首页 > 最新文献

Journal of Building Physics最新文献

英文 中文
Surface heat transfer coefficients in building envelopes: Uncertainty levels in experimental methods 建筑围护结构表面传热系数:实验方法的不确定度
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-01-31 DOI: 10.1177/17442591221150250
Roberto Garay-Martinez, B. Arregi, M. Lumbreras
There are several research methods for the on-site assessment of U-values that aim to avoid the use of surface heat flux measurements and rely on tabulated or empirically developed correlations to define this parameter. This works performs a detailed process to estimate indoor surface heat transfer coefficients based on several experimental campaigns over building walls. Data is filtered out to remove periods with large temperature variations and/or unstable convective conditions due to HVAC. A statistical analysis is conducted, and the outcomes used to test the validity of U-value estimation approaches. The outcomes show that the actual surface heat transfer coefficients are in the range of reference works, but variations in the range of up to 2 W/m2 K are found. Uncertainty levels associated to the estimation of surface heat transfer coefficient are in the range 60% for instantaneous values while this is reduced down to 12%–20% for 8-h averages. Variations and uncertainty levels are higher for low temperature gradient situations, which are considered to be very likely for modern insulation levels. It is concluded that methods seeking to avoid the use of surface heat flux measurements need to develop much deeper knowledge in this field to gain accuracy and reliability.
有几种现场评估u值的研究方法,其目的是避免使用表面热通量测量,而依靠制表或经验开发的相关性来定义该参数。这项工作执行了一个详细的过程,以估计室内表面传热系数基于几个实验运动在建筑墙壁上。数据被过滤掉,以去除大的温度变化和/或不稳定的对流条件,由于暖通空调。进行了统计分析,并将结果用于检验u值估计方法的有效性。结果表明,实际的表面换热系数在参考作品的范围内,但变化范围高达2 W/m2 K。对于瞬时值,与表面传热系数估计相关的不确定性水平在60%范围内,而对于8小时平均值,这一不确定性降低到12%-20%。对于低温梯度情况,变化和不确定性水平更高,这被认为很可能是现代绝缘水平。结论是,寻求避免使用表面热通量测量的方法需要在这一领域发展更深入的知识,以获得准确性和可靠性。
{"title":"Surface heat transfer coefficients in building envelopes: Uncertainty levels in experimental methods","authors":"Roberto Garay-Martinez, B. Arregi, M. Lumbreras","doi":"10.1177/17442591221150250","DOIUrl":"https://doi.org/10.1177/17442591221150250","url":null,"abstract":"There are several research methods for the on-site assessment of U-values that aim to avoid the use of surface heat flux measurements and rely on tabulated or empirically developed correlations to define this parameter. This works performs a detailed process to estimate indoor surface heat transfer coefficients based on several experimental campaigns over building walls. Data is filtered out to remove periods with large temperature variations and/or unstable convective conditions due to HVAC. A statistical analysis is conducted, and the outcomes used to test the validity of U-value estimation approaches. The outcomes show that the actual surface heat transfer coefficients are in the range of reference works, but variations in the range of up to 2 W/m2 K are found. Uncertainty levels associated to the estimation of surface heat transfer coefficient are in the range 60% for instantaneous values while this is reduced down to 12%–20% for 8-h averages. Variations and uncertainty levels are higher for low temperature gradient situations, which are considered to be very likely for modern insulation levels. It is concluded that methods seeking to avoid the use of surface heat flux measurements need to develop much deeper knowledge in this field to gain accuracy and reliability.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"200 1","pages":"62 - 91"},"PeriodicalIF":2.0,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75912453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Prefabricated thermally-activated fiber-polymer composite building slab P-TACS: Toward the multifunctional and pre-fabricated structural elements in buildings 预制热活化纤维-聚合物复合建筑板P-TACS:面向建筑中的多功能预制结构构件
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-01-26 DOI: 10.1177/17442591221150257
D. Khovalyg, Alexandre Mudry, T. Keller
The traditional sequential design of building elements, where every element performs only one dedicated function, carries significant embodied energy. Thus, modular pre-fabricated load-bearing elements could overcome the disadvantages of the current carbon-intensive construction practice and go beyond; as such, lightweight glass fiber-polymer composite profiles could be more advantageous in performance. Cellular structures of such profiles can be advantageous for adding water channels for active heating and cooling indoors and for fire protection. Therefore, the development of such a modular active building slab referred to as P-TACS (Prefabricated Thermally-Activated Fiber-Polymer Composite Slab) is explored in this work. The structural performance of a proposed P-TACS design is verified in terms of serviceability and ultimate limit states. The addition of local carbon fiber inclusions allows for an increase in the span of the slab to 10 m and a more uniform surface temperature. Thermal performance of the structurally optimized geometrical configuration is analyzed by, first of all, determining water parameters based on the 1D approach partially adopted from the standard radiant systems analysis and, secondly, by a detailed 2D thermal analysis using ANSYS Fluent numerical simulations. The hydraulic and thermal performance comparison of the novel P-TACS design with two standard radiant systems (ESS Type A and RCP) reveals that the P-TACS design outperforms the standard embedded surface system ESS Type A, both for floor heating and cooling case. In addition, the response time of P-TACS is three times faster compared to the ESS response time. The main advantage of the P-TACS is in lower mean water temperature, compared to traditional embedded radiant systems (e.g., EES type), required for conditioning the space, potentially resulting in lower operational energy use. The fire outbreak scenario is considered to complete the analysis, and the measures to switch water flow from nominal to fire scenario are proposed.
