Pub Date : 2026-01-07DOI: 10.1016/j.jmaa.2026.130396
Zhijun Zhang
This paper is mainly concerned with the global and boundary asymptotic behavior of convex large classical solutions to the Monge-Ampère equation , , where Ω is a strictly convex and bounded smooth domain in with , , with , or , and with for some and . We completely describe how and ∂Ω affect the asymptotic behavior of solutions to such problem.
{"title":"Asymptotic behavior of large solutions to a class of Monge-Ampère equations with nonlinear gradient terms","authors":"Zhijun Zhang","doi":"10.1016/j.jmaa.2026.130396","DOIUrl":"10.1016/j.jmaa.2026.130396","url":null,"abstract":"<div><div>This paper is mainly concerned with the global and boundary asymptotic behavior of convex large classical solutions to the Monge-Ampère equation <span><math><mrow><mi>det</mi></mrow><mspace></mspace><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>+</mo><mi>b</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></math></span>, <span><math><mi>x</mi><mo>∈</mo><mi>Ω</mi></math></span>, where Ω is a strictly convex and bounded smooth domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, <span><math><mi>q</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>s</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> with <span><math><mi>p</mi><mo>></mo><mn>0</mn></math></span>, or <span><math><mi>f</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><mi>exp</mi><mo></mo><mi>s</mi></math></span>, and <span><math><mi>b</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> with <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>d</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><mi>b</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>d</mi></mrow><mrow><mi>α</mi></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi></math></span> for some <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> and <span><math><mi>α</mi><mo>≥</mo><mi>q</mi><mo>−</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. We completely describe how <span><math><mi>n</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>,</mo><mi>α</mi></math></span> and ∂Ω affect the asymptotic behavior of solutions to such problem.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"558 1","pages":"Article 130396"},"PeriodicalIF":1.2,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145939667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-07DOI: 10.1016/j.jmaa.2026.130393
Jianwen Zhou, Puming Yang, Yuanyang Yu
<div><div>In this paper, we study a type of <em>p</em>-Laplacian equation<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>λ</mi><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> with the prescribed mass<span><span><span><math><msup><mrow><mo>(</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>=</mo><mi>c</mi><mo>></mo><mn>0</mn></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi></math></span>, <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>k</mi></mrow></msup><mspace></mspace><mo>(</mo><mi>k</mi><mo>></mo><mn>1</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><mtext>div</mtext><mrow><mo>(</mo><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo></mrow></math></span> is the <em>p</em>-Laplacian of <em>u</em>, <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> is Lagrange multiplier. We assume that <em>f</em> is odd and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-supercritical. By some constrained minimization methods, we obtain a local minimizer <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> which is a ground state for small mass <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> and we describe a mass collapse behavior of the minimizers as <span><math><mi>c</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>. Furthermore, under some assumptions of <em>k</em>, we study the asymptotic behavior of the corresponding Lagrange multiplier as <span><math><mi>c</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>. In addition, by a minimax approach based on the <em>σ</em>-homotopy stable family of the working space, we obtain a mountain pass type solution <span><math><msub><mrow><mover><mrow><mi>u</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mro
