{"title":"Optimized Stokes imaging for highly resolved optical speckle fields, part II: Optimal acquisition & estimation strategies","authors":"Jonathan Staes, Julien Fade","doi":"10.1364/josaa.516702","DOIUrl":"https://doi.org/10.1364/josaa.516702","url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140244098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
William A. Jarrett, Svetlana Avramov-Zamurovic, Joel M. Esposito, K. Peter Judd, and Charles Nelson
We generate an alphabet of spatially multiplexed Laguerre–Gaussian beams carrying orbital angular momentum, which are demultiplexed at reception by a convolutional neural network (CNN). In this investigation, a methodology for optimizing alphabet design for best classification rates is proposed, and three 256-symbol alphabets are designed for performance evaluation in optical turbulence. The beams were propagated in three environments: through underwater optical turbulence generated by Rayleigh–Bénard (RB) convection (C2n≅10−11m−2/3), through a simulated propagation path derived from the Nikishov spectrum (C2n≅10−13m−2/3), and through optical turbulence from a thermal point source located in a water tank (C2n
{"title":"Neural network classification of beams carrying orbital angular momentum after propagating through controlled experimentally generated optical turbulence","authors":"William A. Jarrett, Svetlana Avramov-Zamurovic, Joel M. Esposito, K. Peter Judd, and Charles Nelson","doi":"10.1364/josaa.515096","DOIUrl":"https://doi.org/10.1364/josaa.515096","url":null,"abstract":"We generate an alphabet of spatially multiplexed Laguerre–Gaussian beams carrying orbital angular momentum, which are demultiplexed at reception by a convolutional neural network (CNN). In this investigation, a methodology for optimizing alphabet design for best classification rates is proposed, and three 256-symbol alphabets are designed for performance evaluation in optical turbulence. The beams were propagated in three environments: through underwater optical turbulence generated by Rayleigh–Bénard (RB) convection (<span><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>C</span></span><span style=\"height: 1.86em; vertical-align: -0.64em;\"><span><span><span style=\"margin-bottom: -0.25em;\"><span><span>2</span></span></span></span></span><span><span><span style=\"margin-top: -0.85em;\"><span><span>n</span></span></span></span></span></span></span><span style=\"margin-left: 0.333em; margin-right: 0.333em;\">≅</span><span>1</span><span><span style=\"margin-right: 0.05em;\"><span>0</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>11</span></span></span><span style=\"width: 0.278em; height: 0em;\"></span><span><span style=\"margin-right: 0.05em;\"><span>m</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>2</span><span><span>/</span></span><span>3</span></span></span></span></span><span tabindex=\"0\"></span><script type=\"math/tex\">{C}_{n}^{2}cong 1{0}^{-11};{rm m}^{-2/3}</script></span>), through a simulated propagation path derived from the Nikishov spectrum (<span><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>C</span></span><span style=\"height: 1.86em; vertical-align: -0.64em;\"><span><span><span style=\"margin-bottom: -0.25em;\"><span><span>2</span></span></span></span></span><span><span><span style=\"margin-top: -0.85em;\"><span><span>n</span></span></span></span></span></span></span><span style=\"margin-left: 0.333em; margin-right: 0.333em;\">≅</span><span>1</span><span><span style=\"margin-right: 0.05em;\"><span>0</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>13</span></span></span><span style=\"width: 0.278em; height: 0em;\"></span><span><span style=\"margin-right: 0.05em;\"><span>m</span></span><span style=\"vertical-align: 0.5em;\"><span>−</span><span>2</span><span><span>/</span></span><span>3</span></span></span></span></span><span tabindex=\"0\"></span><script type=\"math/tex\">{C}_{n}^{2}cong 1{0}^{-13}; {rm m}^{-2/3}</script></span>), and through optical turbulence from a thermal point source located in a water tank (<span><span style=\"color: inherit;\"><span><span><span style=\"margin-right: 0.05em;\"><span>C</span></span><span style=\"height: 1.86em; vertical-align: -0.64em;\"><span><span><span style=\"margin-bottom: -0.25em;\"><span><span>2</span></span></span></span></span><span><span><span style=\"margin-top: -0.85em;\"><span><span>n</span></span></span></span></span></span></span><span style=\"margin-left: 0.333em; margin-right: 0.333em;","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
From the joint analysis of polarization and coherence properties of light, a remarkable concept referred to as polarization coherence frustration is introduced and analyzed. It is shown that two kinds of partially polarized and partially coherent light, with different levels of complexity, can be distinguished and that they mathematically correspond to different equivalence classes. On the one hand, light has polarization coherence properties that are not frustrated in a spatial domain D when there exists a configuration of local polarization devices at each location of the light field that allows the maximization of the modulus of the scalar degree of coherence between any couple of points in D. Two conditions are shown to hold for light to be polarization coherence unfrustrated and their physical interpretations are analyzed. On the other hand, if one of these conditions is not verified, polarization coherence frustration occurs. These notions are discussed in analogy with well-known concepts of frustration and gauge transformations developed in statistical physics for spin glasses. Their relevance in the field of statistical optics is demonstrated through different theoretical results and examples.