传统的建筑元素的顺序设计,每个元素只执行一个专用功能,承载着重要的体现能量。因此,模块化预制承重元件可以克服目前碳密集型建筑实践的缺点,并超越;因此,轻质玻璃纤维-聚合物复合型材在性能上更有优势。这种型材的蜂窝状结构对于增加用于室内主动加热和冷却以及用于防火的水通道是有利的。因此,在这项工作中,我们探索了这种被称为P-TACS(预制热活化纤维-聚合物复合板)的模块化活性建筑板的发展。提出的P-TACS设计的结构性能在可用性和极限状态方面进行了验证。局部碳纤维夹杂物的添加允许将板的跨度增加到10米,并且表面温度更均匀。对结构优化后的几何构型进行热性能分析,首先基于部分采用标准辐射系统分析的一维方法确定水参数,然后利用ANSYS Fluent数值模拟进行详细的二维热分析。新型P-TACS设计与两种标准辐射系统(ESS A型和RCP)的水力和热性能比较表明,P-TACS设计在地板采暖和冷却情况下都优于标准嵌入式表面系统ESS A型。此外,P-TACS的反应时间比ESS的反应时间快3倍。与传统的嵌入式辐射系统(例如EES类型)相比,P-TACS的主要优点是平均水温较低,从而降低了空间调节所需的操作能耗。考虑了火灾情景来完成分析,并提出了从名义流向火灾情景转换的措施。
{"title":"Prefabricated thermally-activated fiber-polymer composite building slab P-TACS: Toward the multifunctional and pre-fabricated structural elements in buildings","authors":"D. Khovalyg, Alexandre Mudry, T. Keller","doi":"10.1177/17442591221150257","DOIUrl":"https://doi.org/10.1177/17442591221150257","url":null,"abstract":"The traditional sequential design of building elements, where every element performs only one dedicated function, carries significant embodied energy. Thus, modular pre-fabricated load-bearing elements could overcome the disadvantages of the current carbon-intensive construction practice and go beyond; as such, lightweight glass fiber-polymer composite profiles could be more advantageous in performance. Cellular structures of such profiles can be advantageous for adding water channels for active heating and cooling indoors and for fire protection. Therefore, the development of such a modular active building slab referred to as P-TACS (Prefabricated Thermally-Activated Fiber-Polymer Composite Slab) is explored in this work. The structural performance of a proposed P-TACS design is verified in terms of serviceability and ultimate limit states. The addition of local carbon fiber inclusions allows for an increase in the span of the slab to 10 m and a more uniform surface temperature. Thermal performance of the structurally optimized geometrical configuration is analyzed by, first of all, determining water parameters based on the 1D approach partially adopted from the standard radiant systems analysis and, secondly, by a detailed 2D thermal analysis using ANSYS Fluent numerical simulations. The hydraulic and thermal performance comparison of the novel P-TACS design with two standard radiant systems (ESS Type A and RCP) reveals that the P-TACS design outperforms the standard embedded surface system ESS Type A, both for floor heating and cooling case. In addition, the response time of P-TACS is three times faster compared to the ESS response time. The main advantage of the P-TACS is in lower mean water temperature, compared to traditional embedded radiant systems (e.g., EES type), required for conditioning the space, potentially resulting in lower operational energy use. The fire outbreak scenario is considered to complete the analysis, and the measures to switch water flow from nominal to fire scenario are proposed.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"43 1","pages":"686 - 707"},"PeriodicalIF":2.0,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84235808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Development of a hysteresis model based on axisymmetric and homotopic properties to predict moisture transfer in building materials 基于轴对称和同伦特性的滞回模型的发展,以预测建筑材料中的水分转移
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-01-20 DOI: 10.1177/17442591221144785
Ahmad Deeb, F. Benmahiddine, J. Berger, R. Belarbi
Current hygrothermal behaviour prediction models neglect the hysteresis phenomenon. This leads to a discrepancy between numerical and experimental results, and a miscalculation of buildings’ durability. In this paper, a new mathematical model of hysteresis is proposed and implemented in a hygrothermal model to reduce this discrepancy. The model is based on a symmetry property between sorption curves and uses also a homotopic transformation relative to a parameter s ∈ [ 0 , 1 ] . The advantage of this model lies in its ease of use and implementation since it could be applied with the knowledge of only one main sorption curve by considering s = 0 , in other words, we only use the axisymmetric property here. In the case where the other main sorption curve is known, we use this curve to incorporate the homotopy property in order to calibrate the parameter s .The full version of the proposed model is called Axisymmetric + Homotopic. Furthermore, it was compared not only with the experimental sorption curves of different types of materials but also with a model that is well known in the literature (CARMELIET’s model). This comparison shows that the Axisymmetric + Homotopic model reliably predicts hysteresis loops of various types of materials even with the knowledge of only one of the main sorption curves. However, the full version of Axisymmetric + Homotopic model is more reliable and covers a large range of materials. The proposed model was incorporated into the mass transfer model. The simulation results strongly match the experimental ones.
