{"title":"Optimized Stokes imaging for highly resolved optical speckle fields, part III: Topological analysis of polarimetric states distributions with optimized data representations","authors":"Jonathan Staes, Julien Fade","doi":"10.1364/josaa.516717","DOIUrl":"https://doi.org/10.1364/josaa.516717","url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"26 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140253737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matias Koivurova, Jyrki Laatikainen, and Ari T. Friberg
Over the past several decades, nonstationary optics has risen as a key enabling technology for a multitude of novel applications. These include areas of research such as micromachining and ultrafast optics, as well as the Nobel awarded research in femtochemistry, optical frequency combs, and attosecond physics. This tutorial aims to present some of the main concepts required to analyze nonstationary fields, with an emphasis on pulsed beams. The work begins from the fundamental building blocks of such fields, and builds up to some of their main properties. The spatiotemporal properties and stability of such fields are discussed in length, and some common measurement schemes are reviewed.
{"title":"Nonstationary optics: tutorial","authors":"Matias Koivurova, Jyrki Laatikainen, and Ari T. Friberg","doi":"10.1364/josaa.516951","DOIUrl":"https://doi.org/10.1364/josaa.516951","url":null,"abstract":"Over the past several decades, nonstationary optics has risen as a key enabling technology for a multitude of novel applications. These include areas of research such as micromachining and ultrafast optics, as well as the Nobel awarded research in femtochemistry, optical frequency combs, and attosecond physics. This tutorial aims to present some of the main concepts required to analyze nonstationary fields, with an emphasis on pulsed beams. The work begins from the fundamental building blocks of such fields, and builds up to some of their main properties. The spatiotemporal properties and stability of such fields are discussed in length, and some common measurement schemes are reviewed.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140107874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingying Chang, Jiayi Li, Youbiao Zhang, Yuping Yin, and Jingyi Liu
A liquid crystal variable retarder (LCVR) is the core device to realize fast and high-precision broadband polarization imaging, and its ability to suppress the noise will have an impact on the polarization measurement results. In order to obtain better imaging quality and measurement accuracy, it is crucial to solve the optimization problem of the LCVR. In this paper, the optimal objective function for solving the optimization problem of the LCVR is analytically derived and verified based on the genetic algorithm in the band range of 350–700 nm. Meanwhile, considering that the minimum number of four measurements at this time cannot achieve the optimal state, the relationship between the number of measurements and the overall performance relative to the error propagation (optimized conditions number) is discussed. The results show that a better optimal set of angles can be obtained by using the optimal objective function. In this paper, a set of the most favorable angles is obtained, and the optimized average of the CN is 2.0000, which is reduced by 0.32% compared with previous optimization results and is closer to the ideal value of the CN. In addition, in this paper, the noise immunity of the set of most favorable angles is simulated and analyzed, and the optimized system can effectively improve the measured performance of the wide-band liquid crystal variable retarder polarimeter.
{"title":"Optimization analysis of a Stokes polarimeter for broadband liquid crystal variable retarders under the optimal objective function","authors":"Lingying Chang, Jiayi Li, Youbiao Zhang, Yuping Yin, and Jingyi Liu","doi":"10.1364/josaa.515239","DOIUrl":"https://doi.org/10.1364/josaa.515239","url":null,"abstract":"A liquid crystal variable retarder (LCVR) is the core device to realize fast and high-precision broadband polarization imaging, and its ability to suppress the noise will have an impact on the polarization measurement results. In order to obtain better imaging quality and measurement accuracy, it is crucial to solve the optimization problem of the LCVR. In this paper, the optimal objective function for solving the optimization problem of the LCVR is analytically derived and verified based on the genetic algorithm in the band range of 350–700 nm. Meanwhile, considering that the minimum number of four measurements at this time cannot achieve the optimal state, the relationship between the number of measurements and the overall performance relative to the error propagation (optimized conditions number) is discussed. The results show that a better optimal set of angles can be obtained by using the optimal objective function. In this paper, a set of the most favorable angles is obtained, and the optimized average of the CN is 2.0000, which is reduced by 0.32% compared with previous optimization results and is closer to the ideal value of the CN. In addition, in this paper, the noise immunity of the set of most favorable angles is simulated and analyzed, and the optimized system can effectively improve the measured performance of the wide-band liquid crystal variable retarder polarimeter.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"100 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140074443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benjamin R. Anderson, Ray Gunawidjaja, and Hergen Eilers
We numerically model the influence of absorption on wavefront-shaping controlled reflection from absorbing disordered media and provide experimental verification of our model. We find that absorption modifies the reflection eigenvalue density, the average reflectance, and the reflection matrix element density. However, we also find that despite these effects, the efficiency of wavefront-shaping controlled reflection is invariant with absorption.
