首页 > 最新文献

Journal of Cloud Computing最新文献

英文 中文
ABWOA: adaptive boundary whale optimization algorithm for large-scale digital twin network construction ABWOA:大规模数字孪生网络构建的自适应边界鲸优化算法
Pub Date : 2024-05-25 DOI: 10.1186/s13677-024-00667-z
Hao Feng, Kun Cao, Gan Huang, Hao Liu
Digital twin network (DTN) as an emerging network paradigm, have garnered growing attention. For large-scale networks, a crucial problem is how to effectively map physical networks onto the infrastructure platform of DTN. To address this issue, we propose a heuristic method of the adaptive boundary whale optimization algorithm (ABWOA) to solve the digital twin network construction problem, improving the efficiency and reducing operational costs of DTN. Extensive comparison experiments are conducted between ABWOA and various algorithms such as genetic algorithm, particle swarm optimization, artificial bee colony, differential evolution algorithm, moth search algorithm and original whale optimization algorithm. The experimental results show that ABWOA is superior to other algorithms in terms of solution quality, convergence speed, and time cost. It can solve the digital twin network construction problem more effectively.
数字孪生网络(DTN)作为一种新兴的网络范例,已引起越来越多的关注。对于大规模网络而言,如何有效地将物理网络映射到 DTN 的基础设施平台上是一个关键问题。针对这一问题,我们提出了一种启发式方法--自适应边界鲸优化算法(ABWOA)来解决数字孪生网络构建问题,从而提高 DTN 的效率并降低运营成本。ABWOA与遗传算法、粒子群优化算法、人工蜂群算法、差分进化算法、飞蛾搜索算法、原鲸优化算法等多种算法进行了广泛的对比实验。实验结果表明,ABWOA 在求解质量、收敛速度和时间成本方面都优于其他算法。它能更有效地解决数字孪生网络构建问题。
{"title":"ABWOA: adaptive boundary whale optimization algorithm for large-scale digital twin network construction","authors":"Hao Feng, Kun Cao, Gan Huang, Hao Liu","doi":"10.1186/s13677-024-00667-z","DOIUrl":"https://doi.org/10.1186/s13677-024-00667-z","url":null,"abstract":"Digital twin network (DTN) as an emerging network paradigm, have garnered growing attention. For large-scale networks, a crucial problem is how to effectively map physical networks onto the infrastructure platform of DTN. To address this issue, we propose a heuristic method of the adaptive boundary whale optimization algorithm (ABWOA) to solve the digital twin network construction problem, improving the efficiency and reducing operational costs of DTN. Extensive comparison experiments are conducted between ABWOA and various algorithms such as genetic algorithm, particle swarm optimization, artificial bee colony, differential evolution algorithm, moth search algorithm and original whale optimization algorithm. The experimental results show that ABWOA is superior to other algorithms in terms of solution quality, convergence speed, and time cost. It can solve the digital twin network construction problem more effectively.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards optimized scheduling and allocation of heterogeneous resource via graph-enhanced EPSO algorithm 通过图增强型 EPSO 算法实现异构资源的优化调度和分配
Pub Date : 2024-05-23 DOI: 10.1186/s13677-024-00670-4
Zhen Zhang, Chen Xu, Shaohua Xu, Long Huang, Jinyu Zhang
{"title":"Towards optimized scheduling and allocation of heterogeneous resource via graph-enhanced EPSO algorithm","authors":"Zhen Zhang, Chen Xu, Shaohua Xu, Long Huang, Jinyu Zhang","doi":"10.1186/s13677-024-00670-4","DOIUrl":"https://doi.org/10.1186/s13677-024-00670-4","url":null,"abstract":"","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"20 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141107405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distance optimization and directional overcurrent relay coordination using edge-powered biogeography-genetic algorithms 利用边缘动力生物地理遗传算法进行距离优化和定向过流继电器协调
Pub Date : 2024-05-23 DOI: 10.1186/s13677-024-00672-2
Mohammadreza Aminian, M. J. Shahbazzadeh, Mahdiyeh Eslami
{"title":"Distance optimization and directional overcurrent relay coordination using edge-powered biogeography-genetic algorithms","authors":"Mohammadreza Aminian, M. J. Shahbazzadeh, Mahdiyeh Eslami","doi":"10.1186/s13677-024-00672-2","DOIUrl":"https://doi.org/10.1186/s13677-024-00672-2","url":null,"abstract":"","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"3 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141105218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Privacy-preserving sports data fusion and prediction with smart devices in distributed environment 利用分布式环境中的智能设备进行隐私保护体育数据融合与预测