目前的热液行为预测模型忽略了滞后现象。这导致了数值与实验结果之间的差异,以及对建筑物耐久性的错误计算。本文提出了一种新的迟滞数学模型,并在热液模型中实现,以减少这种差异。该模型基于吸收曲线之间的对称性,并且还使用了相对于参数s∈[0,1]的同伦变换。该模型的优点在于易于使用和实现,因为在考虑s = 0的情况下,只需要知道一条主吸收曲线就可以应用该模型,换句话说,我们在这里只使用轴对称性质。在已知其他主要吸收曲线的情况下,我们使用这条曲线来结合同伦性质,以便校准参数s。所提出模型的完整版本称为轴对称+同伦。此外,还将其与不同材料的实验吸附曲线进行了比较,并与文献中著名的模型(CARMELIET模型)进行了比较。这一比较表明,轴对称+同伦模型即使只知道其中一条主吸收曲线,也能可靠地预测各种材料的磁滞回线。而完整版的轴对称+同伦模型更可靠,涵盖的材料范围更广。该模型被纳入到传质模型中。仿真结果与实验结果吻合较好。
{"title":"Development of a hysteresis model based on axisymmetric and homotopic properties to predict moisture transfer in building materials","authors":"Ahmad Deeb, F. Benmahiddine, J. Berger, R. Belarbi","doi":"10.1177/17442591221144785","DOIUrl":"https://doi.org/10.1177/17442591221144785","url":null,"abstract":"Current hygrothermal behaviour prediction models neglect the hysteresis phenomenon. This leads to a discrepancy between numerical and experimental results, and a miscalculation of buildings’ durability. In this paper, a new mathematical model of hysteresis is proposed and implemented in a hygrothermal model to reduce this discrepancy. The model is based on a symmetry property between sorption curves and uses also a homotopic transformation relative to a parameter s ∈ [ 0 , 1 ] . The advantage of this model lies in its ease of use and implementation since it could be applied with the knowledge of only one main sorption curve by considering s = 0 , in other words, we only use the axisymmetric property here. In the case where the other main sorption curve is known, we use this curve to incorporate the homotopy property in order to calibrate the parameter s .The full version of the proposed model is called Axisymmetric + Homotopic. Furthermore, it was compared not only with the experimental sorption curves of different types of materials but also with a model that is well known in the literature (CARMELIET’s model). This comparison shows that the Axisymmetric + Homotopic model reliably predicts hysteresis loops of various types of materials even with the knowledge of only one of the main sorption curves. However, the full version of Axisymmetric + Homotopic model is more reliable and covers a large range of materials. The proposed model was incorporated into the mass transfer model. The simulation results strongly match the experimental ones.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"70 1","pages":"567 - 601"},"PeriodicalIF":2.0,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85009052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Study on efficient and accurate protocols of measuring sorption isotherm of porous building materials using three-dimensional hygrothermal simulation 三维湿热模拟测量多孔建筑材料吸附等温线的高效准确方案研究
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-01-17 DOI: 10.1177/17442591221145470
Kazuma Fukui, S. Takada
The sorption property of porous building materials in the hygroscopic region (sorption isotherm) is an important input to hygrothermal simulation. In this study, we proposed efficient and accurate protocols to obtain sorption isotherms using the static desiccator method. We developed a calculation model for three-dimensional simultaneous heat and moisture transfer in a material corresponding to the measurement specified in ISO 12571. Using an international database of the material properties, we conducted numerical simulations of the sorption process for five types of materials. The evolution of the amount of adsorbed moisture in a specimen and the time to reach equilibrium during the measurement were calculated under various humidity levels and specimen dimensions. According to the simulated results, we improved timing and interval for weighting the specimen to confirm the attainment of equilibrium for each type of a material and for each humidity level from the viewpoint of efficiency and accuracy. Meanwhile, the influence of size of a specimen on the time necessary to obtain the results was quantitatively demonstrated. Moreover, it was demonstrated that the method used for the determination of the attainment of equilibrium provided in ISO 12571 can underestimate the moisture content of materials with low moisture content and vapor permeability, and a policy to reduce risks of the underestimation was proposed.
多孔建筑材料在吸湿区的吸附特性(吸附等温线)是热湿模拟的重要输入。在这项研究中,我们提出了有效和准确的协议,以获得吸附等温线使用静态干燥器的方法。我们根据ISO 12571中规定的测量方法,开发了一种材料中三维同时热湿传递的计算模型。利用国际材料特性数据库,我们对五种材料的吸附过程进行了数值模拟。在不同的湿度水平和试样尺寸下,计算了试样中吸附水分量的演变和在测量过程中达到平衡的时间。根据模拟结果,我们改进了试样称重的时间和间隔,以确保从效率和准确性的角度来看,每种材料和每种湿度水平都达到平衡。同时,定量论证了试样尺寸对获得结果所需时间的影响。此外,还证明了ISO 12571中所提供的用于测定平衡是否达到的方法可能会低估含水量和透气性较低的材料的含水量,并提出了降低低估风险的策略。
{"title":"Study on efficient and accurate protocols of measuring sorption isotherm of porous building materials using three-dimensional hygrothermal simulation","authors":"Kazuma Fukui, S. Takada","doi":"10.1177/17442591221145470","DOIUrl":"https://doi.org/10.1177/17442591221145470","url":null,"abstract":"The sorption property of porous building materials in the hygroscopic region (sorption isotherm) is an important input to hygrothermal simulation. In this study, we proposed efficient and accurate protocols to obtain sorption isotherms using the static desiccator method. We developed a calculation model for three-dimensional simultaneous heat and moisture transfer in a material corresponding to the measurement specified in ISO 12571. Using an international database of the material properties, we conducted numerical simulations of the sorption process for five types of materials. The evolution of the amount of adsorbed moisture in a specimen and the time to reach equilibrium during the measurement were calculated under various humidity levels and specimen dimensions. According to the simulated results, we improved timing and interval for weighting the specimen to confirm the attainment of equilibrium for each type of a material and for each humidity level from the viewpoint of efficiency and accuracy. Meanwhile, the influence of size of a specimen on the time necessary to obtain the results was quantitatively demonstrated. Moreover, it was demonstrated that the method used for the determination of the attainment of equilibrium provided in ISO 12571 can underestimate the moisture content of materials with low moisture content and vapor permeability, and a policy to reduce risks of the underestimation was proposed.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"32 1","pages":"541 - 566"},"PeriodicalIF":2.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80453299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of green roof and green facade on building thermal performance and carbon sequestration in subtropical climate of China 中国亚热带气候下绿色屋顶和绿色立面对建筑热学性能和碳汇的影响