{"title":"Normalized solutions for the p-Laplacian equations with potentials and general nonlinearities","authors":"Jianwen Zhou, Puming Yang, Yuanyang Yu","doi":"10.1016/j.jmaa.2026.130393","DOIUrl":"10.1016/j.jmaa.2026.130393","url":null,"abstract":"<div><div>In this paper, we study a type of <em>p</em>-Laplacian equation<span><span><span><math><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>+</mo><mi>λ</mi><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span></span></span> with the prescribed mass<span><span><span><math><msup><mrow><mo>(</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><msup><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>=</mo><mi>c</mi><mo>></mo><mn>0</mn></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi></math></span>, <span><math><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>R</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span>, <span><math><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>x</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>k</mi></mrow></msup><mspace></mspace><mo>(</mo><mi>k</mi><mo>></mo><mn>1</mn><mo>)</mo></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>u</mi><mo>=</mo><mtext>div</mtext><mrow><mo>(</mo><msup><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo></mrow></math></span> is the <em>p</em>-Laplacian of <em>u</em>, <span><math><mi>λ</mi><mo>∈</mo><mi>R</mi></math></span> is Lagrange multiplier. We assume that <em>f</em> is odd and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-supercritical. By some constrained minimization methods, we obtain a local minimizer <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> which is a ground state for small mass <span><math><mi>c</mi><mo>></mo><mn>0</mn></math></span> and we describe a mass collapse behavior of the minimizers as <span><math><mi>c</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>. Furthermore, under some assumptions of <em>k</em>, we study the asymptotic behavior of the corresponding Lagrange multiplier as <span><math><mi>c</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></math></span>. In addition, by a minimax approach based on the <em>σ</em>-homotopy stable family of the working space, we obtain a mountain pass type solution <span><math><msub><mrow><mover><mrow><mi>u</mi></mrow><mrow><mo>¯</mo></mrow></mover></mrow><mro","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"558 1","pages":"Article 130393"},"PeriodicalIF":1.2,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145939708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-07DOI: 10.1016/j.jmaa.2026.130391
Sedef Özcan
This paper investigates fractional torsional rigidity on compact, connected metric graphs, a novel extension of the classical concept to nonlocal operators. The fractional torsional rigidity is defined as the -norm of the fractional torsion function, which is the unique solution to the boundary value problem on a graph with zero boundary conditions at Dirichlet vertices. We establish a variational characterization for this quantity, which serves as a powerful tool to prove a series of results on its geometric dependence. By applying surgery principles, we derive explicit upper and lower bounds, indicating that the interval serves as an upper comparison case and the flower graph as a lower one among graphs of fixed total length. These findings mirror the classical case, yet the methods required are substantially different due to the nonlocal nature of the fractional Laplacian.
{"title":"Fractional torsional rigidity of compact metric graphs","authors":"Sedef Özcan","doi":"10.1016/j.jmaa.2026.130391","DOIUrl":"10.1016/j.jmaa.2026.130391","url":null,"abstract":"<div><div>This paper investigates fractional torsional rigidity on compact, connected metric graphs, a novel extension of the classical concept to nonlocal operators. The fractional torsional rigidity is defined as the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm of the fractional torsion function, which is the unique solution to the boundary value problem <span><math><msup><mrow><mo>(</mo><mo>−</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>α</mi></mrow></msup><msub><mrow><mi>u</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> on a graph <span><math><mi>G</mi></math></span> with zero boundary conditions at Dirichlet vertices. We establish a variational characterization for this quantity, which serves as a powerful tool to prove a series of results on its geometric dependence. By applying surgery principles, we derive explicit upper and lower bounds, indicating that the interval serves as an upper comparison case and the flower graph as a lower one among graphs of fixed total length. These findings mirror the classical case, yet the methods required are substantially different due to the nonlocal nature of the fractional Laplacian.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"557 2","pages":"Article 130391"},"PeriodicalIF":1.2,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145925900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-07DOI: 10.1016/j.jmaa.2026.130399
Min Li
In this paper, we investigate the viscosity vanishing limit of the Cauchy problem of the Keller-Segel-Navier-Stokes system with consumption type in the two-dimensional and three-dimensional setting as . Precisely, we reveal that the solutions of the Keller-Segel-Navier-Stokes system with viscosity will converge to the corresponding solution of the partially inviscid Keller-Segel-Euler system, and establish an algebraic convergence rate of the viscosity vanishing limit for general initial data by developing a series of subtle coupled functional evolution estimates.