Pub Date : 2024-05-21 DOI: 10.1186/s13677-024-00671-3
Ping Liu, Xiang Li, Bin Zang, Guoyan Diao
{"title":"Privacy-preserving sports data fusion and prediction with smart devices in distributed environment","authors":"Ping Liu, Xiang Li, Bin Zang, Guoyan Diao","doi":"10.1186/s13677-024-00671-3","DOIUrl":"https://doi.org/10.1186/s13677-024-00671-3","url":null,"abstract":"","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"114 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141116029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topic and knowledge-enhanced modeling for edge-enabled IoT user identity linkage across social networks 针对边缘物联网用户身份跨社交网络链接的主题和知识增强建模
Pub Date : 2024-05-21 DOI: 10.1186/s13677-024-00659-z
Rui Huang, Tinghuai Ma, Huan Rong, Kai Huang, Nan Bi, Ping Liu, Tao Du
{"title":"Topic and knowledge-enhanced modeling for edge-enabled IoT user identity linkage across social networks","authors":"Rui Huang, Tinghuai Ma, Huan Rong, Kai Huang, Nan Bi, Ping Liu, Tao Du","doi":"10.1186/s13677-024-00659-z","DOIUrl":"https://doi.org/10.1186/s13677-024-00659-z","url":null,"abstract":"","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"78 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141116951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum support vector machine for forecasting house energy consumption: a comparative study with deep learning models 用于预测房屋能耗的量子支持向量机:与深度学习模型的比较研究
Pub Date : 2024-05-20 DOI: 10.1186/s13677-024-00669-x
Karan Kumar K, Mounica Nutakki, Suprabhath Koduru, S. Mandava
{"title":"Quantum support vector machine for forecasting house energy consumption: a comparative study with deep learning models","authors":"Karan Kumar K, Mounica Nutakki, Suprabhath Koduru, S. Mandava","doi":"10.1186/s13677-024-00669-x","DOIUrl":"https://doi.org/10.1186/s13677-024-00669-x","url":null,"abstract":"","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"7 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141119837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing multimedia management: cloud-based movie type recognition with hybrid deep learning architecture 加强多媒体管理:基于云的混合深度学习架构的电影类型识别
Pub Date : 2024-05-17 DOI: 10.1186/s13677-024-00668-y
Fangru Lin, Jie Yuan, Zhiwei Chen, Maryam Abiri
{"title":"Enhancing multimedia management: cloud-based movie type recognition with hybrid deep learning architecture","authors":"Fangru Lin, Jie Yuan, Zhiwei Chen, Maryam Abiri","doi":"10.1186/s13677-024-00668-y","DOIUrl":"https://doi.org/10.1186/s13677-024-00668-y","url":null,"abstract":"","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"70 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MTG_CD: Multi-scale learnable transformation graph for fault classification and diagnosis in microservices MTG_CD:用于微服务故障分类和诊断的多尺度可学习转换图
Pub Date : 2024-05-15 DOI: 10.1186/s13677-024-00666-0
Juan Chen, Rui Zhang, Peng Chen, Jianhua Ren, Zongling Wu, Yang Wang, Xi Li, Ling Xiong
The rapid advancement of microservice architecture in the cloud has led to the necessity of effectively detecting, classifying, and diagnosing run failures in microservice applications. Due to the high dynamics of cloud environments and the complex dependencies between microservices, it is challenging to achieve robust real-time system fault identification. This paper proposes an interpretable fault diagnosis framework tailored for microservice architecture, namely Multi-scale Learnable Transformation Graph for Fault Classification and Diagnosis(MTG_CD). Firstly, we employ multi-scale neural transformation and graph structure adjacency matrix learning to enhance data diversity while extracting temporal-structural features from system monitoring metrics Secondly, a graph convolutional network (GCN) is utilized to fuse the extracted temporal-structural features in a multi-feature modeling approach, which helps to improve the accuracy of anomaly detection. To identify the root cause of system faults, we finally conduct a coarse-grained level diagnosis and exploration after obtaining the results of classifying the fault data. We evaluate the performance of MTG_CD on the microservice benchmark SockShop, demonstrating its superiority over several baseline methods in detecting CPU usage overhead, memory leak, and network delay faults. The average macro F1 score improves by 14.05%.