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-01-12 DOI: 10.1177/17442591221145514
Chao Jiang, Yan Zhou, Kai Li, Difang Wei
This paper investigates the case building’s cooling effect, energy saving, and carbon sequestration with green facade and green roof. The west and east GF is covered with wisteria, and the GR is planted with different kinds of vegetables. The cooling effect of the GF and GR is analyzed by field test. The cooling energy saving of the GF and GR is deeply discussed with EnergyPlus software simulation. Carbon sequestrations of the GF and GR are calculated considering both plant photosynthetic and energy saving with the field test and simulation. The results show that the average external surface temperature reduction of the west GF, east GF, and GR is 4.5°C, 4.2°C, and 9.7°C on sunny days, 1.3°C, 1.3°C, and 1.4°C respectively on cloudy days. The total cooling energy saving of the GF and GR is 4.75 kWh/m2. The cooling energy saving of the GR with seven kinds of vegetables varies from 529.6 to 2936.3 kWh, which is related to the LAI and height of vegetables. The daily cooling energy saving in hot sunny weather scenario is almost three times that in cool sunny. The carbon sequestration ability per planted GF area is 1.4 kg C/m2, and per planted GR area with seven different vegetables varies from 0.88 to 2.21 kg C/m2, in which the strongest is peanut, and the weakest is lettuce. At last, the cooling energy savings of GF in different orientations on hot, warm, and cool sunny days are discussed, which is shown that the cooling energy saving effect of the different oriented GF mainly depends on the received solar radiation amount in this orientation. The results of this research can provide some assistance in improving the design of the building GR and GF.
本文对该案例建筑采用绿色立面和绿色屋顶的降温效果、节能效果和固碳效果进行了研究。西边和东边的GF覆盖着紫藤,而GR则种植着各种蔬菜。通过现场试验分析了GF和GR的冷却效果。通过EnergyPlus软件仿真,对GF和GR的冷却节能进行了深入探讨。通过田间试验和模拟计算,同时考虑植物光合作用和节能,计算了GF和GR的固碳量。结果表明:晴天时西GF、东GF和GR的平均外表面温度降低4.5°C、4.2°C和9.7°C,阴天时分别降低1.3°C、1.3°C和1.4°C。GF和GR合计制冷省电4.75 kWh/m2。7种蔬菜GR的制冷节能值在529.6 ~ 2936.3 kWh之间,与蔬菜的LAI和高度有关。炎热晴朗天气下的日制冷节能量几乎是凉爽晴朗天气下的3倍。GF种植面积的固碳能力为1.4 kg C/m2, 7种不同蔬菜的GR种植面积的固碳能力在0.88 ~ 2.21 kg C/m2之间,其中花生最强,生菜最弱。最后讨论了不同朝向GF在炎热、温暖和凉爽晴天的制冷节能效果,表明不同朝向GF的制冷节能效果主要取决于该朝向接收的太阳辐射量。研究结果可为改进建筑GR和GF的设计提供一定的帮助。
{"title":"Impact of green roof and green facade on building thermal performance and carbon sequestration in subtropical climate of China","authors":"Chao Jiang, Yan Zhou, Kai Li, Difang Wei","doi":"10.1177/17442591221145514","DOIUrl":"https://doi.org/10.1177/17442591221145514","url":null,"abstract":"This paper investigates the case building’s cooling effect, energy saving, and carbon sequestration with green facade and green roof. The west and east GF is covered with wisteria, and the GR is planted with different kinds of vegetables. The cooling effect of the GF and GR is analyzed by field test. The cooling energy saving of the GF and GR is deeply discussed with EnergyPlus software simulation. Carbon sequestrations of the GF and GR are calculated considering both plant photosynthetic and energy saving with the field test and simulation. The results show that the average external surface temperature reduction of the west GF, east GF, and GR is 4.5°C, 4.2°C, and 9.7°C on sunny days, 1.3°C, 1.3°C, and 1.4°C respectively on cloudy days. The total cooling energy saving of the GF and GR is 4.75 kWh/m2. The cooling energy saving of the GR with seven kinds of vegetables varies from 529.6 to 2936.3 kWh, which is related to the LAI and height of vegetables. The daily cooling energy saving in hot sunny weather scenario is almost three times that in cool sunny. The carbon sequestration ability per planted GF area is 1.4 kg C/m2, and per planted GR area with seven different vegetables varies from 0.88 to 2.21 kg C/m2, in which the strongest is peanut, and the weakest is lettuce. At last, the cooling energy savings of GF in different orientations on hot, warm, and cool sunny days are discussed, which is shown that the cooling energy saving effect of the different oriented GF mainly depends on the received solar radiation amount in this orientation. The results of this research can provide some assistance in improving the design of the building GR and GF.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"35 1","pages":"602 - 629"},"PeriodicalIF":2.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78387677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Design hygrothermally functional wooden insulation systems: A parametric study for mixed climate 设计湿热功能的木质保温系统:混合气候的参数化研究
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-01-01 DOI: 10.1177/17442591221142506
Mosha Zhao, H. Künzel, S. Mehra
According to existing measurements and simulation results, the indoor thermal comfort in traditional wooden buildings (still remaining in a large amount) in the Chinese Hot-Summer-Cold-Winter zone is very poor in winter. However, few studies can be found regarding the energy retrofitting of their wooden enclosures, which is increasingly regarded as essential for improving indoor thermal comfort and maintaining built heritage. Therefore, this study demonstrates a method based on parametric study applying the widely validated WUFI®Plus software to help design hygrothermally functional insulation systems for this area. The parametric study was conducted on the example of traditional exterior wooden walls in Tongren in southern China. Five parameters were investigated, including internal and external insulation systems, vapor-open (mineral wool) and vapor-tight (XPS) insulation materials, a U-value of 0.8 W/(m2K) as well as a lower U-value of 0.24 W/(m2K) for the insulated walls, different capabilities and positions of an additional vapor control layer, as well as different cooling/dehumidification conditions in the warm period of a year. It has been found in this study that, if possible, a lower U-value than the current Chinese design standard for energy efficiency of buildings (0.8 W/(m2K) should be preferred for energy retrofitting. This can limit the yearly duration of a high internal surface relative humidity over 80% shorter than 30 days without any dehumidification devices. Besides, this study provides some feasible wall configurations with instructions on their limitations to guide future work regarding the design of insulated building components and the operation of renovated traditional wooden buildings.
