Pub Date : 2021-01-01DOI: 10.1007/978-3-030-67372-7_8
M. Pinterić
{"title":"Illumination","authors":"M. Pinterić","doi":"10.1007/978-3-030-67372-7_8","DOIUrl":"https://doi.org/10.1007/978-3-030-67372-7_8","url":null,"abstract":"","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"108 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87589713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-319-57484-4_3
M. Pinterić
{"title":"Heat Transfer in Building Components","authors":"M. Pinterić","doi":"10.1007/978-3-319-57484-4_3","DOIUrl":"https://doi.org/10.1007/978-3-319-57484-4_3","url":null,"abstract":"","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"14 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79624913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-319-57484-4_5
M. Pinterić
{"title":"Basics of Waves","authors":"M. Pinterić","doi":"10.1007/978-3-319-57484-4_5","DOIUrl":"https://doi.org/10.1007/978-3-319-57484-4_5","url":null,"abstract":"","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"67 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75466531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-319-57484-4_4
M. Pinterić
{"title":"Moisture in Building Components","authors":"M. Pinterić","doi":"10.1007/978-3-319-57484-4_4","DOIUrl":"https://doi.org/10.1007/978-3-319-57484-4_4","url":null,"abstract":"","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"103 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80641359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-67372-7_2
M. Pinterić
{"title":"Heat Transfer","authors":"M. Pinterić","doi":"10.1007/978-3-030-67372-7_2","DOIUrl":"https://doi.org/10.1007/978-3-030-67372-7_2","url":null,"abstract":"","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"66 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75577653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-319-57484-4_1
M. Pinterić
{"title":"Basics of Thermodynamics","authors":"M. Pinterić","doi":"10.1007/978-3-319-57484-4_1","DOIUrl":"https://doi.org/10.1007/978-3-319-57484-4_1","url":null,"abstract":"","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"7 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85290975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-540-48830-9_4
M. Pinterić
{"title":"Sound Propagation","authors":"M. Pinterić","doi":"10.1007/978-3-540-48830-9_4","DOIUrl":"https://doi.org/10.1007/978-3-540-48830-9_4","url":null,"abstract":"","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"3 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85510685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1007/978-3-030-67372-7_7
M. Pinterić
{"title":"Building Acoustics","authors":"M. Pinterić","doi":"10.1007/978-3-030-67372-7_7","DOIUrl":"https://doi.org/10.1007/978-3-030-67372-7_7","url":null,"abstract":"","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"99 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75530530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-28DOI: 10.1177/1744259120980034
M. Nakajima, Daisuke Masueda, S. Hokoi, T. Matsushita
The discoloration of building facades due to airborne algae is observed in our surroundings. The growth conditions of these algae are not yet fully understood, and efficient measures for preventing the growth of the algae are not presently available. The objective of this study was to investigate the effects of the ambient environment and building structure on algal growth. A residential building in a cold region of Japan was surveyed. The roof was a multi-layered structure comprising a semi-transparent film, an air layer, and a layer of insulation from the outside, supported by rafters. The soiled state was visually observed by taking photographs. On the northeast (NE) and northwest (NW) roofs, several black stripes appeared 4 months after cleaning. The soiling increased in the spring and autumn. The soiling first appeared on the film backed by the rafter and then extended to the film backed by the air layer. The condensation time during the day in the rafter part was longer than that in the air-layer part. Condensation occurred during the night, but its frequency exhibited no dependence on the orientation of the roof. Algae tend to die when exposed to an environment with a temperature higher than 45°C. The NE roof had the shortest period with a surface temperature of >45°C. These measurements agreed well with the survey results, which indicated that the soiling mainly occurred on the NE and NW sides of the roofs. The time for algal growth was estimated under the assumption that algae can grow at surface temperatures ranging from 0 to 45°C, in agreement with the observed soiling. The observed soiling changes were well explained by the algal population calculated via a growth predictive model according to the algal temperature and relative humidity.