{"title":"The convergence rate of the viscosity vanishing limit for a Keller-Segel-fluid system of consumption type","authors":"Min Li","doi":"10.1016/j.jmaa.2026.130399","DOIUrl":"10.1016/j.jmaa.2026.130399","url":null,"abstract":"<div><div>In this paper, we investigate the viscosity vanishing limit of the Cauchy problem of the Keller-Segel-Navier-Stokes system with consumption type<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>⋅</mo><mi>∇</mi><msub><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msub></mtd><mtd><mo>=</mo><mi>ϵ</mi><mi>Δ</mi><msub><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mi>∇</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>)</mo><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>⋅</mo><mi>∇</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>ϵ</mi></mrow></msub></mtd><mtd><mo>=</mo><mi>Δ</mi><msub><mrow><mi>c</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>−</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>+</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>⋅</mo><mi>∇</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>+</mo><mi>∇</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>ϵ</mi></mrow></msub></mtd><mtd><mo>=</mo><mi>ϵ</mi><mi>Δ</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mi>∇</mi><mi>ϕ</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>∇</mi><mo>⋅</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ϵ</mi></mrow></msub></mtd><mtd><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow></math></span></span></span> in the two-dimensional and three-dimensional setting as <span><math><mi>ϵ</mi><mo>→</mo><mn>0</mn></math></span>. Precisely, we reveal that the solutions of the Keller-Segel-Navier-Stokes system with viscosity will converge to the corresponding solution of the partially inviscid Keller-Segel-Euler system, and establish an algebraic convergence rate of the viscosity vanishing limit for general initial data by developing a series of subtle coupled functional evolution estimates.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"558 2","pages":"Article 130399"},"PeriodicalIF":1.2,"publicationDate":"2026-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-06DOI: 10.1016/j.jmaa.2025.130383
Julio H. Toloza , Alfredo Uribe
We obtain sharp asymptotic formulas for the eigenvalues and norming constants of Sturm-Liouville operators associated with the differential expression together with the boundary condition , , where and .
{"title":"Asymptotics of the spectral data of perturbed Stark operators on the half-line with mixed boundary conditions","authors":"Julio H. Toloza , Alfredo Uribe","doi":"10.1016/j.jmaa.2025.130383","DOIUrl":"10.1016/j.jmaa.2025.130383","url":null,"abstract":"<div><div>We obtain sharp asymptotic formulas for the eigenvalues and norming constants of Sturm-Liouville operators associated with the differential expression<span><span><span><math><mo>−</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mi>d</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>+</mo><mi>x</mi><mo>+</mo><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo></math></span></span></span> together with the boundary condition <span><math><msup><mrow><mi>φ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mn>0</mn><mo>)</mo><mo>−</mo><mi>b</mi><mi>φ</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>∈</mo><mi>R</mi></math></span>, where<span><span><span><math><mi>q</mi><mo>∈</mo><mrow><mo>{</mo><mi>p</mi><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo><mo>:</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>∈</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub><mo>,</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo></mrow><mrow><mi>r</mi></mrow></msup><mi>d</mi><mi>x</mi><mo>)</mo><mo>}</mo></mrow></math></span></span></span> and <span><math><mi>r</mi><mo>></mo><mn>1</mn></math></span>.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"558 2","pages":"Article 130383"},"PeriodicalIF":1.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-06DOI: 10.1016/j.jmaa.2025.130384
Nagaiah Chamakuri , Volker John , Nishant Ranwan
A semi-discrete finite element approximation of a fluid-structure interaction problem is analyzed. The fluid part is modeled by the incompressible Navier–Stokes equations. Both the fluid and the solid subdomains are considered to be stationary. In the discretization of the Navier–Stokes equations, a grad-div stabilization term is included, and a special form of the convective term is used. The existence of a finite element solution is shown, a priori estimates are proved, and a finite element error estimate is derived. The dependency of the error bounds on the coefficients of the problem is tracked. Error bounds are obtained whose constants do not depend on the Reynolds number.