根据已有的测量和仿真结果,我国夏热冬冷地区的传统木结构建筑(仍大量存在)在冬季的室内热舒适性非常差。然而,很少有研究可以找到关于他们的木制围护结构的能源改造,这越来越被认为是改善室内热舒适和维护建筑遗产的必要条件。因此,本研究展示了一种基于参数化研究的方法,应用广泛验证的WUFI®Plus软件来帮助设计该地区的湿热功能保温系统。以铜仁市传统外木墙为例进行了参数化研究。研究了5个参数,包括内外保温系统、开汽(矿棉)和密汽(XPS)保温材料、保温墙体的u值为0.8 W/(m2K)和较低的u值为0.24 W/(m2K)、附加蒸汽控制层的不同功能和位置,以及一年中暖季不同的冷却/除湿条件。本研究发现,在可能的情况下,节能改造应优先采用低于中国现行建筑能效设计标准(0.8 W/(m2K))的u值。在没有除湿设备的情况下,可以将内部表面相对湿度超过80%的年高持续时间限制在30天以内。此外,本研究还提供了一些可行的墙体配置,并说明了它们的局限性,以指导未来建筑隔热构件的设计和改造后传统木结构建筑的运营工作。
{"title":"Design hygrothermally functional wooden insulation systems: A parametric study for mixed climate","authors":"Mosha Zhao, H. Künzel, S. Mehra","doi":"10.1177/17442591221142506","DOIUrl":"https://doi.org/10.1177/17442591221142506","url":null,"abstract":"According to existing measurements and simulation results, the indoor thermal comfort in traditional wooden buildings (still remaining in a large amount) in the Chinese Hot-Summer-Cold-Winter zone is very poor in winter. However, few studies can be found regarding the energy retrofitting of their wooden enclosures, which is increasingly regarded as essential for improving indoor thermal comfort and maintaining built heritage. Therefore, this study demonstrates a method based on parametric study applying the widely validated WUFI®Plus software to help design hygrothermally functional insulation systems for this area. The parametric study was conducted on the example of traditional exterior wooden walls in Tongren in southern China. Five parameters were investigated, including internal and external insulation systems, vapor-open (mineral wool) and vapor-tight (XPS) insulation materials, a U-value of 0.8 W/(m2K) as well as a lower U-value of 0.24 W/(m2K) for the insulated walls, different capabilities and positions of an additional vapor control layer, as well as different cooling/dehumidification conditions in the warm period of a year. It has been found in this study that, if possible, a lower U-value than the current Chinese design standard for energy efficiency of buildings (0.8 W/(m2K) should be preferred for energy retrofitting. This can limit the yearly duration of a high internal surface relative humidity over 80% shorter than 30 days without any dehumidification devices. Besides, this study provides some feasible wall configurations with instructions on their limitations to guide future work regarding the design of insulated building components and the operation of renovated traditional wooden buildings.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"26 1","pages":"474 - 509"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74581981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dynamic water vapor sorption in wood-based fibrous materials and material parameter estimation 木基纤维材料的动态水蒸气吸附及材料参数估计
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-01-01 DOI: 10.1177/17442591221142496
P. Huttunen, J. Vinha
Building physical simulation software rely on assumptions regarding the local equilibria in materials’ pore systems, which may be unjustified for certain materials. While local hygrothermal non-equilibrium has still been in focus in some previous studies, it has been unclear how significant factor it may be when modeling real structures. In case of wood, the non-equilibrium is related to the slowness of intrusion of water molecules into the hygroscopic cell walls. Including local non-equilibrium in macroscopic model requires separate variables for pore air vapor and adsorbed moisture, and modeling the local mass transfer between pore air and adsorbed moisture requires effective material parameters, whose experimental determination is not straightforward. Commercially available sorption balances can be used to record data, which can be used in the parameter estimation. In this type of problem of parameter estimation from time-dependent data the mathematical challenge is to find global optimum from different solutions, which yield similar values for objective function. This difficulty can be overcome by using statistical inversion approach, which we applied in studying low-density woodfibre material (LDF). Dynamic sorption parameters were finally applied in numerical analysis of a laboratory test assembly. Based on the results, our conclusion is that the slowness of sorption is obvious in small LDF sample, which is exposed to changing humidity, but with the studied material the sorption seem to happen fast enough so that local non-equilibrium may have only slight effects in modeling of real structures.