{"title":"Absorption-invariant focusing efficiency for wavefront-shaping controlled reflection from absorbing disordered media","authors":"Benjamin R. Anderson, Ray Gunawidjaja, and Hergen Eilers","doi":"10.1364/josaa.514911","DOIUrl":"https://doi.org/10.1364/josaa.514911","url":null,"abstract":"We numerically model the influence of absorption on wavefront-shaping controlled reflection from absorbing disordered media and provide experimental verification of our model. We find that absorption modifies the reflection eigenvalue density, the average reflectance, and the reflection matrix element density. However, we also find that despite these effects, the efficiency of wavefront-shaping controlled reflection is invariant with absorption.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140074435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierre-Alexandre Blanche, Chau-Jern Cheng, Pietro Ferraro, Yaping Zhang, and Zhehui (Jeph) Wang
The Optica Topical Meeting on Digital Holography and 3D Imaging (DH) was held 14–17 August 2023 in Boston, Massachusetts. The meeting was organized co-jointly with the Optica Imaging Congress. Feature issues based on the DH meeting series have been released by Applied Optics (AO) since 2007. Since 2017, AO and the Journal of the Optical Society of America A (JOSA A) have presented a feature issue in each journal. This feature issues includes 17 papers in AO and 9 in JOSA A. Together they cover a large range of topics, reflecting the rapidly expanding techniques and applications of digital holography and 3D imaging. The upcoming DH Conference (DH 2024) will be held from 3 to 6 June in Paestum, Italy.
{"title":"Digital Holography and 3D Imaging: introduction to the joint feature issue in Applied Optics and Journal of the Optical Society of America A","authors":"Pierre-Alexandre Blanche, Chau-Jern Cheng, Pietro Ferraro, Yaping Zhang, and Zhehui (Jeph) Wang","doi":"10.1364/josaa.521716","DOIUrl":"https://doi.org/10.1364/josaa.521716","url":null,"abstract":"The Optica Topical Meeting on Digital Holography and 3D Imaging (DH) was held 14–17 August 2023 in Boston, Massachusetts. The meeting was organized co-jointly with the Optica Imaging Congress. Feature issues based on the DH meeting series have been released by <i>Applied Optics</i> (AO) since 2007. Since 2017, AO and the <i>Journal of the Optical Society of America A</i> (JOSA A) have presented a feature issue in each journal. This feature issues includes 17 papers in AO and 9 in JOSA A. Together they cover a large range of topics, reflecting the rapidly expanding techniques and applications of digital holography and 3D imaging. The upcoming DH Conference (DH 2024) will be held from 3 to 6 June in Paestum, Italy.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In quantitative photoacoustic tomography, the optical parameters of a target, most importantly the concentrations of chromophores such as deoxygenated and oxygenated hemoglobin, are estimated from photoacoustic data measured on the boundary of the target. In this work, a numerical approximation of a forward model for spectral quantitative photoacoustic tomography is constructed by utilizing the diffusion approximation for light propagation, the acoustic wave equation for ultrasound propagation, and spectral models of optical absorption and scattering to describe the wavelength dependence of the optical parameters. The related inverse problem is approached in the framework of Bayesian inverse problems. Concentrations of four chromophores (deoxygenated and oxygenated hemoglobin, water, and lipid), two scattering parameters (reference scattering and scattering power), and the Grüneisen parameter are estimated in a single-stage from photoacoustic data. The methodology is evaluated using numerical simulations in different full-view and limited-view imaging settings. The results show that, utilizing spectral data and models, the spectral optical parameters and the Grüneisen parameter can be simultaneously estimated. Furthermore, the approach can also be utilized in limited-view imaging situations.