云计算中微服务架构的快速发展导致了有效检测、分类和诊断微服务应用程序运行故障的必要性。由于云环境的高动态性和微服务之间的复杂依赖性,实现稳健的实时系统故障识别具有挑战性。本文针对微服务架构提出了一种可解释的故障诊断框架,即用于故障分类和诊断的多尺度可学习转换图(Multi-scale Learnable Transformation Graph for Fault Classification and Diagnosis,MTG_CD)。首先,我们利用多尺度神经变换和图结构邻接矩阵学习来增强数据的多样性,同时从系统监控指标中提取时间结构特征;其次,利用图卷积网络(GCN)将提取的时间结构特征融合到多特征建模方法中,这有助于提高异常检测的准确性。为了找出系统故障的根本原因,我们在获得故障数据分类结果后,最终进行粗粒度诊断和探索。我们在微服务基准 SockShop 上评估了 MTG_CD 的性能,证明它在检测 CPU 使用开销、内存泄漏和网络延迟故障方面优于几种基准方法。平均宏 F1 分数提高了 14.05%。
{"title":"MTG_CD: Multi-scale learnable transformation graph for fault classification and diagnosis in microservices","authors":"Juan Chen, Rui Zhang, Peng Chen, Jianhua Ren, Zongling Wu, Yang Wang, Xi Li, Ling Xiong","doi":"10.1186/s13677-024-00666-0","DOIUrl":"https://doi.org/10.1186/s13677-024-00666-0","url":null,"abstract":"The rapid advancement of microservice architecture in the cloud has led to the necessity of effectively detecting, classifying, and diagnosing run failures in microservice applications. Due to the high dynamics of cloud environments and the complex dependencies between microservices, it is challenging to achieve robust real-time system fault identification. This paper proposes an interpretable fault diagnosis framework tailored for microservice architecture, namely Multi-scale Learnable Transformation Graph for Fault Classification and Diagnosis(MTG_CD). Firstly, we employ multi-scale neural transformation and graph structure adjacency matrix learning to enhance data diversity while extracting temporal-structural features from system monitoring metrics Secondly, a graph convolutional network (GCN) is utilized to fuse the extracted temporal-structural features in a multi-feature modeling approach, which helps to improve the accuracy of anomaly detection. To identify the root cause of system faults, we finally conduct a coarse-grained level diagnosis and exploration after obtaining the results of classifying the fault data. We evaluate the performance of MTG_CD on the microservice benchmark SockShop, demonstrating its superiority over several baseline methods in detecting CPU usage overhead, memory leak, and network delay faults. The average macro F1 score improves by 14.05%.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recognizing online video genres using ensemble deep convolutional learning for digital media service management 利用集合深度卷积学习识别在线视频类型,促进数字媒体服务管理
Pub Date : 2024-05-14 DOI: 10.1186/s13677-024-00664-2
Yuwen Shao, Na Guo
It's evident that streaming services increasingly seek to automate the generation of film genres, a factor profoundly shaping a film's structure and target audience. Integrating a hybrid convolutional network into service management emerges as a valuable technique for discerning various video formats. This innovative approach not only categorizes video content but also facilitates personalized recommendations, content filtering, and targeted advertising. Given the tendency of films to blend elements from multiple genres, there is a growing demand for a real-time video classification system integrated with social media networks. Leveraging deep learning, we introduce a novel architecture for identifying and categorizing video film genres. Our approach utilizes an ensemble gated recurrent unit (ensGRU) neural network, effectively analyzing motion, spatial information, and temporal relationships. Additionally,w we present a sophisticated deep neural network incorporating the recommended GRU for video genre classification. The adoption of a dual-model strategy allows the network to capture robust video representations, leading to exceptional performance in multi-class movie classification. Evaluations conducted on well-known datasets, such as the LMTD dataset, consistently demonstrate the high performance of the proposed GRU model. This integrated model effectively extracts and learns features related to motion, spatial location, and temporal dynamics. Furthermore, the effectiveness of the proposed technique is validated using an engine block assembly dataset. Following the implementation of the enhanced architecture, the movie genre categorization system exhibits substantial improvements on the LMTD dataset, outperforming advanced models while requiring less computing power. With an impressive F1 score of 0.9102 and an accuracy rate of 94.4%, the recommended model consistently delivers outstanding results. Comparative evaluations underscore the accuracy and effectiveness of our proposed model in accurately identifying and classifying video genres, effectively extracting contextual information from video descriptors. Additionally, by integrating edge processing capabilities, our system achieves optimal real-time video processing and analysis, further enhancing its performance and relevance in dynamic media environments.
