包括小鼠 Ets1 基因座的拓扑关联域(TAD),并描述了一个延伸至基因体上游 100 kb 以上的相互作用中心。此外,我们还汇编了表观遗传学数据集,通过识别高DNA可及性区域和活性增强子组蛋白标记的富集,在相互作用中心找到了几个推定的调控元件。利用报告基因构建体,我们确定该相互作用中枢内的 DNA 序列足以引导报告基因在转基因小鼠淋巴组织中的表达。进一步的分析表明,报告基因构建体在小鼠 B 细胞中能驱动报告基因的忠实表达,但在 T 细胞中的表达却参差不齐,这表明在该区域之外还存在 T 细胞调控元件。为了研究 Ets1 转录的下调如何与受刺激 B 细胞表观遗传景观的改变相关联,我们在静息和 BCR 刺激的原代 B 细胞中进行了 ATAC-seq 分析,发现 Ets1 基因座内和上游有四个区域的染色质可及性发生了变化,这些变化与 Ets1 基因的表达相关。有趣的是,利用荧光素酶构建物对几个假定的 Ets1 调控元件进行的功能分析表明,这些元件具有高度的功能冗余性。总之,我们的研究揭示了一个由调控元件和转录因子组成的复杂网络,它协调了 Ets1 的 B 细胞特异性表达。
{"title":"Sequences within and upstream of the mouse Ets1 gene drive high level expression in B cells, but are not sufficient for consistent expression in T cells","authors":"Alyssa Kearly, Prontip Saelee, Jonathan Bard, Satrajit Sinha, Anne Satterthwaite, Lee Ann Garrett-Sinha","doi":"10.1101/2024.08.02.606433","DOIUrl":"https://doi.org/10.1101/2024.08.02.606433","url":null,"abstract":"The levels of transcription factor Ets1 are high in resting B and T cells, but are downregulated by signaling through antigen receptors and Toll-like receptors (TLRs). Loss of Ets1 in mice leads to excessive immune cell activation and development of an autoimmune syndrome and reduced Ets1 expression has been observed in human PBMCs in the context of autoimmune diseases. In B cells, Ets1 serves to prevent premature activation and differentiation to antibody-secreting cells. Given these important roles for Ets1 in the immune response, stringent control of Ets1 gene expression levels is required for homeostasis. However, the genetic regulatory elements that control expression of the Ets1 gene remain relatively unknown. Here we identify a topologically-associating domain (TAD) in the chromatin of B cells that includes the mouse Ets1 gene locus and describe an interaction hub that extends over 100 kb upstream and into the gene body. Additionally, we compile epigenetic datasets to find several putative regulatory elements within the interaction hub by identifying regions of high DNA accessibility and enrichment of active enhancer histone marks. Using reporter constructs, we determine that DNA sequences within this interaction hub are sufficient to direct reporter gene expression in lymphoid tissues of transgenic mice. Further analysis indicates that the reporter construct drives faithful expression of the reporter gene in mouse B cells, but variegated expression in T cells, suggesting the existence of T cell regulatory elements outside this region. To investigate how the downregulation of Ets1 transcription is associated with alterations in the epigenetic landscape of stimulated B cells, we performed ATAC-seq in resting and BCR-stimulated primary B cells and identified four regions within and upstream of the Ets1 locus that undergo changes in chromatin accessibility that correlate to Ets1 gene expression. Interestingly, functional analysis of several putative Ets1 regulatory elements using luciferase constructs suggested a high level of functional redundancy. Taken together our studies reveal a complex network of regulatory elements and transcription factors that coordinate the B cell-specific expression of Ets1","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic prediction of cereal crop architecture traits using models informed by gene regulatory circuitries from maize 利用玉米基因调控回路模型对谷类作物结构特征进行基因组预测
Pub Date : 2024-08-05 DOI: 10.1101/2024.08.01.606170
Edoardo Bertolini, Mohith Manjunath, Weihao Ge, Matthew D. Murphy, Mirai Inaoka, Christina Fliege, Andrea L. Eveland, Alexander E. Lipka
Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic prediction is well-positioned to expedite genetic gain of plant architecture traits since they are typically highly heritable. Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions could shed light on the genetic architecture of these traits. Here, we leveraged transcriptional networks from a prior study that contextually described developmental progression during tassel and leaf organogenesis in maize (Z. mays) to inform genomic prediction models for architecture traits. Since these developmental processes underlie tassel branching and leaf angle, two important agronomic architecture traits, we tested whether genes prioritized from these networks quantitatively contribute to the genetic architecture of these traits. We used genomic prediction models to evaluate the ability of markers in the vicinity of prioritized network genes to predict breeding values of tassel branching and leaf angle traits for two diversity panels in maize, and diversity panels from sorghum (S. bicolor) and rice (O. sativa). Predictive abilities of markers near these prioritized network genes were similar to those using whole-genome marker sets. Notably, markers near highly connected transcription factors from core network motifs in maize yielded predictive abilities that were significantly greater than expected by chance in not only maize but also closely related sorghum. We expect that these highly connected regulators are key drivers of architectural variation that are conserved across closely related cereal crop species.