构建物理模拟软件依赖于关于材料孔隙系统局部平衡的假设,这对于某些材料可能是不合理的。虽然局部湿热不平衡在以前的一些研究中仍然是重点,但在模拟真实结构时,它可能是多么重要的因素尚不清楚。以木材为例,这种不平衡与水分子侵入吸湿细胞壁的缓慢有关。在宏观模型中包含局部非平衡需要单独的孔隙空气蒸汽和吸附水分变量,而模拟孔隙空气和吸附水分之间的局部传质需要有效的材料参数,而这些参数的实验确定并不简单。市售的吸附天平可用于记录数据,可用于参数估计。在这类基于时变数据的参数估计问题中,数学上的挑战是从不同的解中找到全局最优解,这些解产生的目标函数值相似。利用统计反演方法可以克服这一困难,我们将其应用于研究低密度木纤维材料(LDF)。最后将动态吸附参数应用于某实验室试验装置的数值分析。基于这些结果,我们的结论是,在小的LDF样品中,暴露在变化的湿度下,吸附的缓慢性是明显的,但对于所研究的材料,吸附似乎发生得足够快,以至于局部非平衡可能对实际结构的建模只有轻微的影响。
{"title":"Dynamic water vapor sorption in wood-based fibrous materials and material parameter estimation","authors":"P. Huttunen, J. Vinha","doi":"10.1177/17442591221142496","DOIUrl":"https://doi.org/10.1177/17442591221142496","url":null,"abstract":"Building physical simulation software rely on assumptions regarding the local equilibria in materials’ pore systems, which may be unjustified for certain materials. While local hygrothermal non-equilibrium has still been in focus in some previous studies, it has been unclear how significant factor it may be when modeling real structures. In case of wood, the non-equilibrium is related to the slowness of intrusion of water molecules into the hygroscopic cell walls. Including local non-equilibrium in macroscopic model requires separate variables for pore air vapor and adsorbed moisture, and modeling the local mass transfer between pore air and adsorbed moisture requires effective material parameters, whose experimental determination is not straightforward. Commercially available sorption balances can be used to record data, which can be used in the parameter estimation. In this type of problem of parameter estimation from time-dependent data the mathematical challenge is to find global optimum from different solutions, which yield similar values for objective function. This difficulty can be overcome by using statistical inversion approach, which we applied in studying low-density woodfibre material (LDF). Dynamic sorption parameters were finally applied in numerical analysis of a laboratory test assembly. Based on the results, our conclusion is that the slowness of sorption is obvious in small LDF sample, which is exposed to changing humidity, but with the studied material the sorption seem to happen fast enough so that local non-equilibrium may have only slight effects in modeling of real structures.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"3 21 1","pages":"399 - 424"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90156098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hygrothermal transfers through a bio-based multilayered wall: Modeling study of different wall configurations subjected to various climates and indoor cyclic loads 生物基多层墙体的热湿传递:不同墙体结构在不同气候和室内循环荷载作用下的建模研究
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2023-01-01 DOI: 10.1177/17442591221142501
N. Reuge, F. Collet, S. Prétot, S. Moisette, M. Bart, O. Style, A. Shea, C. Lanos
The hygrothermal behavior of a bio-based multilayered wall has been studied by numerical simulations. The key point of these research investigations was to properly describe the hygrothermal transfers occurring inside the studied wall solution. In previous work, the case of the wall subjected to a given real climate (Wroughton HIVE demonstrator, UK, Feb 2018) has been investigated. The present work, focused on the moisture regulation capacity of the wall, considers an improved kinetics model of sorption, different layer configurations, one additional climate (Bordeaux, FR, Apr 2008) and the effect of indoor cyclic loads. Compared to the classical approach, the local kinetics approach results in prediction of stronger and steeper hygric dynamics with larger relative humidity variations at small time scales. The study of the different wall configurations allows to determine the best one in terms of moisture damping: the vapor control membrane is advantageously removed provided the OSB3 12 mm layer is replaced by an OSB4 18 mm layer. Moreover, the simulations show that the Moisture Buffer Value characteristic of each material layer is not a sufficient criterion to evaluate hygric performance of the wall; strong hygric interactions occur with the layer’s permeability independently of its sorption capacity. Finally, water content hysteresis phenomena are studied and it appears that under usual operating conditions, they can be ignored by adjusting the layers’ permeabilities for adequate fits on the Moisture Buffer Value tests.