{"title":"Single-stage approach for estimating optical parameters in spectral quantitative photoacoustic tomography","authors":"Miika Suhonen, Aki Pulkkinen, and Tanja Tarvainen","doi":"10.1364/josaa.518768","DOIUrl":"https://doi.org/10.1364/josaa.518768","url":null,"abstract":"In quantitative photoacoustic tomography, the optical parameters of a target, most importantly the concentrations of chromophores such as deoxygenated and oxygenated hemoglobin, are estimated from photoacoustic data measured on the boundary of the target. In this work, a numerical approximation of a forward model for spectral quantitative photoacoustic tomography is constructed by utilizing the diffusion approximation for light propagation, the acoustic wave equation for ultrasound propagation, and spectral models of optical absorption and scattering to describe the wavelength dependence of the optical parameters. The related inverse problem is approached in the framework of Bayesian inverse problems. Concentrations of four chromophores (deoxygenated and oxygenated hemoglobin, water, and lipid), two scattering parameters (reference scattering and scattering power), and the Grüneisen parameter are estimated in a single-stage from photoacoustic data. The methodology is evaluated using numerical simulations in different full-view and limited-view imaging settings. The results show that, utilizing spectral data and models, the spectral optical parameters and the Grüneisen parameter can be simultaneously estimated. Furthermore, the approach can also be utilized in limited-view imaging situations.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"62 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139977834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using line structured light to measure metal surface topography, the extraction error of the stripe center is significant due to the influence of the optical characteristics of the metal surface and the scattering noise. This paper proposes a sub-pixel stripe center extraction method based on adaptive threshold segmentation and a gradient weighting strategy to address this issue. First, we analyze the characteristics of the stripe image of the measured metal’s surface morphology. Relying on the morphological features of the image, the image is segmented to remove the effect of background noise and to obtain the region of interest in the image. Then, we use the gray-gravity method to get the rough center coordinates of the stripes. We extend the stripes in the width direction using the rough center coordinates as a reference to determine the center of the stripes for extraction after segmentation. Next, we adaptively determine the boundary threshold utilizing the region’s grayscale. Finally, we use the gradient weighting strategy to extract the sub-pixel stripe center. The experimental results show that the proposed method effectively eliminates the interference of metal surface scattering on 3D reconstruction. The average height error of the measured standard block is 0.025 mm, and the repeatability of the measurement accuracy is 0.026 mm.
{"title":"Center extraction method for reflected metallic surface fringes based on line structured light","authors":"Limei Song, Jinsheng He, and Yunpeng Li","doi":"10.1364/josaa.510797","DOIUrl":"https://doi.org/10.1364/josaa.510797","url":null,"abstract":"Using line structured light to measure metal surface topography, the extraction error of the stripe center is significant due to the influence of the optical characteristics of the metal surface and the scattering noise. This paper proposes a sub-pixel stripe center extraction method based on adaptive threshold segmentation and a gradient weighting strategy to address this issue. First, we analyze the characteristics of the stripe image of the measured metal’s surface morphology. Relying on the morphological features of the image, the image is segmented to remove the effect of background noise and to obtain the region of interest in the image. Then, we use the gray-gravity method to get the rough center coordinates of the stripes. We extend the stripes in the width direction using the rough center coordinates as a reference to determine the center of the stripes for extraction after segmentation. Next, we adaptively determine the boundary threshold utilizing the region’s grayscale. Finally, we use the gradient weighting strategy to extract the sub-pixel stripe center. The experimental results show that the proposed method effectively eliminates the interference of metal surface scattering on 3D reconstruction. The average height error of the measured standard block is 0.025 mm, and the repeatability of the measurement accuracy is 0.026 mm.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139977836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A kind of optical beam with a radially parabolic propagating manner and intensity decay inversely proportional to propagating distance in the far field is investigated. The initial complex amplitudes of this kind of beam have the form of a Gaussian function multiplied by a m/2-order modified Bessel function and a helical phase factor with topological charge m. The arguments for Bessel and Gauss parts in the propagating solutions of these beams are complex and symmetric as elegant Laguerre and Hermite Gaussian beams. As a result, the beams can be referred to as elegant modified Bessel Gauss (EMBG) beams. Similar to non-diffractive beams such as Bessel and Airy beams, the EMBG beams also carry infinite power due to a transversely slowly decaying tail of complex amplitude. The EMBG beams demonstrate intermediate propagating properties between non-diffractive and finite-power beams. Unlike non-diffractive beams that never spread their power and finite-power beams that always diverge in a linear manner and spread their power by inversely square law in the far field, the EMBG beams demonstrate a far-field parabolic propagating manner and decay their power by inversely linear law. In addition, the EMBG beams have total Gouy phase, which is only half of that of elegant Laguerre Gauss beams with the same topological charge, and have far-field intensity distributions regardless of the beam waist radius in the initial plane. The propagating and focusing properties of EMBG beams represent an intermediate status between the non-diffractive and finite-power beams.