植物结构是种植密度的主要决定因素,而种植密度可提高作物单位面积的生产潜力。基因组预测非常适合加快植物结构性状的遗传增益,因为这些性状通常具有高度遗传性。此外,调整基因组预测模型以查询标记某些基因组区域的标记物的预测能力,可以揭示这些性状的遗传结构。在这里,我们利用先前一项研究中的转录网络(该研究结合上下文描述了玉米(Z. mays)穗和叶器官发生过程中的发育进程)来为结构性状的基因组预测模型提供信息。由于这些发育过程是穗分枝和叶片角度这两个重要农艺结构性状的基础,我们测试了从这些网络中优先排序的基因是否对这些性状的遗传结构有定量贡献。我们使用基因组预测模型评估了优先网络基因附近的标记预测玉米两个多样性面板以及高粱(S. bicolor)和水稻(O. sativa)多样性面板的抽穗分枝和叶片角度性状育种价值的能力。这些优先网络基因附近标记的预测能力与使用全基因组标记集的预测能力相似。值得注意的是,在玉米和密切相关的高粱中,玉米核心网络基序中高度连接的转录因子附近标记的预测能力明显高于偶然的预期。我们预计,这些高度连接的调控因子是结构变异的关键驱动因素,它们在近缘谷类作物物种中是保守的。
{"title":"Genomic prediction of cereal crop architecture traits using models informed by gene regulatory circuitries from maize","authors":"Edoardo Bertolini, Mohith Manjunath, Weihao Ge, Matthew D. Murphy, Mirai Inaoka, Christina Fliege, Andrea L. Eveland, Alexander E. Lipka","doi":"10.1101/2024.08.01.606170","DOIUrl":"https://doi.org/10.1101/2024.08.01.606170","url":null,"abstract":"Plant architecture is a major determinant of planting density, which enhances productivity potential for crops per unit area. Genomic prediction is well-positioned to expedite genetic gain of plant architecture traits since they are typically highly heritable. Additionally, the adaptation of genomic prediction models to query predictive abilities of markers tagging certain genomic regions could shed light on the genetic architecture of these traits. Here, we leveraged transcriptional networks from a prior study that contextually described developmental progression during tassel and leaf organogenesis in maize (<em>Z. mays</em>) to inform genomic prediction models for architecture traits. Since these developmental processes underlie tassel branching and leaf angle, two important agronomic architecture traits, we tested whether genes prioritized from these networks quantitatively contribute to the genetic architecture of these traits. We used genomic prediction models to evaluate the ability of markers in the vicinity of prioritized network genes to predict breeding values of tassel branching and leaf angle traits for two diversity panels in maize, and diversity panels from sorghum (<em>S. bicolor</em>) and rice (<em>O. sativa</em>). Predictive abilities of markers near these prioritized network genes were similar to those using whole-genome marker sets. Notably, markers near highly connected transcription factors from core network motifs in maize yielded predictive abilities that were significantly greater than expected by chance in not only maize but also closely related sorghum. We expect that these highly connected regulators are key drivers of architectural variation that are conserved across closely related cereal crop species.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous silencing of gut nucleases and a vital target gene by adult dsRNA feeding enhances RNAi efficiency and mortality in Ceratitis capitata adults 成体dsRNA喂养可同时沉默肠道核酸酶和一个重要的靶基因,从而提高RNAi效率,并增加毛角蝠成体的死亡率
Pub Date : 2024-08-05 DOI: 10.1101/2024.08.01.605863
Gennaro Volpe, Sarah Maria Mazzucchiello, Noemi Rosati, Francesca Lucibelli, Marianna Varone, Dora Baccaro, Ilaria Mattei, Ilaria Di Lelio, Andrea Becchimanzi, Ennio Giordano, Marco Salvemini, Serena Aceto, Francesco Pennacchio, Giuseppe Saccone