{"title":"Finite element analysis of a coupled Navier–Stokes flow – linear elasticity problem","authors":"Nagaiah Chamakuri , Volker John , Nishant Ranwan","doi":"10.1016/j.jmaa.2025.130384","DOIUrl":"10.1016/j.jmaa.2025.130384","url":null,"abstract":"<div><div>A semi-discrete finite element approximation of a fluid-structure interaction problem is analyzed. The fluid part is modeled by the incompressible Navier–Stokes equations. Both the fluid and the solid subdomains are considered to be stationary. In the discretization of the Navier–Stokes equations, a grad-div stabilization term is included, and a special form of the convective term is used. The existence of a finite element solution is shown, a priori estimates are proved, and a finite element error estimate is derived. The dependency of the error bounds on the coefficients of the problem is tracked. Error bounds are obtained whose constants do not depend on the Reynolds number.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"558 1","pages":"Article 130384"},"PeriodicalIF":1.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145978194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-06DOI: 10.1016/j.jmaa.2025.130388
Zhiyuan Wen, Lijuan Zhou
In this paper, we will consider a boundary value problem of the diffusive logistic equation which is defined on the N-dimensional unit ball. The boundary conditions include not only the Neumann condition on the outer sphere but also an interior jump condition involving the normal derivatives on a sphere located within the ball. To establish the existence and uniqueness of the solution, we first analyze an approximate problem associated with the jump condition. We will show that this approximate problem admits a unique solution, which can be expressed as a power series in terms of the parameter in the jump condition. Secondly, we will show this power series converges to the unique solution of the original jump problem.
{"title":"Existence of solutions to diffusive logistic models with transmission conditions on normal derivatives","authors":"Zhiyuan Wen, Lijuan Zhou","doi":"10.1016/j.jmaa.2025.130388","DOIUrl":"10.1016/j.jmaa.2025.130388","url":null,"abstract":"<div><div>In this paper, we will consider a boundary value problem of the diffusive logistic equation which is defined on the <em>N</em>-dimensional unit ball. The boundary conditions include not only the Neumann condition on the outer sphere but also an interior jump condition involving the normal derivatives on a sphere located within the ball. To establish the existence and uniqueness of the solution, we first analyze an approximate problem associated with the jump condition. We will show that this approximate problem admits a unique solution, which can be expressed as a power series in terms of the parameter in the jump condition. Secondly, we will show this power series converges to the unique solution of the original jump problem.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"558 2","pages":"Article 130388"},"PeriodicalIF":1.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-06DOI: 10.1016/j.jmaa.2025.130385
Stefania M. Demaria, Fernando D. Mazzone
We apply the direct method of the calculus of variations to prove existence of periodic solutions for differential inclusion systems involving an anisotropic ϕ-Laplacian operator.
我们应用变分法的直接方法证明了涉及各向异性的 -拉普拉斯算子的微分包含系统周期解的存在性。
{"title":"On the existence of periodic solutions for ϕ-Laplacian inclusion systems","authors":"Stefania M. Demaria, Fernando D. Mazzone","doi":"10.1016/j.jmaa.2025.130385","DOIUrl":"10.1016/j.jmaa.2025.130385","url":null,"abstract":"<div><div>We apply the direct method of the calculus of variations to prove existence of periodic solutions for differential inclusion systems involving an anisotropic <em>ϕ</em>-Laplacian operator.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"558 1","pages":"Article 130385"},"PeriodicalIF":1.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145978272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this manuscript, an attempt has been made to understand the effects of prey-taxis on the existence of global-in-time solutions and dynamics in an eco-epidemiological model, particularly under the influence of slow dispersal characterized by the p-Laplacian operator and enhanced mortality of the infected prey, subject to specific assumptions on the taxis sensitivity functions. We prove the global existence of classical solutions when the infected prey undergoes random motion and exhibits standard mortality. Under the assumption that the infected prey disperses slowly and exhibits enhanced mortality, we prove the global existence of weak solutions. Following a detailed mathematical investigation of the proposed model, we shift our focus to analyze the stability of the positive equilibrium in the case where all species exhibit linear diffusion, the infected prey experiences standard mortality, and the predator exhibits taxis exclusively toward the infected prey. Within this framework, we establish the occurrence of a steady-state bifurcation. Thereafter, we focus on the long-term dynamics of the system and analytically study the finite-time extinction of the infected prey under enhanced mortality, covering both the standard Laplacian and p-Laplacian cases. Numerical simulations are then carried out to illustrate the dynamical behavior, with particular emphasis on the finite-time extinction phenomenon. Our results have large-scale applications to biological invasions and biological control of pests, under the prevalence of disease in the pest population.