{"title":"Polarization coherence frustration","authors":"Philippe Réfrégier and Julien Fade","doi":"10.1364/josaa.515960","DOIUrl":"https://doi.org/10.1364/josaa.515960","url":null,"abstract":"From the joint analysis of polarization and coherence properties of light, a remarkable concept referred to as polarization coherence frustration is introduced and analyzed. It is shown that two kinds of partially polarized and partially coherent light, with different levels of complexity, can be distinguished and that they mathematically correspond to different equivalence classes. On the one hand, light has polarization coherence properties that are not frustrated in a spatial domain <span><span style=\"color: inherit;\"><span><span><span>D</span></span></span></span><script type=\"math/tex\">{cal D}</script></span> when there exists a configuration of local polarization devices at each location of the light field that allows the maximization of the modulus of the scalar degree of coherence between any couple of points in <span><span style=\"color: inherit;\"><span><span><span>D</span></span></span></span><script type=\"math/tex\">{cal D}</script></span>. Two conditions are shown to hold for light to be polarization coherence unfrustrated and their physical interpretations are analyzed. On the other hand, if one of these conditions is not verified, polarization coherence frustration occurs. These notions are discussed in analogy with well-known concepts of frustration and gauge transformations developed in statistical physics for spin glasses. Their relevance in the field of statistical optics is demonstrated through different theoretical results and examples.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng Huang, Chaozhen Ke, Xianyu Wu, Cuixia Guo, and Yu Liu
Most of the state-of-the-art defogging models presented in the literature assume that the attenuation coefficient of all spectral channels is constant, which inevitably leads to spectral distortion and information bias. To address this issue, this paper proposes a defogging method that takes into account the difference between the extinction coefficients of multispectral channels of light traveling through fog. Then the spatially distributed transmission map of each spectral channel is reconstructed to restore the fog-degraded images. The experimental results of various realistic complex scenes show that the proposed method has more outstanding advantages in restoring lost detail, compensating for degraded spectral information, and recognizing more targets hidden in uniform ground fog than state-of-the-art technologies. In addition, this work provides a method to characterize the intrinsic property of fog expressed as multispectral relative extinction coefficients, which act as a fundament for further reconstruction of multispectral information.
{"title":"Multispectral image defogging based on a wavelength-dependent extinction coefficient model in fog","authors":"Feng Huang, Chaozhen Ke, Xianyu Wu, Cuixia Guo, and Yu Liu","doi":"10.1364/josaa.511058","DOIUrl":"https://doi.org/10.1364/josaa.511058","url":null,"abstract":"Most of the state-of-the-art defogging models presented in the literature assume that the attenuation coefficient of all spectral channels is constant, which inevitably leads to spectral distortion and information bias. To address this issue, this paper proposes a defogging method that takes into account the difference between the extinction coefficients of multispectral channels of light traveling through fog. Then the spatially distributed transmission map of each spectral channel is reconstructed to restore the fog-degraded images. The experimental results of various realistic complex scenes show that the proposed method has more outstanding advantages in restoring lost detail, compensating for degraded spectral information, and recognizing more targets hidden in uniform ground fog than state-of-the-art technologies. In addition, this work provides a method to characterize the intrinsic property of fog expressed as multispectral relative extinction coefficients, which act as a fundament for further reconstruction of multispectral information.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulating a turbulent video affected byspatiotemporally-varying blur and tilt usingtemporal cross-correlation of intermodal Zernikecoefficients","authors":"O. Maor, Y. Yitzhaky","doi":"10.1364/josaa.514892","DOIUrl":"https://doi.org/10.1364/josaa.514892","url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"31 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140248270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of corneal astigmatism on near andfar vision in eyes with bifocal intraocularlenses","authors":"JongIn You, Mooseok Jang","doi":"10.1364/josaa.517377","DOIUrl":"https://doi.org/10.1364/josaa.517377","url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"16 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140248881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlos Osorio Quero, Daniel Leykam, Irving Rondon Ojeda
{"title":"Res-U2Net: Untrained Deep Learning for PhaseRetrieval and Image Reconstruction","authors":"Carlos Osorio Quero, Daniel Leykam, Irving Rondon Ojeda","doi":"10.1364/josaa.511074","DOIUrl":"https://doi.org/10.1364/josaa.511074","url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"40 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140248036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. De Zela, C. M. L. Montenegro La Torre, Max Jara, J. P. Marrou
{"title":"Stokes vector characterization by strongly measuring weak values","authors":"F. De Zela, C. M. L. Montenegro La Torre, Max Jara, J. P. Marrou","doi":"10.1364/josaa.516469","DOIUrl":"https://doi.org/10.1364/josaa.516469","url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"22 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140248979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic iterative correction algorithm for designing diffractiveoptical elements","authors":"Hu Chi, zhang jin, Shilei Jiang, guobin sun","doi":"10.1364/josaa.516657","DOIUrl":"https://doi.org/10.1364/josaa.516657","url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"64 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140249136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Meng, Yuan Zhou, Kaiyue Du, Jun Ma, Jin Meng, Aakash Kumar, Jiahang Lv, Jonghyuk Kim, Shifeng Wang
{"title":"EFNet: Enhancing feature information for 3D object detection in LiDAR point clouds","authors":"Xin Meng, Yuan Zhou, Kaiyue Du, Jun Ma, Jin Meng, Aakash Kumar, Jiahang Lv, Jonghyuk Kim, Shifeng Wang","doi":"10.1364/josaa.511948","DOIUrl":"https://doi.org/10.1364/josaa.511948","url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"163 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140249967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}