Ceratitis capitata, known as Mediterranean fruit fly (Medfly), is a major dipteran pest significantly impacting fruit and vegetable farming. Currently, its control heavily relies mainly on chemical insecticides, which pose health risks and have effects on pollinators. A friendly and species-specific alternative strategy involves providing double-stranded RNA (dsRNA) through feeding to disrupt essential functions in pest insects, which is poorly explored in dipteran species. Previous reports in Orthoptera and Coleoptera species suggested that dsRNA degradation by two specific nucleases in the intestinal lumen is among the major obstacle to feeding-mediated RNAi in insects. In our study, we experimented with three-day adult feeding using a combination of dsRNA molecules that target the expression of the ATPase vital gene and two intestinal dsRNA nucleases. These dsRNA molecules were recently tested separately in two Tephritidae species, showing limited effectiveness [1,2]. In contrast, we observed 79% mortality over seven days, which was associated with a decrease in mRNA levels of the three targeted genes. As expected, we also observed a reduction in dsRNA degradation following RNAi against nucleases. This research illustrates the potential of utilizing molecules as pesticides to achieve mortality rates in Medfly adults by targeting crucial genes and intestinal nucleases. Furthermore, it underscores the importance of exploring RNAi-based approaches for pest management
地中海果蝇(Ceratitis capitata)是一种严重影响水果和蔬菜种植的主要双翅目害虫。目前,对它的控制主要依靠化学杀虫剂,但这些杀虫剂会带来健康风险,并对授粉昆虫造成影响。一种友好且针对特定物种的替代策略是通过喂食提供双链 RNA(dsRNA)来破坏害虫的基本功能,但这种方法在双翅目昆虫中的应用还很少。之前在直翅目和鞘翅目物种中的报道表明,dsRNA 在肠腔中被两种特异性核酸酶降解是昆虫摄食介导的 RNAi 的主要障碍之一。在我们的研究中,我们使用针对 ATPase 重要基因表达的 dsRNA 分子和两种肠道 dsRNA 核酸酶进行了为期三天的成虫喂养实验。这些dsRNA分子最近分别在两个Tephritidae物种中进行了测试,结果显示效果有限[1,2]。相比之下,我们在七天内观察到 79% 的死亡率,这与三个目标基因的 mRNA 水平下降有关。正如预期的那样,我们还观察到针对核酸酶的 RNAi 使 dsRNA 降解减少。这项研究说明了利用分子作为杀虫剂的潜力,通过靶向关键基因和肠道核酸酶来提高褐飞虱成虫的死亡率。此外,它还强调了探索基于 RNAi 的害虫管理方法的重要性。
{"title":"Simultaneous silencing of gut nucleases and a vital target gene by adult dsRNA feeding enhances RNAi efficiency and mortality in Ceratitis capitata adults","authors":"Gennaro Volpe, Sarah Maria Mazzucchiello, Noemi Rosati, Francesca Lucibelli, Marianna Varone, Dora Baccaro, Ilaria Mattei, Ilaria Di Lelio, Andrea Becchimanzi, Ennio Giordano, Marco Salvemini, Serena Aceto, Francesco Pennacchio, Giuseppe Saccone","doi":"10.1101/2024.08.01.605863","DOIUrl":"https://doi.org/10.1101/2024.08.01.605863","url":null,"abstract":"<em>Ceratitis capitata</em>, known as Mediterranean fruit fly (Medfly), is a major dipteran pest significantly impacting fruit and vegetable farming. Currently, its control heavily relies mainly on chemical insecticides, which pose health risks and have effects on pollinators. A friendly and species-specific alternative strategy involves providing double-stranded RNA (dsRNA) through feeding to disrupt essential functions in pest insects, which is poorly explored in dipteran species. Previous reports in Orthoptera and Coleoptera species suggested that dsRNA degradation by two specific nucleases in the intestinal lumen is among the major obstacle to feeding-mediated RNAi in insects. In our study, we experimented with three-day adult feeding using a combination of dsRNA molecules that target the expression of the <em>ATPase</em> vital gene and two intestinal dsRNA nucleases. These dsRNA molecules were recently tested separately in two Tephritidae species, showing limited effectiveness [1,2]. In contrast, we observed 79% mortality over seven days, which was associated with a decrease in mRNA levels of the three targeted genes. As expected, we also observed a reduction in dsRNA degradation following RNAi against nucleases. This research illustrates the potential of utilizing molecules as pesticides to achieve mortality rates in Medfly adults by targeting crucial genes and intestinal nucleases. Furthermore, it underscores the importance of exploring RNAi-based approaches for pest management","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141934544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
bioRxiv - Genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1