采用数值模拟方法研究了生物基多层壁面的热湿特性。这些研究的重点是正确地描述所研究的壁面溶液内部发生的湿热传递。在之前的工作中,已经研究了墙体在给定真实气候下的情况(Wroughton HIVE演示器,英国,2018年2月)。目前的研究重点是墙体的水分调节能力,考虑了一种改进的吸附动力学模型、不同的层构型、一种额外的气候(波尔多,法国,2008年4月)和室内循环荷载的影响。与经典方法相比,局部动力学方法可以在小时间尺度上预测更强、更陡的相对湿度变化。通过对不同壁面结构的研究,可以确定最佳的减湿方式:如果用OSB4 18 mm层代替OSB3 12 mm层,则有利于去除蒸汽控制膜。此外,模拟结果还表明,各材料层的湿缓冲值特性不能作为评价墙体湿性能的充分准则;强的水相互作用与层的渗透性发生,独立于其吸收能力。最后,对含水率滞后现象进行了研究,发现在通常的操作条件下,通过调整含水率使其与水分缓冲值试验相适应,可以忽略含水率滞后现象。
{"title":"Hygrothermal transfers through a bio-based multilayered wall: Modeling study of different wall configurations subjected to various climates and indoor cyclic loads","authors":"N. Reuge, F. Collet, S. Prétot, S. Moisette, M. Bart, O. Style, A. Shea, C. Lanos","doi":"10.1177/17442591221142501","DOIUrl":"https://doi.org/10.1177/17442591221142501","url":null,"abstract":"The hygrothermal behavior of a bio-based multilayered wall has been studied by numerical simulations. The key point of these research investigations was to properly describe the hygrothermal transfers occurring inside the studied wall solution. In previous work, the case of the wall subjected to a given real climate (Wroughton HIVE demonstrator, UK, Feb 2018) has been investigated. The present work, focused on the moisture regulation capacity of the wall, considers an improved kinetics model of sorption, different layer configurations, one additional climate (Bordeaux, FR, Apr 2008) and the effect of indoor cyclic loads. Compared to the classical approach, the local kinetics approach results in prediction of stronger and steeper hygric dynamics with larger relative humidity variations at small time scales. The study of the different wall configurations allows to determine the best one in terms of moisture damping: the vapor control membrane is advantageously removed provided the OSB3 12 mm layer is replaced by an OSB4 18 mm layer. Moreover, the simulations show that the Moisture Buffer Value characteristic of each material layer is not a sufficient criterion to evaluate hygric performance of the wall; strong hygric interactions occur with the layer’s permeability independently of its sorption capacity. Finally, water content hysteresis phenomena are studied and it appears that under usual operating conditions, they can be ignored by adjusting the layers’ permeabilities for adequate fits on the Moisture Buffer Value tests.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"233 1","pages":"425 - 454"},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76975788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The impact of wooden studs on the moisture risk of timber frame constructions 木钉对木结构受潮风险的影响
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2022-12-23 DOI: 10.1177/17442591221140470
S. Roels, Astrid Tijskens
Since timber frame constructions can help to reduce CO2-emissions and lower the embodied energy of buildings, the market share of timber-based buildings is growing across Europe. Unfortunately, timber frame constructions are found to be susceptible to moisture damage, such as interstitial condensation, mould growth and wood rot. To avoid moisture damage, a correct design of the wall composition is crucial, with special emphasis on the ratio between vapour resistance of wind and vapour barrier. Given that experimental investigations are time-consuming and expensive, numerical tools are common to assess the hygrothermal behaviour of building components. And although timber frame constructions are inherently two- or even three-dimensional due to the embedded wooden elements, most often, 1D-simulations focussing on the basic configuration with insulation between wind and vapour barrier are conducted. This paper investigates to what extent neglecting the embedded wooden elements influences the risk assessment of the wall. Three different wall configurations have been considered and their hygrothermal response, as predicted by 1D- and 2D-numerical simulations, are compared. Variability of the exterior climate is included by using four distinct different climate regions. Contrary to common assumptions, buffering of moisture in wooden elements does not always lower the risk on moisture damage, but might even increase it. While the predicted risk on mould growth was found to be similar between 1D and 2D-simulations, the opposite was found for the risk on interstitial condensation. Mainly for cold climates and wall configurations with hardly any other hygric buffering capacity, levels of interstitial condensation were found to be significantly higher when taking the wooden elements into account in the numerical simulations. Hence, care should be taken when assessing the reliability of timber frame walls based on 1D-simulations only.
由于木结构结构有助于减少二氧化碳排放和降低建筑物的隐含能量,因此木结构建筑的市场份额在整个欧洲都在增长。不幸的是,木结构结构容易受到水分的损害,例如间隙凝结,霉菌生长和木材腐烂。为了避免水分损害,正确设计墙体成分是至关重要的,特别强调风阻和蒸汽屏障之间的比例。考虑到实验研究既耗时又昂贵,数值工具通常用于评估建筑构件的湿热行为。虽然木结构结构本身是二维的,甚至是三维的,因为嵌入了木制元素,但大多数情况下,一维模拟主要集中在风和蒸汽屏障之间的绝缘基本配置上。本文探讨忽略预埋木构件对墙体风险评估的影响程度。考虑了三种不同的壁面结构,并比较了它们的湿热响应,并通过一维和二维数值模拟进行了预测。外部气候的变率通过使用四个截然不同的气候区域来包括在内。与通常的假设相反,木质元素中的水分缓冲并不总是降低水分损坏的风险,甚至可能增加水分损坏的风险。虽然在1D和2d模拟中发现霉菌生长的预测风险相似,但在间隙冷凝的风险中发现相反的风险。主要是在寒冷的气候和几乎没有任何其他水文缓冲能力的墙壁配置中,当在数值模拟中考虑木制元素时,发现间隙冷凝水平明显更高。因此,在仅基于一维模拟评估木框架墙的可靠性时应注意。
{"title":"The impact of wooden studs on the moisture risk of timber frame constructions","authors":"S. Roels, Astrid Tijskens","doi":"10.1177/17442591221140470","DOIUrl":"https://doi.org/10.1177/17442591221140470","url":null,"abstract":"Since timber frame constructions can help to reduce CO2-emissions and lower the embodied energy of buildings, the market share of timber-based buildings is growing across Europe. Unfortunately, timber frame constructions are found to be susceptible to moisture damage, such as interstitial condensation, mould growth and wood rot. To avoid moisture damage, a correct design of the wall composition is crucial, with special emphasis on the ratio between vapour resistance of wind and vapour barrier. Given that experimental investigations are time-consuming and expensive, numerical tools are common to assess the hygrothermal behaviour of building components. And although timber frame constructions are inherently two- or