很明显,流媒体服务越来越多地寻求自动生成电影类型,而这一因素深刻影响着电影的结构和目标受众。将混合卷积网络整合到服务管理中,成为辨别各种视频格式的重要技术。这种创新方法不仅能对视频内容进行分类,还能为个性化推荐、内容过滤和定向广告提供便利。鉴于电影往往融合了多种类型的元素,人们对与社交媒体网络相结合的实时视频分类系统的需求日益增长。利用深度学习,我们推出了一种用于识别和分类视频电影类型的新型架构。我们的方法利用集合门控递归单元(ensGRU)神经网络,有效地分析了运动、空间信息和时间关系。此外,w 我们还提出了一种复杂的深度神经网络,其中包含用于视频类型分类的推荐 GRU。双模型策略的采用使网络能够捕捉到稳健的视频表征,从而在多类电影分类中表现出卓越的性能。在 LMTD 数据集等知名数据集上进行的评估一致证明了所建议的 GRU 模型的高性能。这种集成模型能有效地提取和学习与运动、空间位置和时间动态相关的特征。此外,还使用发动机缸体装配数据集验证了所提技术的有效性。在实施增强型架构后,电影类型分类系统在 LMTD 数据集上有了大幅改进,性能超过了先进的模型,同时所需的计算能力也更低。推荐模型的 F1 得分为 0.9102,准确率为 94.4%,成绩斐然。对比评估结果表明,我们推荐的模型在准确识别和分类视频流派、从视频描述符中有效提取上下文信息方面非常准确和有效。此外,通过集成边缘处理功能,我们的系统实现了最佳的实时视频处理和分析,进一步提高了其在动态媒体环境中的性能和相关性。
{"title":"Recognizing online video genres using ensemble deep convolutional learning for digital media service management","authors":"Yuwen Shao, Na Guo","doi":"10.1186/s13677-024-00664-2","DOIUrl":"https://doi.org/10.1186/s13677-024-00664-2","url":null,"abstract":"It's evident that streaming services increasingly seek to automate the generation of film genres, a factor profoundly shaping a film's structure and target audience. Integrating a hybrid convolutional network into service management emerges as a valuable technique for discerning various video formats. This innovative approach not only categorizes video content but also facilitates personalized recommendations, content filtering, and targeted advertising. Given the tendency of films to blend elements from multiple genres, there is a growing demand for a real-time video classification system integrated with social media networks. Leveraging deep learning, we introduce a novel architecture for identifying and categorizing video film genres. Our approach utilizes an ensemble gated recurrent unit (ensGRU) neural network, effectively analyzing motion, spatial information, and temporal relationships. Additionally,w we present a sophisticated deep neural network incorporating the recommended GRU for video genre classification. The adoption of a dual-model strategy allows the network to capture robust video representations, leading to exceptional performance in multi-class movie classification. Evaluations conducted on well-known datasets, such as the LMTD dataset, consistently demonstrate the high performance of the proposed GRU model. This integrated model effectively extracts and learns features related to motion, spatial location, and temporal dynamics. Furthermore, the effectiveness of the proposed technique is validated using an engine block assembly dataset. Following the implementation of the enhanced architecture, the movie genre categorization system exhibits substantial improvements on the LMTD dataset, outperforming advanced models while requiring less computing power. With an impressive F1 score of 0.9102 and an accuracy rate of 94.4%, the recommended model consistently delivers outstanding results. Comparative evaluations underscore the accuracy and effectiveness of our proposed model in accurately identifying and classifying video genres, effectively extracting contextual information from video descriptors. Additionally, by integrating edge processing capabilities, our system achieves optimal real-time video processing and analysis, further enhancing its performance and relevance in dynamic media environments.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bizarre synthesized cascaded optimized predictor (BizSCOP) model for enhancing security in cloud systems 用于增强云系统安全性的奇异合成级联优化预测器(BizSCOP)模型
Pub Date : 2024-05-14 DOI: 10.1186/s13677-024-00657-1
R. Julian Menezes, P. Jesu Jayarin, A. Chandra Sekar
Due to growing network data dissemination in cloud, the elasticity, pay as you go options, globally accessible facilities, and security of networks have become increasingly important in today's world. Cloud service providers, including AWS, Azure, GCP, and others, facilitate worldwide expansion within minutes by offering decentralized communication network functions, hence providing security to cloud is still remains a challenging task. This paper aims to introduce and evaluate the Biz-SCOP model, a novel intrusion detection system developed for cloud security. The research addresses the pressing need for effective intrusion detection in cloud environments by combining hybrid optimization techniques and advanced deep learning methodologies. The study employs prominent intrusion datasets, including CSE-CIC-IDS 2018, CIC-IDS 2017, and a cloud intrusion dataset, to assess the proposed model's performance. The study's design involves implementing the Biz-SCOP model using Matlab 2019 software on a Windows 10 OS platform, utilizing 8 GB RAM and an Intel core i3 processor. The hybrid optimization approach, termed HyPSM, is employed for feature selection, enhancing the model's efficiency. Additionally, an intelligent deep learning model, C2AE, is introduced to discern friendly and hostile communication, contributing to accurate intrusion detection. Key findings indicate that the Biz-SCOP model outperforms existing intrusion detection systems, achieving notable accuracy (99.8%), precision (99.7%), F1-score (99.8%), and GEO (99.9%). The model excels in identifying various attack types, as demonstrated by robust ROC analysis. Interpretations and conclusions emphasize the significance of hybrid optimization and advanced deep learning techniques in enhancing intrusion detection system performance. The proposed model exhibits lower computational load, reduced false positives, ease of implementation, and improved accuracy, positioning it as a promising solution for cloud security.