{"title":"Propagation properties of elegant modified Bessel Gaussian beams","authors":"Chaohong Huang, Xiao Liu, Yanjing Li, Yutian Lin, Yangying Xu, Kunmin Yang, and Yongtong Zhao","doi":"10.1364/josaa.515394","DOIUrl":"https://doi.org/10.1364/josaa.515394","url":null,"abstract":"A kind of optical beam with a radially parabolic propagating manner and intensity decay inversely proportional to propagating distance in the far field is investigated. The initial complex amplitudes of this kind of beam have the form of a Gaussian function multiplied by a <span><span style=\"color: inherit;\"><span><span>m</span><span><span style=\"margin-left: 0.111em; margin-right: 0.111em;\">/</span></span><span>2</span></span></span><script type=\"math/tex\">m/2</script></span>-order modified Bessel function and a helical phase factor with topological charge <span><span style=\"color: inherit;\"><span><span>m</span></span></span><script type=\"math/tex\">m</script></span>. The arguments for Bessel and Gauss parts in the propagating solutions of these beams are complex and symmetric as elegant Laguerre and Hermite Gaussian beams. As a result, the beams can be referred to as elegant modified Bessel Gauss (EMBG) beams. Similar to non-diffractive beams such as Bessel and Airy beams, the EMBG beams also carry infinite power due to a transversely slowly decaying tail of complex amplitude. The EMBG beams demonstrate intermediate propagating properties between non-diffractive and finite-power beams. Unlike non-diffractive beams that never spread their power and finite-power beams that always diverge in a linear manner and spread their power by inversely square law in the far field, the EMBG beams demonstrate a far-field parabolic propagating manner and decay their power by inversely linear law. In addition, the EMBG beams have total Gouy phase, which is only half of that of elegant Laguerre Gauss beams with the same topological charge, and have far-field intensity distributions regardless of the beam waist radius in the initial plane. The propagating and focusing properties of EMBG beams represent an intermediate status between the non-diffractive and finite-power beams.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"295 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139977704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Gori, R. Martínez-Herrero, O. Korotkova, G. Piquero, J. C. G. de Sande, G. Schettini, F. Frezza, and M. Santarsiero
Diffractive optical elements that divide an input beam into a set of replicas are used in many optical applications ranging from image processing to communications. Their design requires time-consuming optimization processes, which, for a given number of generated beams, are to be separately treated for one-dimensional and two-dimensional cases because the corresponding optimal efficiencies may be different. After generalizing their Fourier treatment, we prove that, once a particular divider has been designed, its transmission function can be used to generate numberless other dividers through affine transforms that preserve the efficiency of the original element without requiring any further optimization.
{"title":"Affine diffractive beam dividers","authors":"F. Gori, R. Martínez-Herrero, O. Korotkova, G. Piquero, J. C. G. de Sande, G. Schettini, F. Frezza, and M. Santarsiero","doi":"10.1364/josaa.514290","DOIUrl":"https://doi.org/10.1364/josaa.514290","url":null,"abstract":"Diffractive optical elements that divide an input beam into a set of replicas are used in many optical applications ranging from image processing to communications. Their design requires time-consuming optimization processes, which, for a given number of generated beams, are to be separately treated for one-dimensional and two-dimensional cases because the corresponding optimal efficiencies may be different. After generalizing their Fourier treatment, we prove that, once a particular divider has been designed, its transmission function can be used to generate numberless other dividers through affine transforms that preserve the efficiency of the original element without requiring any further optimization.","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingdi Luo, Wei Liu, Jingwei Lv, Lin Yang, Jianxin Wang, Paul K. Chu, Chao Liu
{"title":"High-sensitivity dual U-shaped PCF-SPR refractive index sensor forthe detection of gas and liquid analytes","authors":"Xingdi Luo, Wei Liu, Jingwei Lv, Lin Yang, Jianxin Wang, Paul K. Chu, Chao Liu","doi":"10.1364/josaa.514808","DOIUrl":"https://doi.org/10.1364/josaa.514808","url":null,"abstract":"","PeriodicalId":501620,"journal":{"name":"Journal of the Optical Society of America A","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139840976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}