even three-dimensional due to the embedded wooden elements, most often, 1D-simulations focussing on the basic configuration with insulation between wind and vapour barrier are conducted. This paper investigates to what extent neglecting the embedded wooden elements influences the risk assessment of the wall. Three different wall configurations have been considered and their hygrothermal response, as predicted by 1D- and 2D-numerical simulations, are compared. Variability of the exterior climate is included by using four distinct different climate regions. Contrary to common assumptions, buffering of moisture in wooden elements does not always lower the risk on moisture damage, but might even increase it. While the predicted risk on mould growth was found to be similar between 1D and 2D-simulations, the opposite was found for the risk on interstitial condensation. Mainly for cold climates and wall configurations with hardly any other hygric buffering capacity, levels of interstitial condensation were found to be significantly higher when taking the wooden elements into account in the numerical simulations. Hence, care should be taken when assessing the reliability of timber frame walls based on 1D-simulations only.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"11 1","pages":"455 - 473"},"PeriodicalIF":2.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86347197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Development of a Multi-Criteria Decision-Making model to assist building designers in the choice of superficial construction systems in urban areas 建立多准则决策模型,帮助建筑设计师选择城市地区的表层建筑系统
IF 2 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Pub Date : 2022-12-22 DOI: 10.1177/17442591221136274
Jonas Dürr, A. Geissler, C. Hoffmann
An enormous range of building materials that is almost impossible to keep track of is available. The trend toward building densification in cities continues apace. Coupled with climate change, a situation is emerging that poses ecological as well as economic risks in terms of living comfort in public, urban spaces. Building designers need help (tools) to be able to address a wide range of requirements within their planning. The development of the Multi-Criteria Decision-Making (MCDM) model BASK (engl. “Construction Materials for Cities in Climate Change”) is presented. The goal of the model is to assist building designers in determining surface materials for wall, ground and roof construction and help determine the best compromise between environmental, economic, and building practice criteria. Currently available criteria are heat stress, visual reflectance, CO2 equivalents, electricity production, retrofitability, sound absorption, construction costs, and life span. The criteria can be weighted by the designer, resulting in a customized ranking of construction systems that best meets the designer’s prioritized criteria. The design of BASK basically allows for an extension of the criteria. The version of BASK described in this paper includes 10 construction systems covering a wide range of construction types focused on walls. The tool requires technical data for materials considered in construction systems included, which are made available via a data base. The scope of construction systems can also be extended in the future. Based on the restricted set of construction systems the results of a sensitivity analysis and initial validation are given.
建筑材料种类繁多,几乎无法追踪。城市建筑密集化的趋势仍在迅速发展。再加上气候变化,一种情况正在出现,在城市公共空间的生活舒适度方面带来生态和经济风险。建筑设计师需要帮助(工具),以便能够在他们的规划中解决广泛的需求。多准则决策(MCDM)模型BASK (engl)的发展。“气候变化中的城市建筑材料”)。该模型的目标是帮助建筑设计师确定墙面、地面和屋顶建筑的表面材料,并帮助确定环境、经济和建筑实践标准之间的最佳折衷。目前可用的标准是热应力、视觉反射率、二氧化碳当量、发电量、可改装性、吸声性、建筑成本和寿命。设计师可以对这些标准进行加权,从而对最符合设计师优先标准的建筑系统进行定制排名。BASK的设计基本上允许对标准进行扩展。本文描述的BASK版本包括10个施工系统,涵盖了以墙壁为重点的各种施工类型。该工具需要包括建筑系统中所考虑的材料的技术数据,这些数据可通过数据库提供。建筑系统的范围也可以在未来扩展。基于构造系统的约束集,给出了灵敏度分析和初步验证结果。
{"title":"Development of a Multi-Criteria Decision-Making model to assist building designers in the choice of superficial construction systems in urban areas","authors":"Jonas Dürr, A. Geissler, C. Hoffmann","doi":"10.1177/17442591221136274","DOIUrl":"https://doi.org/10.1177/17442591221136274","url":null,"abstract":"An enormous range of building materials that is almost impossible to keep track of is available. The trend toward building densification in cities continues apace. Coupled with climate change, a situation is emerging that poses ecological as well as economic risks in terms of living comfort in public, urban spaces. Building designers need help (tools) to be able to address a wide range of requirements within their planning. The development of the Multi-Criteria Decision-Making (MCDM) model BASK (engl. “Construction Materials for Cities in Climate Change”) is presented. The goal of the model is to assist building designers in determining surface materials for wall, ground and roof construction and help determine the best compromise between environmental, economic, and building practice criteria. Currently available criteria are heat stress, visual reflectance, CO2 equivalents, electricity production, retrofitability, sound absorption, construction costs, and life span. The criteria can be weighted by the designer, resulting in a customized ranking of construction systems that best meets the designer’s prioritized criteria. The design of BASK basically allows for an extension of the criteria. The version of BASK described in this paper includes 10 construction systems covering a wide range of construction types focused on walls. The tool requires technical data for materials considered in construction systems included, which are made available via a data base. The scope of construction systems can also be extended in the future. Based on the restricted set of construction systems the results of a sensitivity analysis and initial validation are given.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"4 1","pages":"513 - 540"},"PeriodicalIF":2.0,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74398028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Journal of Building Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1