由于云中的网络数据传播日益增长,网络的弹性、即用即付选项、全球访问设施和安全性在当今世界变得越来越重要。包括 AWS、Azure、GCP 等在内的云服务提供商通过提供分散的通信网络功能,可在几分钟内实现全球扩张,因此为云提供安全性仍然是一项具有挑战性的任务。本文旨在介绍和评估针对云安全开发的新型入侵检测系统--Biz-SCOP 模型。该研究通过结合混合优化技术和先进的深度学习方法,解决了云环境中有效入侵检测的迫切需求。研究采用了著名的入侵数据集,包括 CSE-CIC-IDS 2018、CIC-IDS 2017 和云入侵数据集,以评估所提出模型的性能。研究设计包括在 Windows 10 操作系统平台上使用 Matlab 2019 软件实现 Biz-SCOP 模型,使用 8 GB 内存和英特尔 core i3 处理器。混合优化方法(称为 HyPSM)被用于特征选择,从而提高了模型的效率。此外,还引入了智能深度学习模型 C2AE,以分辨友好和敌对通信,从而有助于准确检测入侵。主要研究结果表明,Biz-SCOP 模型优于现有的入侵检测系统,在准确率(99.8%)、精确度(99.7%)、F1 分数(99.8%)和 GEO(99.9%)方面都取得了显著成绩。稳健的 ROC 分析表明,该模型在识别各种攻击类型方面表现出色。解释和结论强调了混合优化和高级深度学习技术在提高入侵检测系统性能方面的重要性。所提出的模型具有计算负荷低、误报率低、易于实施和准确性高的特点,是云安全领域一个很有前途的解决方案。
{"title":"A bizarre synthesized cascaded optimized predictor (BizSCOP) model for enhancing security in cloud systems","authors":"R. Julian Menezes, P. Jesu Jayarin, A. Chandra Sekar","doi":"10.1186/s13677-024-00657-1","DOIUrl":"https://doi.org/10.1186/s13677-024-00657-1","url":null,"abstract":"Due to growing network data dissemination in cloud, the elasticity, pay as you go options, globally accessible facilities, and security of networks have become increasingly important in today's world. Cloud service providers, including AWS, Azure, GCP, and others, facilitate worldwide expansion within minutes by offering decentralized communication network functions, hence providing security to cloud is still remains a challenging task. This paper aims to introduce and evaluate the Biz-SCOP model, a novel intrusion detection system developed for cloud security. The research addresses the pressing need for effective intrusion detection in cloud environments by combining hybrid optimization techniques and advanced deep learning methodologies. The study employs prominent intrusion datasets, including CSE-CIC-IDS 2018, CIC-IDS 2017, and a cloud intrusion dataset, to assess the proposed model's performance. The study's design involves implementing the Biz-SCOP model using Matlab 2019 software on a Windows 10 OS platform, utilizing 8 GB RAM and an Intel core i3 processor. The hybrid optimization approach, termed HyPSM, is employed for feature selection, enhancing the model's efficiency. Additionally, an intelligent deep learning model, C2AE, is introduced to discern friendly and hostile communication, contributing to accurate intrusion detection. Key findings indicate that the Biz-SCOP model outperforms existing intrusion detection systems, achieving notable accuracy (99.8%), precision (99.7%), F1-score (99.8%), and GEO (99.9%). The model excels in identifying various attack types, as demonstrated by robust ROC analysis. Interpretations and conclusions emphasize the significance of hybrid optimization and advanced deep learning techniques in enhancing intrusion detection system performance. The proposed model exhibits lower computational load, reduced false positives, ease of implementation, and improved accuracy, positioning it as a promising solution for cloud security.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":"24 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140940610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Cloud Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1