{"title":"An eco-epidemiological model with prey-taxis and “slow” diffusion: global existence, boundedness and novel dynamics","authors":"Ranjit Kumar Upadhyay , Rana D. Parshad , Namrata Mani Tripathi , Nishith Mohan","doi":"10.1016/j.jmaa.2025.130387","DOIUrl":"10.1016/j.jmaa.2025.130387","url":null,"abstract":"<div><div>In this manuscript, an attempt has been made to understand the effects of prey-taxis on the existence of global-in-time solutions and dynamics in an eco-epidemiological model, particularly under the influence of slow dispersal characterized by the <em>p</em>-Laplacian operator and enhanced mortality of the infected prey, subject to specific assumptions on the taxis sensitivity functions. We prove the global existence of classical solutions when the infected prey undergoes random motion and exhibits standard mortality. Under the assumption that the infected prey disperses slowly and exhibits enhanced mortality, we prove the global existence of weak solutions. Following a detailed mathematical investigation of the proposed model, we shift our focus to analyze the stability of the positive equilibrium in the case where all species exhibit linear diffusion, the infected prey experiences standard mortality, and the predator exhibits taxis exclusively toward the infected prey. Within this framework, we establish the occurrence of a steady-state bifurcation. Thereafter, we focus on the long-term dynamics of the system and analytically study the finite-time extinction of the infected prey under enhanced mortality, covering both the standard Laplacian and <em>p</em>-Laplacian cases. Numerical simulations are then carried out to illustrate the dynamical behavior, with particular emphasis on the finite-time extinction phenomenon. Our results have large-scale applications to biological invasions and biological control of pests, under the prevalence of disease in the pest population.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"558 1","pages":"Article 130387"},"PeriodicalIF":1.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145939706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-05DOI: 10.1016/j.jmaa.2025.130382
Fatma Zürnacı-Yetiş , Muaz Seydaoğlu
Operator splitting is a powerful method for the numerical investigation of complicated problems. The basic idea behind operator splitting methods is to split a problem into simpler sub-problems. This study focuses on analyzing the convergence of operator splitting methods applied to the dispersive-Fisher equation. The equation is initially split into unbounded linear and bounded nonlinear components. Operator splitting techniques of the Lie-Trotter and Strang types are then applied to the equation. Local error bounds are derived using an approach based on the differential theory of operators in Banach space and the error terms of one- and two-dimensional numerical quadratures using Lie commutator bounds. Global error estimates are derived using Lady Windermere's fan argument. Finally, a numerical example is examined to confirm the expected rate of convergence.
{"title":"Analysis of operator splitting methods for the dispersive-Fisher equation","authors":"Fatma Zürnacı-Yetiş , Muaz Seydaoğlu","doi":"10.1016/j.jmaa.2025.130382","DOIUrl":"10.1016/j.jmaa.2025.130382","url":null,"abstract":"<div><div>Operator splitting is a powerful method for the numerical investigation of complicated problems. The basic idea behind operator splitting methods is to split a problem into simpler sub-problems. This study focuses on analyzing the convergence of operator splitting methods applied to the dispersive-Fisher equation. The equation is initially split into unbounded linear and bounded nonlinear components. Operator splitting techniques of the Lie-Trotter and Strang types are then applied to the equation. Local error bounds are derived using an approach based on the differential theory of operators in Banach space and the error terms of one- and two-dimensional numerical quadratures using Lie commutator bounds. Global error estimates are derived using Lady Windermere's fan argument. Finally, a numerical example is examined to confirm the expected rate of convergence.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"558 2","pages":"Article 130382"},"PeriodicalIF":1.2,"publicationDate":"2026-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145928545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}