{"title":"Airborne Algal growth on roofs of membrane-structured residences in cold area of Japan","authors":"M. Nakajima, Daisuke Masueda, S. Hokoi, T. Matsushita","doi":"10.1177/1744259120980034","DOIUrl":"https://doi.org/10.1177/1744259120980034","url":null,"abstract":"The discoloration of building facades due to airborne algae is observed in our surroundings. The growth conditions of these algae are not yet fully understood, and efficient measures for preventing the growth of the algae are not presently available. The objective of this study was to investigate the effects of the ambient environment and building structure on algal growth. A residential building in a cold region of Japan was surveyed. The roof was a multi-layered structure comprising a semi-transparent film, an air layer, and a layer of insulation from the outside, supported by rafters. The soiled state was visually observed by taking photographs. On the northeast (NE) and northwest (NW) roofs, several black stripes appeared 4 months after cleaning. The soiling increased in the spring and autumn. The soiling first appeared on the film backed by the rafter and then extended to the film backed by the air layer. The condensation time during the day in the rafter part was longer than that in the air-layer part. Condensation occurred during the night, but its frequency exhibited no dependence on the orientation of the roof. Algae tend to die when exposed to an environment with a temperature higher than 45°C. The NE roof had the shortest period with a surface temperature of >45°C. These measurements agreed well with the survey results, which indicated that the soiling mainly occurred on the NE and NW sides of the roofs. The time for algal growth was estimated under the assumption that algae can grow at surface temperatures ranging from 0 to 45°C, in agreement with the observed soiling. The observed soiling changes were well explained by the algal population calculated via a growth predictive model according to the algal temperature and relative humidity.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"58 1","pages":"113 - 147"},"PeriodicalIF":2.0,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85604725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-12-28DOI: 10.1177/1744259120980027
Malik Elmzughi, S. Alghoul, M. Mashena
An efficient way to reduce the energy required for conditioning buildings and therefore to reduce CO2 emission is the use of proper thermal insulation in buildings’ external walls. This measure requires data from metrological stations that can be used in the optimization of the thermal insulation. The main objectives of this study are to construct thermal climatic zones for Libya and to specify the optimum insulation thickness for external walls for the different zones. This work is comprehensive as the metrological data from all existing 33 weather stations has been collected and used for identifying thermal zones. For the optimization of the construction of external walls, the most commonly used local wall structures are investigated: hollow concrete block, limestone block and hollow brick. In addition, four thermal insulation materials: extruded polystyrene, expanded polystyrene, rock wool and foamed polyurethane are used with every wall type. Optimum insulation thickness, energy savings, energy cost and payback periods were estimated for the 33 locations using life cycle cost analysis. A map is constructed for the thermal zones based on degree-day values for the entire country. The results show that limestone blocks with expanded polystyrene insulation form the optimum wall construction as it provides the minimum total cost for all locations. Depending on the Degree-day values, the optimum insulation thickness varies between 5.4 and 15.3 cm across the country with energy saving varies between 28 and 178 $/m2. Using the optimum thickness, the average CO2 emissions can potentially be reduced by about 85%. Finally, a contour map represents the optimum thickness of expanded polystyrene is presented in this work.
{"title":"Optimizing thermal insulation of external building walls in different climate zones in Libya","authors":"Malik Elmzughi, S. Alghoul, M. Mashena","doi":"10.1177/1744259120980027","DOIUrl":"https://doi.org/10.1177/1744259120980027","url":null,"abstract":"An efficient way to reduce the energy required for conditioning buildings and therefore to reduce CO2 emission is the use of proper thermal insulation in buildings’ external walls. This measure requires data from metrological stations that can be used in the optimization of the thermal insulation. The main objectives of this study are to construct thermal climatic zones for Libya and to specify the optimum insulation thickness for external walls for the different zones. This work is comprehensive as the metrological data from all existing 33 weather stations has been collected and used for identifying thermal zones. For the optimization of the construction of external walls, the most commonly used local wall structures are investigated: hollow concrete block, limestone block and hollow brick. In addition, four thermal insulation materials: extruded polystyrene, expanded polystyrene, rock wool and foamed polyurethane are used with every wall type. Optimum insulation thickness, energy savings, energy cost and payback periods were estimated for the 33 locations using life cycle cost analysis. A map is constructed for the thermal zones based on degree-day values for the entire country. The results show that limestone blocks with expanded polystyrene insulation form the optimum wall construction as it provides the minimum total cost for all locations. Depending on the Degree-day values, the optimum insulation thickness varies between 5.4 and 15.3 cm across the country with energy saving varies between 28 and 178 $/m2. Using the optimum thickness, the average CO2 emissions can potentially be reduced by about 85%. Finally, a contour map represents the optimum thickness of expanded polystyrene is presented in this work.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"5 1","pages":"368 - 390"},"PeriodicalIF":2.0,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91382597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}